首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The hemocyanin of the chiton, Stenoplax conspicua, has a molecular weight determined by light-scattering of 4.2 X 10(6) daltons, (dt) and a sedimentation coefficient of 60 S. 2. The fully dissociated subunits in 6.0 and 8.0 M urea, and at pH 8.9-10 in the absence of divalent ions, have molecular weights of 4.15-4.30 x 10(5) and 4.17-4.75 x 10(5) dt, which is close to one-tenth of the molecular weight of the parent hemocyanin assembly. 3. The pH dependence of the molecular weights from pH 4.5 to 11 exhibit bell-shaped transition profiles, best accounted for by a three-species, decamer to dimer to monomer scheme of subunit dissociation, with one acidic and one basic ionizing group per dimer and 5-8 acidic and basic groups per monomer. 4. In the absence of stabilizing divalent ions S. conspicua hemocyanin is relatively unstable. At pH 7.4 in the presence of 0.01 M EDTA, it is predominantly in the dimeric state, characterized by a sedimentation constant of 18 S. It is also more readily dissociated to monomers at high pHs (8-9 and above) than are the C. stelleri and A. granulata hemocyanins. 5. Urea and GdmCl are effective dissociating agents of S. conspicua hemocyanin. The urea dissociation profile obtained at pH 8.5, 0.01 M Mg2+, 0.01 M Ca2+, and analyzed by means of the decamer-dimer-monomer scheme of subunit dissociation gave estimates of about 30 amino acid groups (Napp) at the dimer contacts within the hemocyanin decamers and about 120 groups per monomer within each dimer, suggesting hydrophobic stabilization of hemocyanin assembly.  相似文献   

2.
1. The hemocyanin of the Californian whelk, Kelletia kelleti, investigated at pH and ionic conditions close to physiological, has a molecular weight close to 9.0 x 10(6) and a sedimentation constant of 114S, characteristic of the di-decameric structure of molluscan hemocyanins. Light-scattering measurements at pH 8.0, 0.05 M Mg2+, 0.01 M Ca2+ gave a molecular weight of 9.0 +/- 0.6 x 10(6), and scanning transmission electron microscopy produced nearly the same particle mass of 9.22 +/- 0.50 x 10(6) daltons (Da). 2. Light-scattering measurements on the fully dissociated monomers in the presence of 8.0 M urea and at pHs 10.6 and 11.0 gave molecular weights of 4.50 x 10(5)-4.91 x 10(5), that are close to one-twentieth of the mass of the parent di-decameric hemocyanin assembly. 3. Changes in pH produced a bell-shaped molecular weight profile, with molecular weights close to 9.0 x 10(6) in the pH region of about 5.5-8.0, and progressive dissociation to 4.5 x 10(5) Da monomers in the region below pH 4.0 and above pH 9.0 or 10, depending on the absence or presence of stabilizing Mg2+ ions (0.01 M). 4. In the absence of divalent ions some aggregation of hemocyanin was found at pHs close to 5.0, with observed molecular weights above 10 x 10(6) (investigated at a hemocyanin concentration of 0.10 g/l). The early studies of Condie and Langer (Science 144, 1138-1140, 1964) had shown that Kelletia kelleti hemocynanin aggregates at acidic pHs close to the isoelectric point, forming linear polymers of the hemocyanin di-decamers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of metal ions on human activated Factor X (Factor Xa) hydrolysis of the chromogenic substrate benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide (S2222) was studied utilizing initial rate enzyme kinetics. The divalent metal ions Ca2+, Mn2+, and Mg2+ enhanced Factor Xa amidolytic activity with Km values of 30 μm, 20 μm, and 1.4 mm, respectively. Na+ activation of Factor Xa amidolytic activity was also found. The Km for Na+ activation was 0.31 m. Both the divalent metal ions and Na+ increased the affinity of Factor Xa for S2222 and had no effect on the maximal velocity of the reaction. Other monovalent cations were unable to activate Factor Xa. However, K+ was a competitive inhibitor of the Na+ activation (Ki = 0.14 m). Lanthanide ions inhibited Factor Xa amidolytic activity. Gd3+ inhibition of Factor Xa hydrolysis of S2222 was noncompetitive and had a Ki of 3 μm. The lanthanide ion inhibition could not be reversed by Ca2+ even when Ca2+ was present in a 1000-fold excess over its Km indicating nonidentity of the Factor Xa lanthanide and Ca2+ binding sites. It is concluded that the Factor Xa Ca2+ binding sites have characteristics different from those previously described for the Factor X molecule and that Mg2+, Na+, and K+ may be physiological regulators of Factor Xa activity.  相似文献   

