首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The sense of bitter taste plays a critical role in animals as it can help them to avoid intake of toxic and harmful substances. Previous research had revealed that chicken has only three bitter taste receptor genes (Tas2r1, Tas2r2 and Tas2r7). To better understand the genetic polymorphisms and importance of bitter taste receptor genes (Tas2rs) in chicken, here, we sequenced Tas2rs of 30 Sichuan domestic chickens and 30 Tibetan chickens. Thirteen single-nucleotide polymorphisms (SNPs) including three nonsynonymous mutations (m.359G >C, m.503C >A and m.583A >G) were detected in Tas2r1 (m. is the abbreviation for mutation); three SNPs were detected in Tas2r2, but none of them were missense mutation; eight SNPs were detected in Tas2r7 including six nonsynonymous substitutions (m.178G >A, m.421A >C, m.787C >T, m.832G >T, m.907A >T and m.943G >A). Tajima’s D neutral test indicates that there is no population expansion in both populations, and the size of the population is relatively stable. All the three networks indicate that red jungle fowls share haplotypes with domestic chickens. In addition, we found that haplotypes H1 and HE1 were positively associated with high-altitude adaptation, whereas haplotypes H4 and HE4 showed a negative correlation with high-altitude adaptation in Tas2rs. Although, chicken has only three Tas2rs, our results showed that both Sichuan domestic chickens and Tibetan chickens have abundant haplotypes in Tas2rs, especially in Tas2r7, which might help chickens to recognize a wide variety of bitter-tasting compounds.  相似文献   

3.
Taste enables organisms to determine the properties of ingested substances by conveying information regarding the five basic taste modalities: sweet, salty, sour, bitter, and umami. The sweet, salty, and umami taste modalities convey the carbohydrate, electrolyte, and glutamate content of food, indicating its desirability and stimulating appetitive responses. The sour and bitter modalities convey the acidity of food and the presence of potential toxins, respectively, stimulating aversive responses to such tastes. In recent years, the receptors mediating sweet, bitter, and umami tastes have been identified as members of the T1R and T2R G-protein-coupled receptor families; however, the molecular mechanisms underlying sour taste detection have yet to be clearly elucidated. This review covers the molecular mechanisms proposed to mediate the detection and transmission of sour stimuli, focusing on polycystic kidney disease 1-like 3 (Pkd1l3), Pkd2l1, and carbonic anhydrase 4 (Car4).  相似文献   

4.
Taste reception is fundamental to diet selection in many animals. The genetic basis underlying the evolution and diversity of taste reception, however, is not well understood. Recent discoveries of T1R sweet/umami receptor genes and T2R bitter receptor genes in humans and mice provided an opportunity to address this question. Here, we report the identification of 20 putatively functional T1R genes and 167 T2R genes from the genome sequences of nine vertebrates, including three fishes, one amphibian, one bird, and four mammals. Our comparative genomic analysis shows that orthologous T1R sequences are relatively conserved in evolution and that the T1R gene repertoire remains virtually constant in size across most vertebrates, except for the loss of the T1R2 sweet receptor gene in the sweet-insensitive chicken and the absence of all T1R genes in the tongueless western clawed frog. In contrast, orthologous T2R sequences are more variable, and the T2R repertoire diverges tremendously among species, from only three functional genes in the chicken to 49 in the frog. These evolutionary patterns suggest the relative constancy in the number and type of sweet and umami tastants encountered by various vertebrates or low binding specificities of T1Rs but a large variation in the number and type of bitter compounds detected by different species. Although the rate of gene duplication is much lower in T1Rs than in T2Rs, signals of positive selection are detected during the functional divergences of paralogous T1Rs, as was previously found among paralogous T2Rs. Thus, functional divergence and specialization of taste receptors generally occurred via adaptive evolution.  相似文献   

