首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
沈亮  徐荣  刘赛  徐常青  贺宁  刘同宁  陈君 《生态学报》2016,36(13):3933-3942
为探索梭梭根际土壤微生物结构特征及其与肉苁蓉寄生的关系,应用磷脂脂肪酸(PLFA)法分析了5—8月份梭梭生长季节的根际土壤微生物种类及群落结构特征,采用湿筛倾注-蔗糖离心法对其根际土壤AM真菌进行了初步分离和鉴定,并分析了肉苁蓉寄生与梭梭根际微生物及环境因子间的相关性。结果表明,5—7月3个月份的梭梭根际土壤微生物磷脂脂肪酸种类及含量均显著高于8月份,总磷脂脂肪酸和AM真菌磷脂脂肪酸以6月份含量最高。梭梭根际土壤共鉴定出AM真菌4属35种,它们分别为球囊霉属(Glomus)22种、无梗囊霉属(Acaulospora)7种、多孢囊霉属(Diversispora)3种和巨孢囊霉属(Gigaspora)3种。其中以黑球囊霉(Glomus melanosporum)和双网无梗囊霉(Acaulospora bireticulata)为优势种群,并且发现了与寄生有关的巨孢囊霉属AM真菌。6月份和8月份的AM真菌孢子数量最多,而5月份的AM真菌孢子数量最低。6月份梭梭根际土壤提取液得到的肉苁蓉种子萌发率(65.94%)和田间接种寄生率(59.19%)均为最高值,而5月份土壤提取液测试得到的肉苁蓉种子萌发率最低。因此,推测梭梭根际AM真菌可能参与了肉苁蓉的寄生过程。相关分析表明梭梭根际土壤微生物种类和数量主要与土壤温湿度和土壤理化性质相关性较大,其中可能与寄生有关的真菌数量与土壤温度呈显著正相关;肉苁蓉寄生率与土壤温度及土壤养分呈显著负相关。研究为解析梭梭根际土壤微生物在肉苁蓉寄生过程中的作用以及指导肉苁蓉人工种植提供参考。  相似文献   

2.
Due to their secretive habits, predicting the pattern of spatial distribution of small carnivores has been typically challenging, yet for conservation management it is essential to understand the association between this group of animals and environmental factors. We applied maximum entropy modeling (MaxEnt) to build distribution models and identify environmental predictors including bioclimatic variables, forest and land cover type, topography, vegetation index and anthropogenic variables for six small carnivore species in Mudumalai Tiger Reserve. Species occurrence records were collated from camera-traps and vehicle transects during the years 2010 and 2011. We used the average training gain from forty model runs for each species to select the best set of predictors. The area under the curve (AUC) of the receiver operating characteristic plot (ROC) ranged from 0.81 to 0.93 for the training data and 0.72 to 0.87 for the test data. In habitat models for F. chaus, P. hermaphroditus, and H. smithii “distance to village” and precipitation of the warmest quarter emerged as some of the most important variables. “Distance to village” and aspect were important for V. indica while “distance to village” and precipitation of the coldest quarter were significant for H. vitticollis. “Distance to village”, precipitation of the warmest quarter and land cover were influential variables in the distribution of H. edwardsii. The map of predicted probabilities of occurrence showed potentially suitable habitats accounting for 46 km2 of the reserve for F. chaus, 62 km2 for V. indica, 30 km2 for P. hermaphroditus, 63 km2 for H. vitticollis, 45 km2 for H. smithii and 28 km2 for H. edwardsii. Habitat heterogeneity driven by the east-west climatic gradient was correlated with the spatial distribution of small carnivores. This study exemplifies the usefulness of modeling small carnivore distribution to prioritize and direct conservation planning for habitat specialists in southern India.  相似文献   