4.
Pyridoxine kinase purified from sheep liver was found to consist of a single polypeptide chain with a molecular weight of 60,000 as determined by gel filtration, sedimentation equilibrium ultracentrifugation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric pH of the enzyme was 5.1, and the pH optimum was between 5.5 and 6.0. The enzyme required divalent cations for activity. At cation concentrations of 80 μm, the enzyme activity with each cation was in the order of Zn2+ > Mn2+ > Mg2+. At cation concentrations of 400 μm, the enzyme activity with each cation was in the order of Mn2+ > Zn2+ > Mg2+. Excess free divalent cation inhibited the enzyme. Pyridoxine kinase also required monovalent cations. The enzyme activation was greatest with K+, then Rb+ and NH4+, whereas the enzyme had very little activity with Na+, Li+, or Cs+. Na+ did not interfere with the activation by K+. The activation of the kinase by K+, NH4+, and Rb+ followed Michaelis-Menten kinetics, and the apparent Km values for the cations were 8.9, 3.7, and 5.3 mm, respectively. Increasing the potassium concentration lowered the apparent Km value of the enzyme for pyridoxine and had little or no effect on the Km for ZnATP2? or the V of the kinase-catalyzed reaction.  相似文献   

5.
Gerke  I.  Zierold  K.  Weber  J.  Tardent  P. 《Hydrobiologia》1991,216(1):661-669
The spatial distribution of cations was assayed qualitatively and quantitatively in tentacular nematocytes of Hydra vulgaris in a scanning transmission electron microscope by means of x-ray microanalysis performed on 100 nm thick freeze-dried cryosections. The matrix of undischarged cysts (stenoteles, desmonemes and isorhizas) was found to contain mainly K+. In isolated nematocysts of Hydra the intracapsular potassium can be readily substituted by practically any other mono- and divalent cation (Na+, NH4 +, Mn2+, Co2+, Mg2+, Ca2+, Fe2+) all, except Fe2+, without impairing the ability of the cyst to respond to the chemical triggering with dithioerythritol or proteases. Monovalent cations increase the osmotically generated intracapsular pressure compared to divalent ions.  相似文献   

6.
Abstract

Circular dichroism spectroscopy, absorption spectroscopy, measurements of Tm values, sedimentation analysis and electron microscopy were used to study properties of calf thymus DNA in methanol-water mixtures as a function of monovalent cation (Na+ or Cs+) concentration and also in the presence of divalent cations Ca2+, Mg2+, and Mn2+. In the absence of divalent cations only slight conformational changes occured and no condensation and/or aggregation could be detected. The Tm values depend on the amount of methanol and on the nature and concentration of cations. In methanol-water mixtures higher thermal stability was observed in solutions containing Cs+ ions. Up to 40% (v/v) methanol the addition of divalent ions leads to DNA stabilization. At methanol concentration higher than 50% the presence of divalent cations causes DNA condensation and denaturation even at room temperature. The denaturation is reversible with respect to EDTA addition indicating that no separation of complementary strands occured and the resulting form of DNA is probably similar to the P form. DNA destacking appears to be a direct consequence of stronger cation binding by the condensed DNA in methanol-water mixtures.  相似文献   

7.
Magnesium-dependent adenosine triphosphatase has been purified from sheep kidney medulla plasma membranes. The purification, which is based on treatment of a kidney plasma membrane fraction with 0.5% digitonin in 3 mm MgCl2, effectively separates the Mg2+-ATPase from (Na+ + K+)-ATPase present in the same tissue and yields the Mg2+-ATPase in soluble form. The purified enzyme is activated by a variety of divalent cations and trivalent cations, including Mg2+, Mn2+, Ca2+, Co2+, Fe2+, Zn2+, Eu3+, Gd3+, and VO2+. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme shows two bands with Rf values corresponding to molecular weights of 150,000 and 77,000. The larger peptide is phosphorylated by [γ-32P]ATP, suggesting that this peptide may contain the active site of the Mg2+-ATPase. The Mg2+-ATPase activity is unaffected by the specific (Na+ + K+)-ATPase inhibitor ouabain.  相似文献   