5.
Genetic variation in bitter taste receptors, such as hTAS2R38, may affect food preferences and intake. The aim of the present study was to investigate the association between bitter taste receptor haplotypes and the consumption of vegetables, fruits, berries and sweet foods among an adult Finnish population. A cross-sectional design utilizing data from the Cardiovascular Risk in Young Finns cohort from 2007, which consisted of 1,903 men and women who were 30–45 years of age from five different regions in Finland, was employed. DNA was extracted from blood samples, and hTAS2R38 polymorphisms were determined based on three SNPs (rs713598, rs1726866 and rs10246939). Food consumption was assessed with a validated food frequency questionnaire. The prevalence of the bitter taste-sensitive (PAV/PAV) haplotype was 11.3 % and that of the insensitive (AVI/AVI) haplotype was 39.5 % among this Finnish population. PAV homozygotic women consumed fewer vegetables than did the AVI homozygotic women, 269 g/day (SD 131) versus 301 g/day (SD 187), respectively, p = 0.03 (multivariate ANOVA). Furthermore, the intake of sweet foods was higher among the PAV homozygotes of both genders. Fruit and berry consumption did not differ significantly between the haplotypes in either gender. Individuals perceive foods differently, and this may influence their patterns of food consumption. This study showed that the hTAS2R38 taste receptor gene variation was associated with vegetable and sweet food consumption among adults in a Finnish population.  相似文献   

6.
The ability to detect bitter tastes is important for animals; it can help them to avoid ingesting harmful substances. Bitter taste perception is mainly mediated by bitter taste receptor proteins, which are encoded by members of the Tas2r gene family and vary with the dietary preference of a specific species. Although individuals with different genotypes differ in bitterness recognition capability, little is known about the relationship between genetic variation and food selection tendencies at the intraspecific level. In this study, we examined the relationship between genotypes and diet in plateau zokor (Eospalax baileyi), a subterranean rodent endemic to the Qinghai‐Tibet Plateau that caches food for the winter. We assayed the composition and taste profile of each plant contained in temporary caches and vicinity quadrats, which were representative of selected and available food, respectively. Bitter plant selection indices (Ebitter) were estimated. We also sequenced 26 candidate Tas2r genes from zokors and determined their relationships with the Ebitter of their caches. We identified four key results: (1) zokors varied considerably in both bitter food preference and Tas2r sequences; (2) five genes (zTas2r115, zTas2r119, zTas2r126, zTas2r134, and zTas2r136) exhibited allelic variation that was significantly associated with Ebitter; (3) synonymous SNPs, nonsynonymous SNPs, and pseudogenization are involved in the genotype–phenotype relationship; (4) the minor genotypes of zTas2r115, zTas2r134, and zTas2r136 and the major genotypes of zTas2r119 and zTas2r126 cached more bitter plants. Our results link Tas2r variation with food selection behavior at the population level for the first time.  相似文献   

7.
The aim of the study was to assess the relationship between sweet taste genes and dental caries prevalence in a large sample of adults. In addition, the association between sweet liking and sugar intake with dental caries was investigated. Caries was measured by the decayed, missing, filled teeth (DMFT) index in 647 Caucasian subjects (285 males and 362 females, aged 18–65 years), coming from six villages in northeastern Italy. Sweet liking was assessed using a 9-point scale, and the mean of the liking given by each individual to specific sweet food and beverages was used to create a sweet liking score. Simple sugar consumption was estimated by a dietary history interview, considering both added sugars and sugar present naturally in foods. Our study confirmed that polymorphisms in TAS1R2 and GLUT2 genes are related to DMFT index. In particular, GG homozygous individuals for rs3935570 in TAS1R2 gene (p value = 0.0117) and GG homozygous individuals for rs1499821 in GLUT2 gene (p value = 0.0273) showed higher DMFT levels compared to both heterozygous and homozygous for the alternative allele. Furthermore, while the relationship sugar intake–DMFT did not achieve statistical significance (p value = 0.075), a significant association was identified between sweet liking and DMFT (p value = 0.004), independent of other variables. Our study showed that sweet taste genetic factors contribute to caries prevalence and highlighted the role of sweet liking as a predictor of caries risk. Therefore, these results may open new perspectives for individual risk identification and implementation of target preventive strategies, such as identifying high-risk patients before caries development.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-015-0485-z) contains supplementary material, which is available to authorized users.  相似文献   

