首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Significant differences were observed between the guinea-pig and the mouse in terms of the secretion of fluid, protein and secretory granules from submandibular glands in response to pilocarpine, phenylephrine and isoproterenol. In both the guinea-pig and the mouse, the secretory responses induced by pilocarpine, phenylephrine and isoproterenol were inhibited by pretreatment with 4-DAMP, phentolamine and propranolol, respectively. The results suggest that the submandibular glands of the guinea-pig and the mouse have M3-cholinoreceptors, as well as α- and β-adrenoceptors, and that these receptors play different roles in the secretion of fluid, protein and secretory granules from guinea-pig and mouse submandibular glands.  相似文献   

2.
1. Following treatment with cholinergic and beta-adrenergic drugs, the beta-type protein, associated with cAMP, was secreted regardless of the doses used. 2. Following treatment with alpha 1-adrenergic drugs, both the beta-type and alpha-type proteins were secreted depending on the doses used and the alpha-type protein was completely converted to the beta-type with alpha-blockers. 3. Following treatment with alpha 2-adrenergic drugs, the gamma-type protein, associated with cGMP, was secreted independent of the doses used.  相似文献   

3.
The effects of insulin and secretory agonists on amino acid incorporation into submandibular gland proteins were studied using isolated acinar cell aggregates. Insulin stimulated the incorporation of 3H-leucine into TCA-precipitable proteins in a rapid, dose-dependent manner (half-maximal response at 1 nM). Isoproterenol, a beta-adrenergic agonist, also stimulated amino acid incorporation, and this effect was mimicked by both dibutyryl cAMP and IBMX, a phosphodiesterase inhibitor. Although insulin further stimulated incorporation in the presence of isoproterenol and IBMX, no additional increase in the rate of synthesis was observed after stimulation by dibutyryl cAMP. High concentrations of carbamylcholine, a cholinergic agonist, inhibited both basal and insulin-stimulated incorporation. At low concentrations, however, carbamylcholine stimulated synthesis, and the effects of insulin and carbamylcholine were additive. A23187, a calcium ionophore, also inhibited 3H-leucine incorporation and insulin stimulation, but in contrast to carbamylcholine, low concentrations of A23187 neither inhibited nor enhanced the rate of synthesis. Thus, protein synthesis in the rat submandibular gland is regulated by both insulin and neurotransmitters. Whereas beta-adrenergic stimulation appears to be mediated through cAMP, the intracellular signals mediating the actions of insulin and cholinergic agonists remain to be elucidated.  相似文献   

4.
alpha-Methylnoradrenaline (alpha-mNA) is a potent secretagogue for the parotid and submandibular glands of rats. With regard to the parotid glands, alpha-mNA activates mainly beta-adrenoceptors. In the submandibular glands, alpha-mNA activates alpha-adrenoceptors at higher doses whereas at relatively lower doses it activates beta-adrenoceptors. alpha-mNA may not stimulate the specific alpha 2-adrenoceptors of the salivary glands of rats.  相似文献   

5.
1. m-Octopamine given i.v. or i.p. was a potent sialogogue for rat salivary glands.2. Salivation in response to i.v. m-octopamine was completely abolished by prazosin and phenoxybenzamine.3. The α-type of proteins were secreted in response to all doses of i.v. and i.p. m-octopamine and these were converted into the β-type with prazosin, but not with yohimbine.4. m-Octopamine stimulated both α- and β-adrenoceptors and was a much more selective α1-agonist than was the p-isomer.  相似文献   