8.
A tripeptidase from a cell extract of Lactococcus lactis subsp. cremoris Wg2 has been purified to homogeneity by DEAE-Sephacel and phenyl-Sepharose chromatography followed by gel filtration over a Sephadex G-100 SF column and a high-performance liquid chromatography TSK G3000 SW column. The enzyme appears to be a dimer with a molecular weight of between 103,000 and 105,000 and is composed of two identical subunits each with a molecular weight of about 52,000. The tripeptidase is capable of hydrolyzing only tripeptides. The enzyme activity is optimal at pH 7.5 and at 55°C. EDTA inhibits the activity, and this can be reactivated with Zn2+, Mn2+, and partially with Co2+. The reducing agents dithiothreitol and β-mercaptoethanol and the divalent cation Cu2+ inhibit tripeptidase activity. Kinetic studies indicate that the peptidase hydrolyzes leucyl-leucyl-leucine with a Km of 0.15 mM and a Vmax of 151 μmol/min per mg of protein.  相似文献   

9.
We have obtained a 1.55-Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni under conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical with that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with that of previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active-site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest-resolution ribozyme structure in the Protein Data Bank.  相似文献   

10.
Association-dissociation equilibria of Octopus hemocyanin   总被引:1,自引:0,他引:1  
K E van Holde  K I Miller 《Biochemistry》1985,24(17):4577-4582
The equilibria between the native (decameric) Octopus hemocyanin and its subunits were studied by analytical sedimentation. Equilibrium is obtained slowly, but the reaction is thermodynamically reversible. The mass action law for a monomer-decamer reaction is obeyed. The reassociated hemocyanin is virtually identical in its sedimentation behavior and oxygen binding with the native protein. The association-dissociation equilibria are mediated by cations; Mg2+, Ca2+, Na+, and H+ are all effective in stabilizing the decameric form at appropriate concentrations. About three to four cations per monomer must be bound for association to occur. Under some conditions, dimers of the subunits can be observed, but formation of this dimer does not depend on cation concentration, and it does not appear to be an obligate intermediate in the association to decamer.  相似文献   

11.
The effects of various salts on the proteolytic activity of extracts from Schistosoma mansoni cercariae were tested. Using an Azocoll substrate, stimulation (2 to 2.5-fold) of activity by the monovalent cations Na+ and K+ was demonstrated, with maximum stimulation at 20–40 mM concentrations. The divalent cations Mg2+ and Ca2+ stimulated proteolytic activity at low concentrations (between 0 and 10 mM) but inhibited activity at higher concentrations. The divalent cations Zn2+, Cu2+, Fe2+, and Co2+ were inhibitory even at very low concentrations. The results presented here are discussed in relation to previously described ion effects on cercarial infectivity.  相似文献   

12.
HutP is an RNA-binding protein that regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis, by binding to cis-acting regulatory sequences on hut mRNA. It requires L-histidine and an Mg2+ ion for binding to the specific sequence within the hut mRNA. In the present study, we show that several divalent cations can mediate the HutP–RNA interactions. The best divalent cations were Mn2+, Zn2+ and Cd2+, followed by Mg2+, Co2+ and Ni2+, while Cu2+, Yb2+ and Hg2+ were ineffective. In the HutP–RNA interactions, divalent cations cannot be replaced by monovalent cations, suggesting that a divalent metal ion is required for mediating the protein–RNA interactions. To clarify their importance, we have crystallized HutP in the presence of three different metal ions (Mg2+, Mn2+ and Ba2+), which revealed the importance of the metal ion binding site. Furthermore, these analyses clearly demonstrated how the metal ions cause the structural rearrangements that are required for the hut mRNA recognition.  相似文献   

13.
《Biophysical journal》2020,118(4):909-921
In the era of opioid abuse epidemics, there is an increased demand for understanding how opioid receptors can be allosterically modulated to guide the development of more effective and safer opioid therapies. Among the modulators of the μ-opioid (MOP) receptor, which is the pharmacological target for the majority of clinically used opioid drugs, are monovalent and divalent cations. Specifically, the monovalent sodium cation (Na+) has been known for decades to affect MOP receptor signaling by reducing agonist binding, whereas the divalent magnesium cation (Mg2+) has been shown to have the opposite effect, notwithstanding the presence of sodium chloride. Although ultra-high-resolution opioid receptor crystal structures have revealed a specific Na+ binding site and molecular dynamics (MD) simulation studies have supported the idea that this monovalent ion reduces agonist binding by stabilizing the receptor inactive state, the putative binding site of Mg2+ on the MOP receptor, as well as the molecular determinants responsible for its positive allosteric modulation of the receptor, are unknown. In this work, we carried out tens of microseconds of all-atom MD simulations to investigate the simultaneous binding of Mg2+ and Na+ cations to inactive and active crystal structures of the MOP receptor embedded in an explicit lipid-water environment and confirmed adequate sampling of Mg2+ ion binding with a grand canonical Monte Carlo MD method. Analyses of these simulations shed light on 1) the preferred binding sites of Mg2+ on the MOP receptor, 2) details of the competition between Mg2+ and Na+ cations for specific sites, 3) estimates of binding affinities, and 4) testable hypotheses of the molecular mechanism underlying the positive allosteric modulation of the MOP receptor by the Mg2+ cation.  相似文献   

