首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourteen adult patients undergoing open heart surgery under induced hypothermia had median nerve, short-latency somatosensory evoked potentials (SSEPs) recorded during cooling (from 36°C to 19°C) and subsequent rewarming. Similar data on another group of patients who had brain-stem auditory evoked potentials (BAEPs) were also analyzed. Hypothermia produced increased latencies of the major SSEP and BAEP components and the latencies returned to normal with subsequent warming. The temperature-latency relationship during the cooling phase was significantly different from that during the warming phase. For SSEP components the temperature-latency relationship was linear during cooling and curvilinear during warming, whereas for BAEP it was curvilinear both during cooling and warming. Furthermore, the regression curves were different during the two phases of temperature manipulation, particularly for temperatures below 30°C both for SSEP and BAEP components. At the onset of warming there was an initial exaggerated warming response on the evoked potential (EP) latencies and amplitude of the EP components. The temperature-latency regression curves were uniformly less steep during the warming phase compared to those during cooling. These findings suggest the existence of hysteresis in the relationship between temperature and EP latencies. The latencies at a given temperature below 30°C depend on whether that temperature is reached during cooling or during warming.  相似文献   

2.
Auditory nerve brain-stem (ABR) and somatosensory evoked responses (SER) were recorded in cats as body temperature was uniformly lowered from 37 to 27°C. Analysis of the results showed that the alterations in the evoked responses were due to disturbances induced both in axonal propagation and synaptic transmission by the hypothermia. By studying the first wave of the SER, which is solely an axonal event, and by assuming reasonable values for the total synaptic delay and axonal propagation times along the ABR pathway, it was concluded that this lesion model induced an effect on synaptic transmission 1.3–1.7 times greater than that on axonal propagation. There was a strong inverse correlation between wave latency and body temperature, with slightly steeper slopes for the longer latency waves. Wave amplitudes were not correlated with temperature. Furthermore, the wave latencies and amplitudes were generally not dependent on stimulus rate.  相似文献   

3.
Short latency somatosensory evoked potentials (SSEPs) elicited by median nerve stimulation were monitored in 14 adult patients undergoing cardiac surgery under cardiopulmonary bypass and induced hypothermia. SSEPs were recorded at 1–2°C steps as the body temperature was lowered from 37°C to 20°C to determine temperature-dependent changes. Hypothermia produced increased latencies of the peaks of N10, P14 and N19 components, the prolongation was more severe for the later components so that N10−P14 and P14−N19 interpeak latencies were also prolonged. The temperature-latency relationship had a linear correlation. The magnitude of latency prolongation (msec) with 1°C decline in temperature was 0.61, 1.15, 1.56 for N10,P4 and N19 components, respectively, and 0.39 and 0.68 for interpeak latencies N10−P14 and P14−N19, respectively. The rise time and duration of the 3 SSEP components increased progressively with cooling. Cortically generated component, N19 was consistently recordable at a temperature above 26°C, usually disappearing between 20°C and 25°C. On the other hand, more peripherally generated components, N10 and P14, were more resistant to the effect of hypothermia; P14 was always elicitable at 21°C or above, whereas N10 persisted even below 20°C. The amplitude of SSEP components had a poor correlation with temperature; there was a slight tendency for N10 and P14 to increase and for N19 to decrease with declining temperature. Because incidental hypothermia is common in comatose and anesthetized patients, temperature-related changes must be taken into consideration during SSEP monitoring under these circumstances.  相似文献   

4.
 A vascular heat transfer model is developed to simulate temperature decay along the carotid arteries in humans, and thus, to evaluate temperature differences between the body core and arterial blood supplied to the brain. Included are several factors, including the local blood perfusion rate, blood vessel bifurcation in the neck, and blood vessel pairs on both sides of the neck. The potential for cooling blood in the carotid artery by countercurrent heat exchange with the jugular veins and by radial heat conduction to the neck surface was estimated. Cooling along the common and internal carotid arteries was calculated to be up to 0.87 °C during hyperthermia by high environmental temperatures or muscular exercise. This model was also used to evaluate the feasibility of lowering the brain temperature effectively by placing ice pads on the neck and head surface or by wearing cooling garments during hypothermia treatment for brain injury or other medical conditions. It was found that a 1.1 °C temperature drop along the carotid arteries is possible when the neck surface is cooled to 0 °C. Thus, the body core temperature may not be a good indication of the brain temperature during hyperthermia or hypothermia. Received: 10 January 2002 / Accepted: 7 May 2002 This research was supported by a UMBC Summer Faculty Fellowship.  相似文献   

