首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial capture–recapture (SCR) analysis is now used routinely to inform wildlife management and conservation decisions. It is therefore imperative that we understand the implications of and can diagnose common SCR model misspecifications, as flawed inferences could propagate to policy and interventions. The detection function of an SCR model describes how an individual''s detections are distributed in space. Despite the detection function''s central role in SCR, little is known about the robustness of SCR‐derived abundance estimates and home range size estimates to misspecifications. Here, we set out to (a) determine whether abundance estimates are robust to a wider range of misspecifications of the detection function than previously explored, (b) quantify the sensitivity of home range size estimates to the choice of detection function, and (c) evaluate commonly used Bayesian p‐values for detecting misspecifications thereof. We simulated SCR data using different circular detection functions to emulate a wide range of space use patterns. We then fit Bayesian SCR models with three detection functions (half‐normal, exponential, and half‐normal plateau) to each simulated data set. While abundance estimates were very robust, estimates of home range size were sensitive to misspecifications of the detection function. When misspecified, SCR models with the half‐normal plateau and exponential detection functions produced the most and least reliable home range size, respectively. Misspecifications with the strongest impact on parameter estimates were easily detected by Bayesian p‐values. Practitioners using SCR exclusively for density estimation are unlikely to be impacted by misspecifications of the detection function. However, the choice of detection function can have substantial consequences for the reliability of inferences about space use. Although Bayesian p‐values can aid the diagnosis of detection function misspecification under certain conditions, we urge the development of additional custom goodness‐of‐fit diagnostics for Bayesian SCR models to identify a wider range of model misspecifications.  相似文献   

2.
3.
  1. Restoration ecology has historically focused on reconstructing communities of highly visible taxa while less visible taxa, such as invertebrates and microbes, are ignored. This is problematic as invertebrates and microbes make up the vast bulk of biodiversity and drive many key ecosystem processes, yet they are rarely actively reintroduced following restoration, potentially limiting ecosystem function and biodiversity in these areas.
  2. In this review, we discuss the current (limited) incorporation of invertebrates and microbes in restoration and rewilding projects. We argue that these groups should be actively rewilded during restoration to improve biodiversity, ecosystem function outcomes, and highlight how they can be used to greater effect in the future. For example, invertebrates and microbes are easily manipulated, meaning whole communities can potentially be rewilded through habitat transplants in a practice that we refer to as “whole‐of‐community” rewilding.
  3. We provide a framework for whole‐of‐community rewilding and describe empirical case studies as practical applications of this under‐researched restoration tool that land managers can use to improve restoration outcomes.
  4. We hope this new perspective on whole‐of‐community restoration will promote applied research into restoration that incorporates all biota, irrespective of size, while also enabling a better understanding of fundamental ecological theory, such as colonization and competition trade‐offs. This may be a necessary consideration as invertebrates that are important in providing ecosystem services are declining globally; targeting invertebrate communities during restoration may be crucial in stemming this decline.
  相似文献   

4.
Acute exposure to warming temperatures increases minimum energetic requirements in ectotherms. However, over and within multiple generations, increased temperatures may cause plastic and evolved changes that modify the temperature sensitivity of energy demand and alter individual behaviors. Here, we aimed to test whether populations recently exposed to geothermally elevated temperatures express an altered temperature sensitivity of metabolism and behavior. We expected that long‐term exposure to warming would moderate metabolic rate, reducing the temperature sensitivity of metabolism, with concomitant reductions in boldness and activity. We compared the temperature sensitivity of metabolic rate (acclimation at 20 vs. 30°C) and allometric slopes of routine, standard, and maximum metabolic rates, in addition to boldness and activity behaviors, across eight recently divergent populations of a widespread fish species (Gambusia affinis). Our data reveal that warm‐source populations express a reduced temperature sensitivity of metabolism, with relatively high metabolic rates at cool acclimation temperatures and relatively low metabolic rates at warm acclimation temperatures compared to ambient‐source populations. Allometric scaling of metabolism did not differ with thermal history. Across individuals from all populations combined, higher metabolic rates were associated with higher activity rates at 20°C and bolder behavior at 30°C. However, warm‐source populations displayed relatively bolder behavior at both acclimation temperatures compared to ambient‐source populations, despite their relatively low metabolic rates at warm acclimation temperatures. Overall, our data suggest that in response to warming, multigenerational exposure (e.g., plasticity, adaptation) may not result in trait change directed along a simple “pace‐of‐life syndrome” axis, instead causing relative decreases in metabolism and increases in boldness. Ultimately, our data suggest that multigenerational warming may produce a novel combination of physiological and behavioral traits, with consequences for animal performance in a warming world.  相似文献   