14.
Bush LP 《Plant physiology》1969,44(3):347-350
Succinyl CoA synthetase from Nicotiana tabacum exhibited a requirement for univalent and divalent cations. Mn2+ replaced Mg2+ in the assay medium and Co2+ and Ca2+ partially replaced Mg2+. Addition of Zn2+ resulted in no enzyme activity. The enzyme was activated by univalent cations K+, Rb+, NH4+, and Na+; Li+ showed little or no activation. Maximum enzyme activity varied significantly with potassium salts of different anions. Greatest activation was obtained with K3PO4 and, respectively, KCl, KNO3, K2SO4 and KF exhibited steadily decreasing enzyme activation.  相似文献   

15.
A recombinant hybrid of manganese dependent-superoxide dismutase of Staphylococcus equorum and S. saprophyticus has successfully been overexpressed in Escherichia coli BL21(DE3), purified, and characterized. The recombinant enzyme suffered from degradation and aggregation upon storage at ?20 °C, but not at room temperature nor in cold. Chromatographic analysis in a size exclusion column suggested the occurrence of dimeric form, which has been reported to contribute in maintaining the stability of the enzyme. Effect of monovalent (Na+, K+), divalent (Ca2+, Mg2+), multivalent (Mn2+/4+, Zn2+/4+) cations and anions (Cl?, SO4 2?) to the enzyme stability or dimeric state depended on type of cation or anion, its concentration, and pH. However, tremendous effect was observed with 50 mM ZnSO4, in which thermostability of both the dimer and monomer was increased. Similar situation was not observed with MnSO4, and its presence was detrimental at 200 mM. Finally, chelating agent appeared to destabilize the dimer around neutral pH and dissociate it at basic pH. The monomer remained stable upon addition of ethylene diamine tetraacetic acid. Here we reported unique characteristics and stability of manganese dependent-superoxide dismutase from S. equorum/saprophyticus.  相似文献   

16.
Members of the eukaryotic PIEZO family (the human orthologs are noted hPIEZO1 and hPIEZO2) form cation-selective mechanically-gated channels. We characterized the selectivity of human PIEZO1 (hPIEZO1) for alkali ions: K+, Na+, Cs+ and Li+; organic cations: TMA and TEA, and divalents: Ba2+, Ca2+, Mg2+ and Mn2+. All monovalent ions permeated the channel. At a membrane potential of -100 mV, Cs+, Na+ and K+ had chord conductances in the range of 35–55 pS with the exception of Li+, which had a significantly lower conductance of ~ 23 pS. The divalents decreased the single-channel permeability of K+, presumably because the divalents permeated slowly and occupied the open channel for a significant fraction of the time. In cell-attached mode, 90 mM extracellular divalents had a conductance for inward currents carried by the divalents of: 25 pS for Ba2+ and 15 pS for Ca2+ at -80 mV and 10 pS for Mg2+ at -50 mV. The organic cations, TMA and TEA, permeated slowly and attenuated K+ currents much like the divalents. As expected, the channel K+ conductance increased with K+ concentration saturating at ~ 45 pS and the KD of K+ for the channel was 32 mM. Pure divalent ion currents were of lower amplitude than those with alkali ions and the channel opening rate was lower in the presence of divalents than in the presence of monovalents. Exposing cells to the actin disrupting reagent cytochalasin D increased the frequency of openings in cell-attached patches probably by reducing mechanoprotection.  相似文献   