5.
Using various methods of hypothermia and halothane-diethyl ether azeotrope anesthesia whole-body temperature gradients were evaluated in 20 adult mongrel dogs. Simultaneous measurements were taken of brain, rectal, esophageal, pharyngeal, liver, jugular vein, shoulder muscle, thigh muscle, and subcutaneous temperatures during (i) surface, (ii) perfusion (slow and rapid cooling), and (iii) combined surface/perfusion methods of hypothermia. Throughout cooling and rewarming core temperature gradients averaged 1.2 °C and during circulatory arrest core temperatures decreased an average of 0.3 °C under pure surface hypothermia. Animals, thermoregulated by extracorporeal methods only, developed larger core temperature gradients during cooling and a significant increase (average = 3.1 °C) was noted in core temperatures during circulatory arrest. This pattern was particularly pronounced during rapid perfusion cooling. Hypothermia induction by combined surface/perfusion, in contrast to pure perfusion methods, resulted in smaller gradients without remarkable increase in core temperature (average = 1.3 °C) during the arrest period. These findings when correlated with the shorter total operating time and ease of operative management and resuscitation lead us to the conclusion that combined surface/ perfusion hypothermia techniques have certain advantages over either pure surface or pure perfusion techniques alone.  相似文献   

6.
The effects of hypothermia and rewarming on endothelial integrity were examined in intestines, kidney, heart, gastrocnemius muscle, liver, spleen, and brain by measuring albumin-bound Evans blue loss from the vasculature. Ten groups of twelve rats, normothermic with no pentobarbital, normothermic sampled at 2, 3, or 4 h after pentobarbital, hypothermic to 20, 25, or 30 degrees C, and rewarmed from 20, 25, or 30 degrees C, were cooled in copper coils through which water circulated. Hypothermic rats were cooled to the desired core temperature and maintained there for 1 h; rewarmed rats were cooled to the same core temperatures, maintained there for 1 h, and then rewarmed. Following Evans blue administration, animals were euthanized with methoxyflurane, tissues removed, and Evans blue extracted. Because hypothermia and rewarming significantly decrease blood flow, organ-specific flow rates for hypothermic and rewarmed tissues were used to predict extravasation. Hypothermia decreased extravasation in tissues with continuous endothelium (brain, muscle) and increased it in tissues with discontinuous endothelium (liver, lung, spleen). All tissues exhibited significant (p < 0.05) differences from normothermic controls. These differences are attributed to a combination of anesthesia, flow, and (or) change in endothelial permeability, suggesting that appropriate choice of organ and temperature would facilitate testing pharmacological means of promoting return to normal perfusion.  相似文献   

7.
This study examined electrocardiogram (ECG) waveform, heart rate (HR), mean blood pressure (BP), and HR variability as potential autonomic signatures of hypothermia and rewarming. Adult male Sprague-Dawley rats had telemetry transmitters surgically implanted, and 2 weeks were allowed for recovery prior to induction of hypothermia. Rats were lightly anesthetized (sodium pentobarbital, 35 mg/kg i.p.) and placed in a coil of copper tubing through which temperature-controlled water was circulated. Animals were cooled to a core temperature (Tc) of 20 degrees C, maintained there for 30 min, and then rewarmed. Data (Tc, BP, HR from ECG, and 10-s strips of ECG waveforms) were collected every 5 min throughout hypothermia and rewarming. Both HR and BP declined after initial increases with the drop in HR starting at a higher Tc than the drop in BP (29.6 +/- 2.4 degrees C vs. 27.1 +/- 3.3 degrees C, p < 0.05). Animals that were not successfully rewarmed exhibited a significant (p < 0.05) increase in the normalized standard deviation of interbeat intervals (IBI) throughout cooling compared with animals that were successfully rewarmed. The T wave of the ECG increased in amplitude and area with decreasing Tc. T-wave amplitude and IBI variability show potential as predictors of survival in hypothermic victims.  相似文献   

8.
Walter Zingg 《Cryobiology》1974,11(4):278-284
Dogs were cooled to 30 °C and either rewarmed immediately or after being kept at 30 °C for 6 hr. The acid-base balance was determined and hemodynamic data were collected. At the beginning of the rewarming period the arterial blood pressure and the left ventricular work output were increased after short hypothermia, but not after prolonged hypothermia. The survivors of prolonged hypothermia had had a higher arterial blood pressure and left ventricular work output before cooling began than did nonsurvivors. An additional load on the cardiovascular system (A-V shunt) was incompatible with survival. The so-called rewarming shock, therefore, appears to be cardiogenic, and the treatment of the victims of accidents causing hypothermia due to exposure should be directed against cardiogenic shock.  相似文献   