8.
The taste of peptides is seldom one of the most relevant issues when one considers the many important biological functions of this class of molecules. However, peptides generally do have a taste, covering essentially the entire range of established taste modalities: sweet, bitter, umami, sour and salty. The last two modalities cannot be attributed to peptides as such because they are due to the presence of charged terminals and/or charged side chains, thus reflecting only the zwitterionic nature of these compounds and/or the nature of some side chains but not the electronic and/or conformational features of a specific peptide. The other three tastes, that is, sweet, umami and bitter, are represented by different families of peptides. This review describes the main peptides with a sweet, umami or bitter taste and their relationship with food acceptance or rejection. Particular emphasis will be given to the sweet taste modality, owing to the practical and scientific relevance of aspartame, the well‐known sweetener, and to the theoretical importance of sweet proteins, the most potent peptide sweet molecules. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
冯平  罗瑞健 《遗传》2018,40(2):126-134
在鲜味、甜味、苦味、咸味和酸味5种味觉形式中,苦味能避免动物摄入有毒有害物质,在动物的生存中发挥着特别重要的作用。苦味味觉的产生依赖于苦味物质与苦味受体的相互作用。苦味受体由苦味受体基因Tas2rs编码,此类基因在不同物种中数量变化较大以适应不同的需求。目前的研究在灵长类中鉴别出了若干苦味受体的配体,并发现有的苦味受体基因所经受的选择压在类群之间、基因之间甚至同一基因不同功能区之间都存在着变化。本文从苦味受体作用的多样性特点,受体与配体的对应关系、受体基因进化模式与食性之间的关系、苦味受体基因的适应性进化方面对灵长类苦味受体基因进行了综述,以期为苦味受体基因在灵长类中的深入研究提供参考。  相似文献   

10.
Bitter taste perception is important for vertebrates to select food and avoid toxic substances. A large number of Tas2r genes have been identified from vertebrate species previously; however, few studies have been conducted on the Tas2r genes of Ovalentaria species that have various dietary niches and are widely distributed, ranging from the sea to freshwater environments. Several genomes of Ovalentaria species have been released recently, allowing us to study Tas2r genes in these fishes. Thus, we explored the genomes of these fishes and identified 34 Tas2r genes in 21 species, including 27 intact Tas2r genes and seven pseudogenes. The results suggest that Ovalentaria species generally carry a small repertoire of Tas2r genes. To determine the phylogenetic relationship of Tas2r genes among 21 fishes, we constructed neighbor-joining (NJ) trees. The results showed that gene duplication may not occur in these fishes. Phylogenetic independent contrast (PIC) analysis showed that the fish Tas2r gene repertoire size was not positively correlated with diet, indicating that the food swallowing behavior might reduce the importance of bitter taste sense.  相似文献   

11.
Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor) genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus) should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in understanding the forces shaping their repertoire.  相似文献   

12.
In a search for sweet taste receptor interacting proteins, we have identified the calcium- and integrin-binding protein 1 (CIB1) as specific binding partner of the intracellular carboxyterminal domain of the rat sweet taste receptor subunit Tas1r2. In heterologous human embryonic kidney 293 (HEK293) cells, the G protein chimeras Gα16gust44 and Gα15i3 link the sweet taste receptor dimer TAS1R2/TAS1R3 to an inositol 1,4,5-trisphosphate (InsP3)-dependent Ca2+ release pathway. To demonstrate the influence of CIB1 on the cytosolic Ca2+ concentration, we used sweet and umami compounds as well as other InsP3-generating ligands in FURA-2-based Ca2+ assays in wild-type HEK293 cells and HEK293 cells expressing functional human sweet and umami taste receptor dimers. Stable and transient depletion of CIB1 by short-hairpin RNA increased the Ca2+ response of HEK293 cells to the InsP3-generating ligands ATP, UTP and carbachol. Over-expression of CIB1 had the opposite effect as shown for the sweet ligand saccharin, the umami receptor ligand monosodium glutamate and UTP. The CIB1 effect was dependent on the thapsigargin-sensitive Ca2+ store of the endoplasmic reticulum (ER) and independent of extracellular Ca2+. The function of CIB1 on InsP3-evoked Ca2+ release from the ER is most likely mediated by its interaction with the InsP3 receptor. Thus, CIB1 seems to be an inhibitor of InsP3-dependent Ca2+ release in vivo .  相似文献   