5.
This paper presents a microfluidic device capable of performing genetic analysis on dung samples to identify White Rhinoceros (Ceratotherium simum). The development of a microfluidic device, which can be used in the field, offers a portable and cost‐effective solution for DNA analysis and species identification to aid conservation efforts. Optimization of the DNA extraction processes produced equivalent yields compared to conventional kit‐based methods within just 5 minutes. The use of a color‐changing loop‐mediated isothermal amplification reaction for simultaneous detection of the cytochrome B sequence of C. simum enabled positive results to be obtained within as little as 30 minutes. Field testing was performed at Knowsley Safari to demonstrate real‐world applicability of the microfluidic device for testing of biological samples.  相似文献   

6.
Interferon‐induced transmembrane proteins (IFITMs) restrict infections by many viruses, but a subset of IFITMs enhance infections by specific coronaviruses through currently unknown mechanisms. We show that SARS‐CoV‐2 Spike‐pseudotyped virus and genuine SARS‐CoV‐2 infections are generally restricted by human and mouse IFITM1, IFITM2, and IFITM3, using gain‐ and loss‐of‐function approaches. Mechanistically, SARS‐CoV‐2 restriction occurred independently of IFITM3 S‐palmitoylation, indicating a restrictive capacity distinct from reported inhibition of other viruses. In contrast, the IFITM3 amphipathic helix and its amphipathic properties were required for virus restriction. Mutation of residues within the IFITM3 endocytosis‐promoting YxxФ motif converted human IFITM3 into an enhancer of SARS‐CoV‐2 infection, and cell‐to‐cell fusion assays confirmed the ability of endocytic mutants to enhance Spike‐mediated fusion with the plasma membrane. Overexpression of TMPRSS2, which increases plasma membrane fusion versus endosome fusion of SARS‐CoV‐2, attenuated IFITM3 restriction and converted amphipathic helix mutants into infection enhancers. In sum, we uncover new pro‐ and anti‐viral mechanisms of IFITM3, with clear distinctions drawn between enhancement of viral infection at the plasma membrane and amphipathicity‐based mechanisms used for endosomal SARS‐CoV‐2 restriction.  相似文献   

7.
We present improvements to the hydropathy scale (HPS) coarse‐grained (CG) model for simulating sequence‐specific behavior of intrinsically disordered proteins (IDPs), including their liquid–liquid phase separation (LLPS). The previous model based on an atomistic hydropathy scale by Kapcha and Rossky (KR scale) is not able to capture some well‐known LLPS trends such as reduced phase separation propensity upon mutations (R‐to‐K and Y‐to‐F). Here, we propose to use the Urry hydropathy scale instead, which was derived from the inverse temperature transitions in a model polypeptide with guest residues X. We introduce two free parameters to shift (Δ) and scale (µ) the overall interaction strengths for the new model (HPS‐Urry) and use the experimental radius of gyration for a diverse group of IDPs to find their optimal values. Interestingly, many possible (Δ, µ) combinations can be used for typical IDPs, but the phase behavior of a low‐complexity (LC) sequence FUS is only well described by one of these models, which highlights the need for a careful validation strategy based on multiple proteins. The CG HPS‐Urry model should enable accurate simulations of protein LLPS and provide a microscopically detailed view of molecular interactions.  相似文献   