6.
In this study, the effects of parasympathectomy and cholinergic agonists on gap-junctional intercellular communication and salivary secretion were investigated to clarify the involvement of salivary secretion in delayed uncoupling between acinar cells of rat submandibular glands. Gap-junctional intercellular communication was monitored as dye-coupling in the acinar cells of isolated acini by the transfer of Lucifer Yellow CH. Parasympathectomy induced dye-uncoupling in the acinar cells isolated from denervated salivary glands 12 hr after parasympathectomy-induced salivary secretion. Intraperitoneal application of carbachol (CCh), acetylcholine, pilocarpine, but not isoproterenol, stimulated salivary secretion, and then induced dye-uncoupling in the acinar cells 12 hr later. Atropine suppressed both the salivary secretion and delayed dye-uncoupling induced by parasympathectomy and CCh, when atropine was applied intraperitoneally before the induction of salivary secretion. However, atropine did not suppress the delayed dye-uncoupling by intraperitoneal application of CCh, when atropine was injected after the cessation of CCh-induced secretion. These results suggest that delayed inhibition of gap-junctional intercellular communication by parasympathectomy and cholinergic agonists in rat submandibular glands might be related to the change of secretory function after salivary secretion.  相似文献   

7.
Oxymetazoline is a potent secretagogue for the salivary glands of rats. In the parotid gland, it activates preferentially alpha-adrenoceptors. As for the submandibular glands, it activates alpha-adrenoceptors at relatively low doses but at higher doses it allows secretion of new types of proteins.  相似文献   

8.
Incorporation of the calcium chelator BAPTA into isolated, intact rat submandibular acini by hypotonic swelling, resulted in complete inhibition of carbamylcholine, noradrenaline and isoproterenol stimulation of mucin secretion. No effects of intracellular BAPTA on cell viability or beta-adrenergic stimulation of cyclic AMP formation were observed. The data are the first to demonstrate that calcium is necessary for beta-adrenergic stimulation of secretion and suggest that Ca2+ provides a common link in the triggering of exocytosis.  相似文献   

9.
 The effects of cholinergic and α-adrenergic stimulation (in vivo and in vitro) on the monovalent ion content of rat submandibular gland acinar cells were evaluated at the subcellular level by X-ray microanalysis. Fragments of glands or enzymatically dispersed acini were slam-frozen and cut into ultrathin cryosections. Spectra were collected from secretory granules, nucleus, the basal cytoplasm containing endoplasmic reticulum and the apical cytoplasm identified between secretory granules. No significant changes in Na and Cl content were observed after the isolation of acini, but the K concentration decreased compared with cells from in situ glands. The Cl and K content in all four compartments studied decreased significantly after cholinergic stimulation both in vivo and in vitro but in a more restricted fashion after α-adrenergic stimulation. Our findings indicate that: (1) the physiological mechanisms regulating the monovalent ion composition of submandibular cells are relatively well preserved in isolated acinar cells; (2) the results from in vivo experiments are in good agreement with those from in vitro experiments; and (3) the effects of cholinergic and α-adrenergic stimulation on the K+ and Clefflux at the subcellular level are similar but the response is generally less with α-adrenergic stimulation. Accepted: 24 April 1997  相似文献   

10.
Cytochalasin D altered the kinetics of peroxidase and radiolabeled protein discharge from rat exorbital lacrimal glands in vitro, in response to various secretagogues. The changes were different with each inducer. The discharge due to isoproterenol was immediately inhibited by 95%; the discharge evoked by noradrenaline via alpha-adrenergic receptors was progressively reduced and was inhibited by 50% after 30 min, whereas that evoked by carbachol was not influenced during the initial discharge period and was diminished by only 30% after 30 min. When calcium was removed from the incubation medium, the secretory responses were lowered and the inhibitory effect of cytochalasin D was still observed. The rate of protein discharge inhibition was related to the dose and was maximal with 2 X 10(-6) M cytochalasin D when the discharge resulted from cholinergic, alpha- or beta-adrenergic or dibutyryl cAMP stimulation. Cytochalasin D did not impair cellular energetics nor other stimulations induced through muscarinic or adrenergic receptors. Cytochalasin D effects could be related to interaction with actin, leading to the inhibition of the release of proteins into the incubation medium following the activation of the adrenergic system.  相似文献   