13.
To visualize the neural pathways originating from bitter taste receptor cells (TRCs), we generated transgenic mice expressing the transneuronal tracer wheat germ agglutinin (WGA) under the control of the mouse T2R5 gene promoter/enhancer (t2r5-WGA mice). WGA mRNA was specifically expressed in bitter TRCs. The WGA protein was detected in bitter TRCs and nerve processes in taste buds, but not in sweet, umami, or sour TRCs. The WGA protein was transferred to a subset of sensory neurons in the geniculate and nodose/petrosal ganglia. These results suggest that bitter TRCs, which are devoid of synaptic structures, are innervated by gustatory neurons and that bitter sensory information is directly transmitted to specific gustatory neurons. The t2r5-WGA mice provide a useful tool for identifying gustatory relay neurons in the peripheral sensory ganglia responsible for aversive sensations.  相似文献   

14.
The sense of bitter taste plays a critical role in how organisms avoid generally bitter toxic and harmful substances. Previous studies revealed that there were 25 intact bitter taste receptor (T2R) genes in humans and 34 in mice. However, because the recent chicken genome project reported only three T2R genes, it appears that extensive gene expansions occurred in the lineage leading to mammals or extensive gene contractions occurred in the lineage leading to birds. Here, I examined the T2R gene repertoire in placental mammals (dogs, Canis familiaris; and cows, Bos taurus), marsupials (opossums, Monodelphis domestica), amphibians (frogs, Xenopus tropicalis), and fishes (zebrafishes, Danio rerio; and pufferfishes, Takifugu rubripes) to investigate the birth-and-death process of T2R genes throughout vertebrate evolution. I show that (1) the first extensive gene expansions occurred before the divergence of mammals from reptiles/birds but after the divergence of amniotes (reptiles/birds/mammals) from amphibians, (2) subsequent gene expansions continuously took place in the ancestral mammalian lineage and the lineage leading to amphibians, as evidenced by the presence of 15, 18, 26, and 49 intact T2R genes in the dog, cow, opossum, and frog genome, respectively, and (3) contractions of the gene repertoire happened in the lineage leading to chickens. Thus, continuous gene expansions have shaped the T2R repertoire in mammals, but the contractions subsequent to the first round of expansions have made the chicken T2R repertoire narrow. These dramatic changes in the repertoire size might reflect the daily intake of foods from an external environment as a driving force of evolution.  相似文献   

15.
施鹏  黄京飞  张亚平 《遗传学报》2005,32(4):346-353
通过生物信息学和系统发育学分析,研究了苦味受体和甜味/鲜味受体的进化途径。结果显示,苦味受体和甜味/鲜味受体在进化上具有远相关,并且具有不同的进化途径,提示这可能是导致这些受体具有不同功能,传导不同味觉的原因。  相似文献   