9.
The parenteral administration of bacterial endotoxin to rats causes a hypothermia that is maximal after approximately 90 minutes. When endotoxin-injected rats were held in a controlled environment at 22°C and 50% relative humidity and exposed for 90 minutes to microwaves (2450 MHz, CW) at 1 mW/cm2, significant increases were observed in body temperature compared with endotoxintreated, sham-irradiated rats. The magnitude of the response was related to power density (10 mW/cm2 > 5 mW/cm2 > 1 mW/cm2). Saline-injected rats exposed for 90 minutes at 5 mW/cm2 (specific absorption rate approximately 1.0 mW/g) showed no significant increase in body temperature compared with saline-injected, sham-irradiated rats. The hypothermia induced by endotoxin in rats was also found to be affected by ambient temperature alone. Increases in ambient temperature above 22°C in the absence of microwaves caused a concomitant increase in body temperature. This study reveals that subtle microwave heating is detectable in endotoxin-treated rats that have an impaired thermoregulatory capability. These results indicate that the interpretation of microwave-induced biological effects observed in animals at comparable rates and levels of energy absorption should include a consideration of the thermogenic potential of microwaves.  相似文献   

10.
Gradual cooling of anesthetized rats followed by a drop in rectal temperature (RT) increased the frequency of efferent impulses and decreased the frequency of afferent impulses in the vagus nerves. Preliminary short-lasting (5 h) moderate cooling of the animals in a thermochamber to +5°C (RT did not change), or intensive cooling to −20°C (RT dropped to 32°C) changed the response of efferent nerve fibers to cooling of the body. Under these conditions, a drop in RT to 29°C was followed by a significant increase in efferent discharges in the vagus nerve after additional cooling throughout the experiment, while an initial cooling phase (RT was equal to 35-30°C) was followed by some inhibitory effect. At the same time, the changes in the afferent link were different. As in the control, gradual cooling decreased frequency of afferent impulses, although the intensity of the effects was different. The involvement of the vagus nerve system in the maintenance of temperature homeostasis during body cooling has been discussed.  相似文献   

11.
Hypothermia is a known approach in the treatment of neurological pathologies. Mild hypothermia enhances the therapeutic window for application of medicines, while deep hypothermia is often accompanied by complications, including problems in the recovery of brain functions. The purpose of present study was to investigate the functioning of glutamate ionotropic receptors in brain slices cooled with different rates during mild, moderate and deep hypothermia. Using a system of gradual cooling combined with electrophysiological recordings in slices, we have shown that synaptic activity mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in rat olfactory cortex was strongly dependent on the rate of lowering the temperature. High cooling rate caused a progressive decrease in glutamate receptor activity in brain slices during gradual cooling from mild to deep hypothermia. On the contrary, low cooling rate slightly changed the synaptic responses in deep hypothermia. The short-term potentiation may be induced in slices by electric tetanization at 16  °C in this case. Hence, low cooling rate promoted preservation of neuronal activity and plasticity in the brain tissue.  相似文献   

12.
Intact adult rat hearts were cooled in the presence of 10% DMSO according to an external cooling program which approximated the optimal external three-step cooling program for the isolated adult heart cells: 20 min at ?20 °C, 0.2 °C/min from ?20 to ?25, ?30, or ?50 °C, and rapid cooling to ?196 °C. Following rapid thawing, cells were isolated after perfusion with a 0.1% collagenase solution. Only cells which originated from the free wall of the right ventricle could be isolated, even after cooling to ?20 °C. Most cells from hearts cooled to ?196 °C did not survive. When the third cooling step was omitted and the end temperature of the second cooling step was ?30 °C, 38% of the cells excluded trypan blue, 29% were morphologically intact, and 30% showed spontaneous contractions after thawing, expressed as percentages of the control, A much lower survival was found after cooling to ?50 °C.Histological and electron microscopical study of the heart immediately after thawing revealed no differences between hearts cooled to ?20, ?30, or ?196 °C. Also no marked differences were observed between the morphological integrity after freezing and thawing of the atrium, the left and right ventricle walls, and the ventricular septum. The survival data suggest the presence of nonmorphologically detectable alterations in cells frozen to ?196 °C, compared to cells frozen to ?30 °C. The morphological investigations indicate no essential differences in resistance of atrial and ventricular cells to the freezing process.Experiments involving neonatal rat hearts cooled to ?196 °C, according to the method which gave optimal preservation of the isolated cells, revealed that after thawing cells are present from which growing and contracting cultures can be derived. It appears that cells in the neonatal rat heart are more resistant to freezing to ?196 °C than cells in the adult rat heart.  相似文献   