8.
The cloud forest species Meriania macrophylla (Benth.) Triana has pseudocampanulate flowers with bulbous stamen appendages, typical for the passerine pollination syndrome found in the Melastomataceae tribe Merianieae. The species is further characterized by strong stamen dimorphism (heteranthery), a condition otherwise associated with pollen‐rewarding bee‐pollinated species (both in Melastomataceae and beyond). In passerine‐pollinated Merianieae, however, flowers usually only show weak stamen dimorphism. Here, we conducted field and laboratory investigations to determine the pollinators of M. macrophylla and assess the potential role of strong heteranthery in this species. Our field observations in Costa Rica confirmed syndrome predictions and indeed proved pollination by passerine birds in M. macrophylla. The large bulbous set of stamens functions as a food‐body reward to the pollinating birds, and as trigger for pollen release (bellows mechanism) as typical for the passerine syndrome in Merianieae. In contrast to other passerine‐pollinated Merianieae, the second set of stamens has seemingly lost its rewarding and pollination function, however. Our results demonstrate the utility of the pollination syndrome concept even in light of potentially misleading traits such as strong heteranthery.  相似文献   

9.
Drug development is a costly and lengthy process with low success rates. To improve the efficiency of drug development, there has been an increasing need in developing alternative methods able to eliminate toxic compounds early in the drug development pipeline. Drug metabolism plays a key role in determining the efficacy of a drug and its potential side effects. Since drug metabolism occurs mainly in the liver, liver cell‐based alternative engineering platforms have been growing in the last decade. Microphysiological liver cell‐based systems called liver‐on‐a‐chip platforms can better recapitulate the environment for human liver cells in laboratory settings and have the potential to reduce the number of animal models used in drug development by predicting the response of the liver to a drug in vitro. In this review, we discuss the liver microphysiological platforms from the perspective of drug metabolism studies. We highlight the stand‐alone liver‐on‐a‐chip platforms and multi‐organ systems integrating liver‐on‐a‐chip devices used for drug metabolism mimicry in vitro and review the state‐of‐the‐art platforms reported in the last few years. With the development of more robust and reproducible liver cell‐based microphysiological platforms, the drug development field has the potential of reducing the costs and lengths associated with currently existing drug testing methods.  相似文献   

10.
Tremendous progress has been made to control the COVID‐19 pandemic caused by the SARS‐CoV‐2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS‐CoV‐2 infection using genome‐scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS‐CoV‐2 infection. We next applied the GEM‐based metabolic transformation algorithm to predict anti‐SARS‐CoV‐2 targets that counteract the virus‐induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco‐2 cells. Further generating and analyzing RNA‐sequencing data of remdesivir‐treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti‐SARS‐CoV‐2 drug. Our study provides clinical data‐supported candidate anti‐SARS‐CoV‐2 targets for future evaluation, demonstrating host metabolism targeting as a promising antiviral strategy.  相似文献   

11.
12.
Mesoplasma florum, a fast‐growing near‐minimal organism, is a compelling model to explore rational genome designs. Using sequence and structural homology, the set of metabolic functions its genome encodes was identified, allowing the reconstruction of a metabolic network representing ˜ 30% of its protein‐coding genes. Growth medium simplification enabled substrate uptake and product secretion rate quantification which, along with experimental biomass composition, were integrated as species‐specific constraints to produce the functional iJL208 genome‐scale model (GEM) of metabolism. Genome‐wide expression and essentiality datasets as well as growth data on various carbohydrates were used to validate and refine iJL208. Discrepancies between model predictions and observations were mechanistically explained using protein structures and network analysis. iJL208 was also used to propose an in silico reduced genome. Comparing this prediction to the minimal cell JCVI‐syn3.0 and its parent JCVI‐syn1.0 revealed key features of a minimal gene set. iJL208 is a stepping‐stone toward model‐driven whole‐genome engineering.  相似文献   

13.
Although miR‐148a‐3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR‐148a‐3p in regulating epithelial‐to‐mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR‐148a‐3p expression was remarkably down‐regulated in PC tissues and cell lines. Moreover, low expression of miR‐148a‐3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain‐of‐function and loss‐of‐function experiments showed that miR‐148a‐3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual‐luciferase reporter assay demonstrated that Wnt1 was a direct target of miR‐148a‐3p, and its expression was inversely associated with miR‐148a‐3p in PC tissues. Furthermore, miR‐148a‐3p suppressed the Wnt/β‐catenin pathway via down‐regulation of Wnt1. The effects of ectopic miR‐148a‐3p were rescued by Wnt1 overexpression. These biological functions of miR‐148a‐3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR‐148a‐3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1‐mediated Wnt/β‐catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC.  相似文献   