11.
12.
Busch L  Borda E 《Life sciences》2007,80(9):842-851
We have studied the signaling pathways involved in pilocarpine-induced mucin release in rat submandibular slices. Pilocarpine produced a significant increment of PGE2 levels and a positive (r=0.8870) and significant (p=0.0077) correlation between PGE2 production and mucin released was determined. The participation of PGE2 was confirmed by the use of indomethacin (indo) and of acetyl salicylic acid (ASA), cyclooxygenase inhibitors, which inhibited pilocarpine-induced mucin release. The muscarinic receptors involved in the regulation of mucin release were identified as M1 and M4 by the use of the selective acetylcholine receptors (mAChR) antagonists, pirenzepine, AF-DX 116, 4-DAMP and tropicamide. The secretory process was dependent on both, intracellular and extracellular calcium pools since it was inhibited by thapsigargin and verapamil. Cyclic AMP, nitric oxide synthase and PKC also participated in pilocarpine-induced mucin release. It is concluded that pilocarpine, by activation the M1 and M4 mAChR subtypes induces an increase of intracellular Ca2+ concentration ([Ca2+]I) and elevates cAMP levels, which in turn stimulates COX, PKC and NOS and promotes mucin exocytosis. PGE2 released induces cAMP accumulation which, together with PKC are involved in the PGE2 increased Ca2+/cAMP-regulated exocytosis. Thus, cAMP accumulation induced by cholinergic stimulation is, in part, the result of PGE2 production.  相似文献   

13.
Cytochalasin D altered the kinetics of peroxidase and radiolabeled protein discharge from rat exorbital lacrimal glands in vitro, in response to various secretagogues. The changes were different with each inducer. The discharge due to isoproterenol was immediately inhibited by 95%; the discharge evoked by noradrenaline via α-adrenergic receptors was progressively reduced and was inhibited by 50% after 30 min, whereas that evoked by carbachol was not influenced during the initial discharge period and was diminished by only 30% after 30 min. When calcium was removed from the incubation medium, the secretory responses were lowered and the inhibitory effect of cytochalasin D was still observed. The rate of protein discharge inhibition was related to the dose and was maximal with 2·10?6 M cytochalasin D when the discharge resulted from cholinergic, α- or β-adrenergic or dibutyryl cAMP stimulation. Cytochalasin D did not impair cellular energetics nor other stimulations induced through muscarinic or adrenergic receptors. Cytochalasin D effects could be related to interaction with actin, leading to the inhibition of the release of proteins into the incubation medium following the activation of the adrenergic system.  相似文献   

14.
Background information. TSPO (translocator protein), previously known as PBR (peripheral‐type benzodiazepine receptor), is a ubiquitous 18 kDa transmembrane protein that participates in diverse cell functions. High‐affinity TSPO ligands are best known for their ability to stimulate cholesterol transport in organs synthesizing steroids and bile salts, although they modulate other physiological functions, including cell proliferation, apoptosis and calcium‐dependent transepithelial ion secretion. In present study, we investigated the localization and function of TSPO in salivary glands. Results. Immunohistochemical analysis of TSPO in rat salivary glands revealed that TSPO and its endogenous ligand, DBI (diazepam‐binding inhibitor), were present in duct and mucous acinar cells. TSPO was localized to the mitochondria of these cells, whereas DBI was cytosolic. As expected, mitochondrial membrane preparations, which were enriched in TSPO, exhibited a high affinity for the TSPO drug ligand, 3H‐labelled PK 11195, as shown by Bmax and Kd values of 10.0±0.5 pmol/mg and 4.0±1.0 nM respectively. Intravenous perfusion of PK 11195 increased the salivary flow rate that was induced by muscarinic and α‐adrenergic agonists, whereas it had no effect when administered alone. Addition of PK 11195 also increased the K+, Na+, Cl and protein content of saliva, indicating that this ligand modulated secretion by acini and duct cells. Conclusions. High‐affinity ligand binding to mitochondrial TSPO modulates neurotransmitter‐induced salivary secretion by duct and mucous acinar cells of rat submandibular glands.  相似文献   