13.
Hematologic and rheologic changes related to pure surface hypothermia procedures and procedures combining surface cooling and perfusion rewarming were studied in 16 dogs. White blood cell (WBC) and platelet counts decreased with surface cooling to about 20% of control and returned to control following surface rewarming. WBC and platelet counts returned to 80 and 50% of control depending on whether perfusion rewarming was stopped at 30 or 35 °C, respectively. Hemoconcentration was avoided during cooling with low molecular weight dextran hemodilution that was also in part responsible for a 33% decline in plasma proteins. Blood cooled in vitro and in vivo was studied by cone-plate viscometry and the viscosity noted to increase significantly as a function of decreased temperature. Computer analysis revealed that variations in temperature accounted for 75% of the variations in viscosity and variations in hematocrit contributed only 8%. An empiric formula was constructed that employs preoperative hematocrit and projected temperature to predict viscosity changes during cooling. The clinical relevance of hematologic and rheologic alterations during surface and combined hypothermia procedures was discussed.  相似文献   

14.
Using fluorescent and electron microscopy a comparative analysis was performed of components of the protein-synthesizing system of hippocampal neurons both in ground squirrels in various phases of the torpor-activity cycle and in rats cooled under the hypoxia-hypercapnia conditions. Results of the study have shown that in hippocampal neurons of the ground squirrels entering the natural torpor state and of rats under conditions of artificial hypothermia to 17°C, similar mechanisms might be possible to function, one of their obligatory components being a generalized decrease of activity of the protein-synthesizing system with its subsequent restoration at the exit from hypothermia. Cessation of hypoxia-hypercapnia even under conditions of a further temperature decrease restored the rat neuronal protein-synthesizing activity, which seems to indicate the presence of a potential possibility of adaptation of brain neurons in vivo to low temperatures, at which the integral organism of non-hibernating homoeothermic animals does not survive.  相似文献   

15.
The objective of this research was to investigate the effects of cooling on the development of bovine zygotes. One-cell bovine embryos were maintained at 39°C (control), 20°C, 10°C, or 0°C for 5, 10, or 20 minutes, then cultured in vitro for 7 days and the proportion of embryos developing to the compact morula or blastocyst stage compared between different treatments. Duration of exposure time had no effect on development. Development rates to the compact morula or blastocyst stage were 3.9%, 11.4%, 17.4%, and 24.4% for zygotes maintained at 0°C, 10°C, 20°C, and 39°C, respectively, with differences in embryo yield between every treatment (P < 0.05). In a second experiment, bovine pronuclei (karyoplasts) and cytoplasts were cooled at 0°C or maintained at 39°C for 5 minutes. Pronuclear transplantation was then utilized to create 4 types of reconstructed embryos, those with: 1) non-cooled pronuclei and non-cooled cytoplasm, 2) non-cooled pronuclei and cooled cytoplasm, 3) cooled pronuclei and non-cooled cytoplasm, and 4) cooled pronuclei and cooled cytoplasm. The proportion of embryos developing to the blastocyst stage was highest when non-cooled pronuclei were transferred into non-cooled cytoplasm (18.9%), and similar to that of non-cooled, non-manipulated control zygotes (13.2%, P > 0.05). No embryos developed to the blastocyst stage when pronuclei (cooled or non-cooled) were transferred into cooled cytoplasm. However, zygotes with cooled pronuclei transferred into non-cooled cytoplasm yielded 4.5% blastocysts (P < 0.05). More embryos developed to the compact morula or blastocyst stage when non-cooled vs. cooled cytoplasm was utilized, regardless of whether the pronuclei were cooled (P < 0.05). These data demonstrate that pronuclei are more tolerant to low temperature exposure than is ovum cytoplasm. Mol. Reprod. Dev. 47:435–439, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Washed human erythrocytes were cooled at different rates from +37 °C to 0 °C in hypertonic solutions of either NaCl (1.2 m) or of a mixture of sucrose (40% wv) with NaCl (2.53% wv). Thermal shock hemolysis was measured and the surviving cells were examined for their mass and cell water content and also for net movements of sodium, potassium, and 14C-sucrose. The results were compared with those obtained from cells in sucrose (40% wv) initially, cooled at different rates to ?196 °C and rapidly thawed.The cells cooled to 0 °C in NaCl (1.2 m) showed maximal hemolysis at the fastest cooling rate studied (39 °C/min). In addition in the surviving cells this cooling rate induced the greatest uptake of 14C-sucrose and increase in cell water and cell mass and also entry of sodium and loss of cell potassium. A different dependence on cooling rate was seen with the cells cooled from +37 °C to 0 °C in sucrose (40% wv) with NaCl (2.53% wv). In this solution, survival decreased both at slow and fast cooling rates correlating with the greatest uptake of cell sucrose and increase in cell water. There was extensive loss of cell potassium and uptake of sodium at all cooling rates, the cation concentrations across the cell membrane approaching unity.The cells frozen to ?196 °C at different cooling rates in sucrose (40% wv) initially, also showed sucrose and water entry on thawing together with a loss of cell potassium and an uptake of cell sodium. More sucrose entered the cells cooled slowly (1.8 ° C/min) than those cooled rapidly (318 ° C/min).These results show that cooling to 0 °C in hypertonic solutions (thermal shock) and freezing to ?196 °C both induce membrane leaks to sucrose as well as to sodium and potassium. These leaks are not induced by the hypertonic solutions themselves but are due to the effects of the added stress of the temperature reduction on the membranes modified by the hypertonic solutions. The effects of cooling rate are explicable in terms of the different times of exposure to the hypertonic solutions. These results indicate that the damage observed after thermal shock or slow freezing is of a similar nature.  相似文献   