14.
Acanthamoeba polyphaga Mimivirus, a complex virus that infects amoeba, was first reported in 2003. It is now known that its DNA genome encodes for nearly 1,000 proteins including enzymes that are required for the biosynthesis of the unusual sugar 4‐amino‐4,6‐dideoxy‐d‐glucose, also known as d‐viosamine. As observed in some bacteria, the pathway for the production of this sugar initiates with a nucleotide‐linked sugar, which in the Mimivirus is thought to be UDP‐d‐glucose. The enzyme required for the installment of the amino group at the C‐4′ position of the pyranosyl moiety is encoded in the Mimivirus by the L136 gene. Here, we describe a structural and functional analysis of this pyridoxal 5′‐phosphate‐dependent enzyme, referred to as L136. For this analysis, three high‐resolution X‐ray structures were determined: the wildtype enzyme/pyridoxamine 5′‐phosphate/dTDP complex and the site‐directed mutant variant K185A in the presence of either UDP‐4‐amino‐4,6‐dideoxy‐d‐glucose or dTDP‐4‐amino‐4,6‐dideoxy‐d‐glucose. Additionally, the kinetic parameters of the enzyme utilizing either UDP‐d‐glucose or dTDP‐d‐glucose were measured and demonstrated that L136 is efficient with both substrates. This is in sharp contrast to the structurally related DesI from Streptomyces venezuelae, whose three‐dimensional architecture was previously reported by this laboratory. As determined in this investigation,DesI shows a profound preference in its catalytic efficiency for the dTDP‐linked sugar substrate. This difference can be explained in part by a hydrophobic patch in DesI that is missing in L136. Notably, the structure of L136 reported here represents the first three‐dimensional model for a virally encoded PLP‐dependent enzyme and thus provides new information on sugar aminotransferases in general.  相似文献   

15.
Treatment of multiple malignant solid tumours with programmed death (PD)‐1/PD ligand (PD‐L) 1 inhibitors has been reported. However, the efficacy and immune adverse effects of combination therapies are controversial. This meta‐analysis was performed with PubMed, Web of Science, Medline, EMBASE and Cochrane Library from their inception until January 2020. Random‐effect model was adopted because of relatively high heterogeneity. We also calculated hazard ratio (HR) of progression‐free survival (PFS), overall survival (OS) and risk ratio (RR) of adverse events (AEs), the incidence of grade 3‐5 AEs by tumour subgroup, therapeutic schedules and therapy lines. Nineteen articles were selected using the search strategy for meta‐analysis. Combined PD‐1/PD‐L1 inhibitors prolonged OS and PFS (HR 0.72, P < 0.001) and (HR 0.66, P < 0.001). In addition, incidence of all‐grade and grade 3‐5 AEs was not significant in the two subgroup analyses (HR 1.01, P = 0.31) and (HR 1.10, P = 0.07), respectively. Our meta‐analysis indicated that combination therapy with PD‐1/PD‐L1 inhibitors had greater clinical benefits and adverse events were not increased significantly.  相似文献   

16.
The COVID‐19 pandemic caused by SARS‐CoV‐2 infection has led to socio‐economic shutdowns and the loss of over 5 million lives worldwide. There is a need for the identification of therapeutic targets to treat COVID‐19. SARS‐CoV‐2 spike is a target of interest for the development of therapeutic targets. We developed a robust SARS‐CoV‐2 S spike expression and purification protocol from insect cells and studied four recombinant SARS‐CoV‐2 spike protein constructs based on the original SARS‐CoV‐2 sequence using a baculovirus expression system: a spike protein receptor‐binding domain that includes the SD1 domain (RBD) coupled to a fluorescent tag (S‐RBD‐eGFP), spike ectodomain coupled to a fluorescent tag (S‐Ecto‐eGFP), spike ectodomain with six proline mutations and a foldon domain (S‐Ecto‐HexaPro(+F)), and spike ectodomain with six proline mutations without the foldon domain (S‐Ecto‐HexaPro(‐F)). We tested the yield of purified protein expressed from the insect cell lines Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tni) and compared it to previous research using mammalian cell lines to determine changes in protein yield. We demonstrated quick and inexpensive production of functional glycosylated spike protein of high purity capable of recognizing and binding to the angiotensin converting enzyme 2 (ACE2) receptor. To further confirm functionality, we demonstrate binding of eGFP fused construct of the spike ectodomain (S‐Ecto‐eGFP) to surface ACE2 receptors on lung epithelial cells by flow cytometry analysis and show that it can be decreased by means of receptor manipulation (blockade or downregulation).  相似文献   

