首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe a method of testing hip prostheses. The prosthesis is implanted in a proximal section of femur, which is loaded to model the forces applied through the acetabulum via the greater trochanter.  相似文献   

2.
The rising prevalence of osteoarthritis and an increase in total hip replacements calls for attention to potential therapeutic activities. Cycling is considered as a low impact exercise for the hip joint and hence recommended. However, there are limited data about hip joint loading to support this claim. The aim of this study was to measure synchronously the in vivo hip joint loads and pedal forces during cycling. The in vivo hip joint loads were measured in 5 patients with instrumented hip implants. Data were collected at several combinations of power and cadence, at two saddle heights.Joint loads and pedal forces showed strong linear correlation with power. So the relationship between the external pedal forces and internal joint forces was shown. While cycling at different cadences the minimum joint loads were acquired at 60 RPM. The lower saddle height configuration results in an approximately 15% increase compared to normal saddle height.The results offered new insights into the actual effects of cycling on the hip joint and can serve as useful tools while developing an optimum cycling regimen for individuals with coxarthrosis or following total hip arthroplasty. Due to the relatively low contact forces, cycling at a moderate power level of 90 W at a normal saddle height is suitable for patients.  相似文献   

3.
Hip loading affects bone remodeling and implant fixation. In this study, we have analyzed the effect of subject-specific modeling of hip geometry on muscle activation patterns and hip contact forces during gait, using musculoskeletal modeling, inverse dynamic analysis and static optimization. We first used sensitivity analysis to analyze the effect of isolated changes in femoral neck-length (NL) and neck-shaft angle (NSA) on calculated muscle activations and hip contact force during the stance phase of gait. A deformable generic musculoskeletal model was adjusted incrementally to adopt a physiological range of NL and NSA. In a second similar analysis, we adjusted hip geometry to the measurements from digitized radiographs of 20 subjects with primary hip osteoarthrosis. Finally, we studied the effect of hip abductor weakness on muscle activation patterns and hip contact force. This analysis showed that differences in NL (41-74 mm) and NSA (113-140 degrees ) affect the muscle activation of the hip abductors during stance phase and hence hip contact force by up to three times body weight. In conclusion, the results from both the sensitivity and subject-specific analysis showed that at the moment of peak contact force, altered NSA has only a minor effect on the loading configuration of the hip. Increased NL, however, results in an increase of the three hip contact-force components and a reduced vertical loading. The results of these analyses are essential to understand modified hip joint loading, and for planning hip surgery for patients with osteoarthrosis.  相似文献   

4.
Methods are presented for measuring vertical force components on bridged titanium dental implants in dog mandibles. These methods have included custom-made strain-gauge transducers, plus hard-wiring and telemetric schemes for data collection. The essential components of the measurement system are described, and typical bite force data are illustrated.  相似文献   

5.
6.
7.
Long-term in vivo measurements of the corrosion potentials of various implantable metal materials are performed using an implantable multichannel telemetry system. The data acquisition system has been designed to achieve maximum ease of operation for routine tests in animal applications. A novel signal encoding technique offers advantageous properties in connection with a commercial audio cassette tape recorder for signal storage. The flexibility of the design extends the scope of application to include not only biomaterial testing but all low frequency data transmissions in biological research.  相似文献   

8.
Numerous supporting structures assist in the retention of the femoral head within the acetabulum of the normal hip joint including the capsule, labrum, and ligament of the femoral head (LHF). During total hip arthroplasty (THA), the LHF is often disrupted or degenerative and is surgically removed. In addition, a portion of the remaining supporting structures is transected or resected to facilitate surgical exposure. The present study analyzes the effects of LHF absence and surgical dissection in THA patients. Twenty subjects (5 normal hip joints, 10 nonconstrained THA, and 5 constrained THA) were evaluated using fluoroscopy while performing active hip abduction. All THA subjects were considered clinically successful. Fluoroscopic videos of the normal hips were analyzed using digitization, while those with THA were assessed using a computerized interactive model-fitting technique. The distance between the femoral head and acetabulum was measured to determine if femoral head separation occurred. Error analysis revealed measurements to be accurate within 0.75mm. No separation was observed in normal hips or those subjects implanted with constrained THA, while all 10 (100%) with unconstrained THA demonstrated femoral head separation, averaging 3.3mm (range 1.9-5.2mm). This study has shown that separation of the prosthetic femoral head from the acetabular component can occur. The normal hip joint has surrounding capsuloligamentous structures and a ligament attaching the femoral head to the acetabulum. We hypothesize that these soft tissue supports create a passive, resistant force at the hip, preventing femoral head separation. The absence of these supporting structures after THA may allow increased hip joint forces, which may play a role in premature polyethylene wear or prosthetic loosening.  相似文献   