15.
16.
BACKGROUND INFORMATION: TSPO (translocator protein), previously known as PBR (peripheral-type benzodiazepine receptor), is a ubiquitous 18 kDa transmembrane protein that participates in diverse cell functions. High-affinity TSPO ligands are best known for their ability to stimulate cholesterol transport in organs synthesizing steroids and bile salts, although they modulate other physiological functions, including cell proliferation, apoptosis and calcium-dependent transepithelial ion secretion. In present study, we investigated the localization and function of TSPO in salivary glands. RESULTS: Immunohistochemical analysis of TSPO in rat salivary glands revealed that TSPO and its endogenous ligand, DBI (diazepam-binding inhibitor), were present in duct and mucous acinar cells. TSPO was localized to the mitochondria of these cells, whereas DBI was cytosolic. As expected, mitochondrial membrane preparations, which were enriched in TSPO, exhibited a high affinity for the TSPO drug ligand, (3)H-labelled PK 11195, as shown by B(max) and K(d) values of 10.0+/-0.5 pmol/mg and 4.0+/-1.0 nM respectively. Intravenous perfusion of PK 11195 increased the salivary flow rate that was induced by muscarinic and alpha-adrenergic agonists, whereas it had no effect when administered alone. Addition of PK 11195 also increased the K(+), Na(+), Cl(-) and protein content of saliva, indicating that this ligand modulated secretion by acini and duct cells. CONCLUSIONS: High-affinity ligand binding to mitochondrial TSPO modulates neurotransmitter-induced salivary secretion by duct and mucous acinar cells of rat submandibular glands.  相似文献   

17.
18.
Studies were conducted to determine whether β-adrenergic cell signalling is altered in submandibular salivary glands (SMSG) is essential fatty acid (EFA) deficiency. Three groups of rats were fed diets which were deficient in EFA (EFAD), marginally deficient in EFA (MEFAD) or contained sufficient amount of EFA (Control). Rats were killed after 20 wk on diets, SMSG were dissected out and cyclic AMP-dependent protein kinase (PKA) activity was measured. The specific enzyme activities were higher in the homogenates and supernatant fractions of the gland from EFAD and MEFAD rats compared with the controls. The relative levels of guanine nucleotide-binding regulatory proteins (Gs and Gi) were also measured in the SMSG membranes of rats fed the 3 diets. The levels of Gs were significantly higher in the EFAD and MEFAD groups than in the controls. No significant differences were observed in the secretion of trichloroacetic acid-phosphotungstic acid (TCA-PTA) precipitable glycoproteins from the SMSG slices among the 3 dietary groups.  相似文献   

19.
Free radicals are associated with the appearance of disorders such as tumours, CNS alterations and inflammatory pathologies. Their levels are known to be increased in inflammatory diseases due to the activity of prostaglandins, which are related to protein secretion including enzymes. Peroxidase is an oral enzyme that is implicated in the defence of the oral cavity. In this paper, investigations of the effect and mechanism of the activity of prostaglandin E2 (PGE2) on peroxidase secretion of female rat submandibular glands are reported. Results showed that PGE2 significantly increased the secretion of submandibular peroxidase and that this effect was mediated by an increase of intracellular cAMP and nitric oxide synthase activation. This could imply that prostaglandins play a modulatory role in diseases where free radicals are involved.  相似文献   

20.
The rate of fluid secretion by isolated salivary glands of Calliphora was inhibited as a linear function of dextran and poly vinyl pyrrolidone concentrations in the range 15–35% w/w. This inhibition was not overcome by supramaximal concentrations of 5-hydroxytryptamine, nor was it caused by a decreased availability of K+ from the medium. Although the polymers caused large decreases of freezing point (and vapor pressure) of the incubation medium, the glands did not respond to this by secreting a more K +-rich saliva. When dextran and polyvinyl pyrrolidone were added as powders to salt solutions, the total freezing-point depression of the mixture was equal to the sum of that exerted by the pure salt solution and that expected for the polymer concentration. The activities of K+ and Cl?, as measured by ion-selective electrodes, were not increased in solutions by the addition of dextran. Dextran was demonstrated by electron microscopy to penetrate into the basal clefts and intercellular spaces of the isolated glands. These results demonstrate that addition of dextran (and probably of polyvinyl pyrrolidone) does not decrease the solvent activity of water in physiological salt solutions. The inhibition of fluid secretion by isolated salivary glands of Calliphora seems therefore due only to the altered physical characteristics of the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号