17.
  1. Conifers often occur along steep gradients of diverse climates throughout their natural ranges, which is expected to result in spatially varying selection to local climate conditions. However, signals of climatic adaptation can often be confounded, because unraveled clines covary with signals caused by neutral evolutionary processes such as gene flow and genetic drift. Consequently, our understanding of how selection and gene flow have shaped phenotypic and genotypic differentiation in trees is still limited.
  2. A 40‐year‐old common garden experiment comprising 16 Douglas‐fir (Pseudotsuga menziesii) provenances from a north‐to‐south gradient of approx. 1,000 km was analyzed, and genomic information was obtained from exome capture, which resulted in an initial genomic dataset of >90,000 single nucleotide polymorphisms. We used a restrictive and conservative filtering approach, which permitted us to include only SNPs and individuals in environmental association analysis (EAA) that were free of potentially confounding effects (LD, relatedness among trees, heterozygosity deficiency, and deviations from Hardy–Weinberg proportions). We used four conceptually different genome scan methods based on FST outlier detection and gene–environment association in order to disentangle truly adaptive SNPs from neutral SNPs.
  3. We found that a relatively small proportion of the exome showed a truly adaptive signal (0.01%–0.17%) when population substructuring and multiple testing was accounted for. Nevertheless, the unraveled SNP candidates showed significant relationships with climate at provenance origins, which strongly suggests that they have featured adaptation in Douglas‐fir along a climatic gradient. Two SNPs were independently found by three of the employed algorithms, and one of them is in close proximity to an annotated gene involved in circadian clock control and photoperiodism as was similarly found in Populus balsamifera.
Synthesis. We conclude that despite neutral evolutionary processes, phenotypic and genomic signals of adaptation to climate are responsible for differentiation, which in particular explain disparity between the well‐known coastal and interior varieties of Douglas‐fir.  相似文献   

18.
ObjectivesIntervertebral disc degeneration (IVDD) is a leading cause of low back pain. Circular RNAs (circRNAs) have been demonstrated to exert vital functions in IVDD. However, the role and mechanism of hsa_circ_0083756 in the development of IVDD remain unclear.Materials and methodsRT‐qPCR was performed to detect expressions of hsa_circ_0083756, miR‐558 and TREM1 in nucleus pulposus (NP) tissues and cells. CCK8 assay, flow cytometry, TUNEL assay, RT‐qPCR and WB were used to clarify the roles of hsa_circ_0083756 in NP cells proliferation and extracellular matrix (ECM) formation. Bioinformatics analyses, dual‐luciferase reporter gene experiment, RNA immunoprecipitation (RIP) assay and FISH assay were performed to predict and verify the targeting relationship between hsa_circ_0083756 and miR‐558, as well as that between miR‐558 and TREM1. Ultimately, the effect of hsa_circ_0083756 on IVDD was tested through anterior disc‐puncture IVDD animal model in rats.Resultshsa_circ_0083756 was upregulated in degenerative NP tissues and cells. In vitro loss‐of‐function and gain‐of‐function studies suggested that hsa_circ_0083756 knockdown promoted, whereas hsa_circ_0083756 overexpression inhibited NP cells proliferation and ECM formation. Mechanistically, hsa_circ_0083756 acted as a sponge of miR‐558 and subsequently promoted the expression of TREM1. Furthermore, in vivo study indicated that silencing of hsa_circ_0083756 could alleviate IVDD in rats.Conclusionshsa_circ_0083756 promoted IVDD via targeting the miR‐558/TREM1 axis, and hsa_circ_0083756 may serve as a potential therapeutic target for the treatment of IVDD.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号