16.
Although the five basic taste qualities—sweet, sour, bitter, salty and umami—can be recognized by the respective gustatory system, interactions between these taste qualities are often experienced when food is consumed. Specifically, the umami taste has been investigated in terms of whether it enhances or reduces the other taste modalities. These studies, however, are based on individual perception and not on a molecular level. In this study we investigated umami-sweet taste interactions using umami compounds including monosodium glutamate (MSG), 5’-mononucleotides and glutamyl-dipeptides, glutamate-glutamate (Glu-Glu) and glutamate-aspartic acid (Glu-Asp), in human sweet taste receptor hT1R2/hT1R3-expressing cells. The sensitivity of sucrose to hT1R2/hT1R3 was significantly attenuated by MSG and umami active peptides but not by umami active nucleotides. Inhibition of sweet receptor activation by MSG and glutamyl peptides is obvious when sweet receptors are activated by sweeteners that target the extracellular domain (ECD) of T1R2, such as sucrose and acesulfame K, but not by cyclamate, which interact with the T1R3 transmembrane domain (TMD). Application of umami compounds with lactisole, inhibitory drugs that target T1R3, exerted a more severe inhibitory effect. The inhibition was also observed with F778A sweet receptor mutant, which have the defect in function of T1R3 TMD. These results suggest that umami peptides affect sweet taste receptors and this interaction prevents sweet receptor agonists from binding to the T1R2 ECD in an allosteric manner, not to the T1R3. This is the first report to define the interaction between umami and sweet taste receptors.  相似文献   

17.
The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes.  相似文献   

18.
The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.  相似文献   

19.
Trpm5 null mice respond to bitter, sweet, and umami compounds   总被引:8,自引:0,他引:8  
Trpm5 is a calcium-activated cation channel expressed selectively in taste receptor cells. A previous study reported that mice with an internal deletion of Trpm5, lacking exons 15-19 encoding transmembrane segments 1-5, showed no taste-mediated responses to bitter, sweet, and umami compounds. We independently generated knockout mice null for Trpm5 protein expression due to deletion of Trpm5's promoter region and exons 1-4 (including the translation start site). We examined the taste-mediated responses of Trpm5 null mice and wild-type (WT) mice using three procedures: gustatory nerve recording [chorda tympani (CT) and glossopharyngeal (NG) nerves], initial lick responses, and 24-h two-bottle preference tests. With bitter compounds, the Trpm5 null mice showed reduced, but not abolished, avoidance (as indicated by licking responses and preference ratios higher than those of WT), a normal CT response, and a greatly diminished NG response. With sweet compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, and absent or greatly reduced nerve responses. With umami compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, a normal NG response, and a greatly diminished CT response. Our results demonstrate that the consequences of eliminating Trmp5 expression vary depending upon the taste quality and the lingual taste field examined. Thus, while Trpm5 is an important factor in many taste responses, its absence does not eliminate all taste responses. We conclude that Trpm5-dependent and Trpm5-independent pathways underlie bitter, sweet, and umami tastes.  相似文献   

20.
Several attempts have been made to mask the bitter taste of oral formulations, but none have been made for injectable formulations. This study aims to mask the bitter taste of dental lidocaine HCl (LID) injection using hydroxypropyl-β-cyclodextrin (HP-β-CD) and sodium saccharin. Inclusion complexes of LID and HP-β-CD were prepared by the solution method in 1:1 and 1:2 M ratios. Inclusion complexes in solution were studied using phase solubility in phosphate buffer solutions (pH 8, 9, and 10). Freeze-dried inclusion complexes were characterized using differential scanning calorimetry (DSC), X-ray, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and in vitro release. Injectable formulations were prepared using inclusion complexes and characterized for stability and for taste using an Alpha MOS ASTREE electronic tongue (ETongue). The association constants of HP-β-CD with lidocaine-free base and its ionized form were found to be 26.23 ± 0.00025 and 0.8694 ± 0.00045 M−1, respectively. Characterization studies confirmed the formation of stable inclusion complexes of LID and HP-β-CD. Injectable formulations were found to be stable for up to 6 months at 4°C, 25°C, and 40°C. The taste evaluation study indicated that HP-β-CD (1:1 and 1:2 M ratios) significantly improved the bitter taste of LID injectable formulation. In conclusion, inclusion complex in the 1:1 M ratio with 0.09% sodium saccharin was considered to be optimum in masking the bitter taste of LID.KEY WORDS: bitter taste, HP-β-CD, inclusion complex, injectable, lidocaine HCl, taste masking  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号