17.
The stabilizing effects of Ca2+ and Mg2+ ions on the decameric structure of hemocyanins from two representative chitons, Stenoplax conspicua and Mopalia muscosa were investigated by light-scattering molecular weight measurements, ultracentrifugation, absorbance, and circular dichroism methods. The dissociation profiles at any given pH resulting from the decrease in divalent ion concentration, investigated at a fixed protein concentration of 0.1 g.liter-1, could be fitted by a decamer-to-dimer-to monomer scheme of subunit dissociation. The initial decline in the light-scattering molecular weight curves required one or two apparent binding sites per hemocyanin dimer formed as intermediate dissociation product, with apparent dissociation constants (kD,2) for Ca2+ ions of 0.7 to 7 X 10(-4) M, not very different from the value of 2.5 X 10(-4) M obtained by Makino by equilibrium dialysis for the hemocyanin of the opistobranch, Dolabella auricularia. The binding of Mg2+ ion to S. conspicua and M. muscosa hemocyanins appears to be both weaker than the binding of Ca2+ and more pH dependent, with kD,2 values ranging from the 3 X 10(-4) to 4 X 10(-2) M at pH 8.5 to 9.5. The dissociation the decameric hemocyanin species (sedimentation coefficient ca. 60 S) is also observed in the ultracentrifugation with the initial appearance of 18-20 S dimers, followed by a shift in equilibrium to monomeric species of lower sedimentation rates of 11-12 S as the divalent ion concentration is reduced below 1 X 10(-4) M Ca2+ and Mg2+. The dissociation of dimers to monomers in the second step of the reaction is characterized by one or two binding sites per subunit and a somewhat stronger affinity for divalent ions, indicated by apparent dissociation constants (kD,1) of 0.7 X 10(-4) to 3 X 10(-3) M. Circular dichroism and absorbance measurements at 222 and 346 nm suggest no significant changes in the conformation of the hemocyanin subunits produced by the different stages of subunit dissociation.  相似文献   

18.
Laser Raman spectroscopy was applied to characterize structural behavior of dipalmitoyl phosphatidylcholine multibilayer systems in the presence of several cations (K+, Na+, Cs+, Rb+, Ca2+, Mg2+, Cd2+, Ba2+) and anions (Cl, Br, I, NO3, SO32−, SO42−, S2O32−, S2O82−). To evaluate the Raman-spectroscopical data quantitatively, characteristic intensity ratios, lateral and trans order parameters were used and compared. It was shown that the different trans order parameters are rather sensitive to ion-polar head group interactions and thus, they cannot give unequivocal information on the trans-gauche isomerization of hydrocarbon chains of phospholipids. The observed effects of ions on Raman spectra of phospholipid multilayers could not be explained simply on the basis of electrostatic interactions. The possible involvement of other factors (changes in polarizability, hydrogen bonds, etc.) is also discussed. It was demonstrated that the order parameters defined in different ways may result in different effectiveness sequences of ions. Of monopositive ions Na+ was found to be the most effective to influence the bilayer structure. For dipositive ions, of which Ca2+ proved to be the most effective, concentration-dependent effectiveness sequences were obtained. A plausible interpretation and some consequences of the concentration-dependent two-step binding of divalent cations were also outlined. Bilayered phospholipid structures turned out to be more responsive to anions than to most cations investigated. Interdependent actions of cations and anions, as well as the possible relevance of the charge distribution on anions are postulated.  相似文献   

19.
In the E1 state of the Na,K-ATPase all cations present in the cytoplasm compete for the ion binding sites. The mutual effects of mono-, di- and trivalent cations were investigated by experiments with the electrochromic fluorescent dye RH421. Three sites with significantly different properties could be identified. The most unspecific binding site is able to bind all cations, independent of their valence and size. The large organic cation Br2-Titu3+ is bound with the highest affinity (<μm), among the tested divalent cations Ca2+ binds the strongest, and Na+ binds with about the same equilibrium dissociation constant as Mg2+ (∼0.8 mm). For alkali ions it exhibits binding affinities following the order of Rb+≃ K+ > Na+ > Cs+ > Li+. The second type of binding site is specific for monovalent cations, its binding affinity is higher than that of the first type, for Na+ ions the equilibrium dissociation constant is < 0.01 mm. Since binding to that site is not electrogenic it has to be close to the cytoplasmic surface. The third site is specific for Na+, no other ions were found to bind, the binding is electrogenic and the equilibrium dissociation constant is 0.2 mm. Received: 7 August 2000/Revised: 14 November 2000  相似文献   

20.
Several derivatives of hemocyanin from Taiwan snails (Achatina fulica) have been prepared. The reconstituted protein (R-HcO2) has lower Cu content, lower circular dichroism intensity, and higher fluorescence intensity than native oxyhemocyanin (HcO2). The Co(II) derivative (CoHc) does not take up molecular oxygen and only 50% of the total sites for Cu in native hemocyanin is taken up by Co. The half-apo derivative (half-apo-Hc) contains a single Cu per active site. Divalent cations quench the tryptophan fluorescence in the hemocyanin species and also quench the fluorescence from Tb3+ bound to the protein. The collisional quenching constants decrease in the order Co2+ > Mn2+ > Ca2+. The static component is negligible. For carboxy hemocyanin (HcCO), fluorescence originates from a Cu(I) CO complex and was used to study reaction of Hc CO with CN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号