17.
The use of hypothermia to mitigate cerebral ischemic injury is not new. From early studies, it has been clear that cooling is remarkably neuroprotective when applied during global or focal ischemia. In contrast, the value of postischemic cooling is typically viewed with skepticism because of early clinical difficulties and conflicting animal data. However, more recent rodent experiments have shown that a protracted reduction in temperature of only a few degrees Celsius can provide sustained behavioral and histological neuroprotection. Conversely, brief or very mild hypothermia may only delay neuronal damage. Accordingly, protracted hypothermia of 32–34°C may be beneficial following acute clinical stroke. A thorough mechanistic understanding of postischemic hypothermia would lead to a more selective and effective therapy. Unfortunately, few studies have investigated the mechanisms by which postischemic cooling conveys its beneficial effect. The purpose of this article is to evaluate critically the effects of postischemic temperature changes with a comparison to some current drug therapies. This article will stimulate new research into the mechanisms of lengthy postischemic hypothermia and its potential as a therapy for stroke patients.  相似文献   

18.
Intraventricular administration of histidyl-proline diketopiperazine to rats produces a dose-dependent hypothermia at 4° or 24°, but not at 31°. At 4°, administration of thyrotropin releasing hormone elicits a dose-dependent hypothermia up to 0.1 μmole/kg which is not evoked at higher doses. At 24°, thyrotropin releasing hormone administration results in no change in core temperature, whereas it induces hyperthermia at 31°. At 4°, thyrotropin releasing hormone antagonizes and thyrotropin releasing hormone antiserum potentiates the hypothermic effect of histidyl-proline diketopiperazine, suggesting opposing actions of thyrotropin releasing hormone and histidyl-proline diketopiperazine on thermoregulation.  相似文献   

19.
L A Wells 《Cryobiology》1976,13(1):80-83
Rats subjected to five episodes of recurrent, progressively deeper hypothermia showed no difference in cerebral deposition of rubidium tracer at 16 °C and/or apnea from animals lowered to this temperature and/or condition only once. Rats allowed to rewarm from 16 °C showed persisting increased cerebral deposition of tracer at 20 °C with gradual diminution at higher temperatures; at 37 °C, deposition of rubidium tracer in brains of rewarmed rats was not different from that of euthermic rats which were not subjected to hypothermia.  相似文献   

20.
Two series of experiments were performed to study the effects of acute exposure (45 min) to 2,450-MHz circularly polarized, pulsed microwaves [1 mW/cm2, 2-μs pulses, 500 pps, specific absorption rate (SAR) 0.6 W/kg] on the actions of pentobarbital in the rat. In the first experiment, rats were irradiated with microwaves and then immediately injected with pentobarbital. Microwave exposure did not significantly affect the extent of the pentobarbital-induced fall in colonic temperature. However, the rate of recovery from the hypothermia was significantly slower in the microwave-irradiated rats and they also took a significantly longer time to regain their righting reflex. In a second experiment, rats were first anesthetized with pentobarbital and then exposed to microwaves with their heads either pointing toward the source of microwaves (anterior exposure) or pointing away (posterior exposure). Microwave radiation significantly retarded the pentobarbital-induced fall in colonic temperature regardless of the orientation of exposure. However, the recovery from hypothermia was significantly faster in posterior-exposed animals compared to those of the anterior-exposed and sham-irradiated animals. Furthermore, the posterior-exposed rats took a significantly shorter time to regain their righting reflex than both the anterior-exposed and sham-irradiated animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号