9.
Lower extremity muscle strength training is a focus of rehabilitation following total hip arthroplasty (THA). Strength of the hip abductor muscle group is a predictor of overall function following THA. The purpose of this study was to investigate the effects of hip abductor strengthening following rehabilitation on joint contact forces (JCFs) in the lower extremity and low back during a high demand step down task. Five THA patients performed lower extremity maximum isometric strength tests and a stair descent task. Patient-specific musculoskeletal models were created in OpenSim and maximum isometric strength parameters were scaled to reproduce measured pre-operative joint torques. A pre-operative forward dynamic simulation of each patient performing the stair descent was constructed using their corresponding patient-specific model to predict JCFs at the ankle, knee, hip, and low back. The hip abductor muscles were strengthened with clinically supported increases (0–30%) above pre-operative values in a probabilistic framework to predict the effects on peak JCFs (99% confidence bounds). Simulated hip abductor strengthening resulted in lower peak JCFs relative to pre-operative for all five patients at the hip (18.9–23.8 ± 16.5%) and knee (20.5–23.8 ± 11.2%). Four of the five patients had reductions at the ankle (7.1–8.5 ± 11.3%) and low back (3.5–7.0 ± 5.3%) with one patient demonstrating no change. The reduction in JCF at the hip joint and at joints other than the hip with hip abductor strengthening demonstrates the dynamic and mechanical interdependencies of the knee, hip and spine that can be targeted in early THA rehabilitation to improve overall patient function.  相似文献   

10.
The hip joint forces of sheep and dogs were measured with instrumented endoprostheses and the results were compared with reported data concerning these forces in man. In all animals load directions with 0 to 30° inclinations relative to the femoral axis predominated. The transverse components mostly acted from medio-ventral directions. While the force orientations varied little during each single stance phase, they changed rapidly during the swing phase. Strong inter-and intra-individual differences of load directions were found in all animals. Irregular forces, acting upwards or transverse to the femur, were frequently observed. Maximum joint forces were up to 110% of body weight and depended more on the postoperative time than on the walking speed. Load orientations in the animals were similar to those reported for man. In this regard sheep and dogs appear equally well suited for tests of hip endoprostheses for man.  相似文献   

11.
In the analysis of hand functions, the production and control of forces exerted during voluntary contraction of the finger muscles plays an important role; unfortunately such an analysis is rarely seen in routine clinical examinations of neurological patients. A microcomputer controlled system for the measurement and analysis of finger forces is described. The system consists of a modified Z80 based microcomputer, a commercially available high precision force transducer, a specially designed force signal amplifier and a suite of menu-driven user interactive programs. A variety of tasks is implemented by means of the computer programs. In addition to the measurement of maximum hand grip force, the system is able to record forces continuously as a function of time. Task characteristics and the type of feedback presented to the subject are under user control; they can be varied to meet clinical or experimental requirements. Examples of programs and clinical applications are presented and discussed.  相似文献   

12.
13.
Children who exhibit gait deviations often present a range of bone deformities, particularly at the proximal femur. Altered gait may affect bone growth and lead to deformities by exerting abnormal stresses on the developing bones. The objective of this study was to calculate variations in the hip joint contact forces with different gait patterns. Muscle and hip joint contact forces of four children with different walking characteristics were calculated using an inverse dynamic analysis and a static optimisation algorithm. Kinematic and kinetic analyses were based on a generic musculoskeletal model scaled down to accommodate the dimensions of each child. Results showed that for all the children with altered gaits both the orientation and magnitude of the hip joint contact force deviated from normal. The child with the most severe gait deviations had hip joint contact forces 30% greater than normal, most likely due to the increase in muscle forces required to sustain his crouched stance. Determining how altered gait affects joint loading may help in planning treatment strategies to preserve correct loading on the bone from a young age.  相似文献   

14.
During level walking, arm swing plays a key role in improving dynamic stability. In vivo investigations with a telemeterized vertebral body replacement showed that spinal loads can be affected by differences in arm positions during sitting and standing. However, little is known about how arm swing could influence the lumbar spine and hip joint forces and motions during walking. The present study aims to provide better understanding of the contribution of the upper limbs to human gait, investigating ranges of motion and joint reaction forces.A three-dimensional motion analysis was carried out via a motion capturing system on six healthy males and five patients with hip instrumented implant. Each subject performed walking with different arm swing amplitudes (small, normal, and large) and arm positions (bound to the body, and folded across the chest). The motion data were imported in a commercial musculoskeletal analysis software for kinematic and inverse dynamic investigation.The range of motion of the thorax with respect to the pelvis and of the pelvis with respect to the ground in the transversal plane were significantly associated with arm position and swing amplitude during gait. The hip external-internal rotation range of motion statistically varied only for non-dominant limb. Unlike hip joint reaction forces, predicted peak spinal loads at T12-L1 and L5-S1 showed significant differences at approximately the time of contralateral toe off and contralateral heel strike.Therefore, arm position and swing amplitude have a relevant effect on kinematic variables and spinal loads, but not on hip loads during walking.  相似文献   

15.
Hip loading affects the development of hip osteoarthritis, bone remodelling and osseointegration of implants. In this study, we analyzed the effect of subject-specific modelling of hip geometry and hip joint centre (HJC) location on the quantification of hip joint moments, muscle moments and hip contact forces during gait, using musculoskeletal modelling, inverse dynamic analysis and static optimization. For 10 subjects, hip joint moments, muscle moments and hip loading in terms of magnitude and orientation were quantified using three different model types, each including a different amount of subject-specific detail: (1) a generic scaled musculoskeletal model, (2) a generic scaled musculoskeletal model with subject-specific hip geometry (femoral anteversion, neck-length and neck-shaft angle) and (3) a generic scaled musculoskeletal model with subject-specific hip geometry including HJC location. Subject-specific geometry and HJC location were derived from CT. Significant differences were found between the three model types in HJC location, hip flexion–extension moment and inclination angle of the total contact force in the frontal plane. No model agreement was found between the three model types for the calculation of contact forces in terms of magnitude and orientations, and muscle moments. Therefore, we suggest that personalized models with individualized hip joint geometry and HJC location should be used for the quantification of hip loading. For biomechanical analyses aiming to understand modified hip joint loading, and planning hip surgery in patients with osteoarthritis, the amount of subject-specific detail, related to bone geometry and joint centre location in the musculoskeletal models used, needs to be considered.  相似文献   

16.
17.
Long-term in-vivo recordings of habitual bone strain in freely moving animals are needed to better understand the everyday mechanical loading environment responsible for bone-tissue maintenance. However, wireless methods to make such recordings are scarce. We report on the successful customisation of a commercially available voltage transmitter hooked-up to a strain-gauge rosette, its subcutaneous implantation in rabbits, and the quality of the implant's strain-gauge recordings. Continuous wireless recordings of a completely operational strain-gauge rosette glued to the mandibular surface of a freely moving rabbit could be made up to 33 h. The resolution of the system was 1.5 microstrains/bit. The noise in the signal was 4.5 microstrains. To facilitate the automatic counting of bone-strain events in the retrieved data, and to calculate their peak amplitude, a novel approach is presented. The described technique enables the quantification of the daily bone-strain history defining the architecture and composition of bone tissue, and can help to further elucidate the strain parameters which influence bone tissue.  相似文献   

18.
Hip endoprosthesis for in vivo measurement of joint force and temperature.   总被引:2,自引:0,他引:2  
Friction between the prosthetic head and acetabular cup increases the temperature in hip implants during activities like walking. A hip endoprosthesis was instrumented with sensors to measure the joint contact forces and the temperature distribution along the entire length of the titanium implant. Sensors and two inductively powered telemetry units are placed inside the hip implant and hermetically sealed against body fluids. Each telemetry unit contains an integrated 8-channel telemetry chip and a radio frequency transmitter. Force, temperature and power supply data are transmitted at different frequencies by two antennas to an external twin receiver. The inductive power supply is controlled by a personal computer. Force and temperature are monitored in real time and all data are stored on a video tape together with the patient's images. This paper describes the design and accuracy of the instrumented implant and the principal function of the external system components.  相似文献   

19.
Contact forces are important in maintaining the twining habit of viny stems. A stem twining around a supporting pole puts itself into tension and uses a helical geometry to generate normal loads that are large relative to stem mass per unit length (Silk and Hubbard, Journal of Biomechanics 24(7):599-606, 1991). An electronic pressure-sensing device has been constructed to provide continuous, in vivo measurements of the forces exerted by twining stems. The pressure-sensing element is based on a thin beam load cell that is sheared by a twining stem ascending a split pole. Preliminary results show that after morning glory stems begin to coil around a supporting pole, the twining force increases in an oscillatory fashion over 3 or 4 d, corresponding to positions at least 200 mm from the apex. The force-measuring device should reveal relationships between twining forces and developmental attributes or environmental factors.  相似文献   

20.
Using Bluetooth wireless technology, we developed an implantable telemetry system for measurement of the left ventricular pressure-volume relation in conscious, freely moving rats. The telemetry system consisted of a pressure-conductance catheter (1.8-Fr) connected to a small (14-g) fully implantable signal transmitter. To make the system fully telemetric, calibrations such as blood resistivity and parallel conductance were also conducted telemetrically. To estimate blood resistivity, we used four electrodes arranged 0.2 mm apart on the pressure-conductance catheter. To estimate parallel conductance, we used a dual-frequency method. We examined the accuracy of calibrations, stroke volume (SV) measurements, and the reproducibility of the telemetry. The blood resistivity estimated telemetrically agreed with that measured using an ex vivo cuvette method (y=1.09x - 11.9, r2= 0.88, n=10). Parallel conductance estimated by the dual-frequency (2 and 20 kHz) method correlated well with that measured by a conventional saline injection method (y=1.59x - 1.77, r2= 0.87, n=13). The telemetric SV closely correlated with the flowmetric SV during inferior vena cava occlusions (y=0.96x + 7.5, r2=0.96, n=4). In six conscious rats, differences between the repeated telemetries on different days (3 days apart on average) were reasonably small: 13% for end-diastolic volume, 20% for end-systolic volume, 28% for end-diastolic pressure, and 6% for end-systolic pressure. We conclude that the developed telemetry system enables us to estimate the pressure-volume relation with reasonable accuracy and reproducibility in conscious, untethered rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号