3.
尹辉  田聪  马倩倩  吕光辉  曾凡江 《生态学报》2022,42(18):7349-7361
气候变化和人类活动是影响物种分布的最重要因素。骆驼刺是我国荒漠区的重要建群种,建群种的丧失将对荒漠生态系统产生严重损伤。因此预测气候变化和人类活动影响下骆驼刺适宜生境的变化特点对保护我国荒漠生态系统具有重要的意义。本研究采用61个骆驼分布点数据,和21个环境因子数据,运用最大熵模型(MaxEnt)预测骆驼刺当前在有、无人类活动干扰下的适宜生境分布,对影响其分布的环境因素进行了评估。并预测未来(2021-2040,2041-2060,2061-2080,2081-2100)四条共享社会经济路径(SSP126,SSP245,SSP370,SSP585)情景下,骆驼刺潜在分布区的变化特点。研究结果表明,在无人类活动干扰的情况下,骆驼刺适生区面积达132.29万km2,覆盖我国西北干旱区的大部分面积。年均降水量、最冷季度平均温、平均气温日较差、年均温、温度季节性、降水的季节性和高程被确定为影响骆驼刺潜在分布区的最重要因素。而在加入人类活动强度因素之后,骆驼刺适生区面积显著下降至71.31万km2,且呈现出破碎化状态。此时,年降水量、人类活动强度和高程是影响骆驼刺分布的最重要原因。在未来气候情景下,骆驼刺的适生区将产生一定的扩张。尤其在中高强迫(SSP370)和高强迫(SSP585)情景下,骆驼刺的适生面积将随时间推移产生显著的增加,且这种扩张主要向高纬度和高海拔地区发展。骆驼刺能保留大部分原有生境,仅在内蒙古中西部地区发生少量收缩。在气候变化条件下,骆驼刺能够在西北干旱区生存并扩张,故可将其作为防沙治沙的优良物种进行保护与开发。  相似文献   

4.
Paeonia ostii (Paeoniaceae), a famous traditional flowering plant, is an edible perennial shrub having medicinal uses. In recent decades, growing market demands and unprecedented damage to forests has caused severe degeneration of its natural habitat. As a result, land managers involved in conserving and restoring its habitat need to identify the environmental factors that shape its distribution. The present study predicted the potential distribution of this species and evaluated habitat suitable for it. The main environmental factors affecting this species were determined using 145 occurrence records, 30 environmental variables, MaxEnt modeling, and an analysis using ArcGIS 10.2 software. The results showed that the moderately and highly suitable habitat for P. ostii encompasses ca. 8.23 × 105 km2; the areas with a high suitability index (>0.6) for the distribution of this species were in southern Anhui, Henan (Kaifeng, Luoyang, Pingdingshan, Xuchang, and Zhengzhou), Hubei (Huanggang and Huangshi), and Shanxi (Yan'an) provinces. Annual mean temperature, mean UV-B of the lightest month, vapor pressure, and annual precipitation were the main environmental factors affecting the distribution of P. ostii. The results of this study can allow land managers to avoid wasted human effort and materials as well as the exhaustion of wild P. ostii resources that could result from the blind introduction of this species into unsuitable habitat while improving both the quality and yield of P. ostii.  相似文献   

5.
Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax) were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of “precipitation of the warmest quarter” and “annual mean temperature” were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China.  相似文献   

6.

Background

The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants.

Principal Findings/Significance

Here we report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae. The cp genome of C. deserticola is greatly reduced both in size (102,657 bp) and in gene content, indicating that all genes required for photosynthesis suffer from gene loss and pseudogenization, except for psbM. The striking difference from other holoparasitic plants is that it retains almost a full set of tRNA genes, and it has lower dN/dS for most genes than another close holoparasitic plant, E. virginiana, suggesting that Cistanche deserticola has undergone fewer losses, either due to a reduced level of holoparasitism, or to a recent switch to this life history. We also found that the rpoC2 gene was present in two copies within C. deserticola. Its own copy has much shortened and turned out to be a pseudogene. Another copy, which was not located in its cp genome, was a homolog of the host plant, Haloxylon ammodendron (Chenopodiaceae), suggesting that it was acquired from its host via a horizontal gene transfer.  相似文献   

7.
Satyrium is an endangered and rare genus of plant that has various pharmacodynamic functions. In this study, optimized MaxEnt models were used in analyzing potential geographical distributions under current and future climatic conditions (the 2050s and 2070s) and dominant environmental variables influencing their geographic distribution. The results provided reference for implementation of long‐term conservation and management approaches for the species. The results showed that the area of the total suitable habitat for Satyrium ciliatum (S. ciliatum) in China is 32.51 × 104 km2, the total suitable habitat area for Satyrium nepalense (S. nepalense) in China is 61.76 × 104 km2, and the area of the total suitable habitat for Satyrium yunnanense (S. yunnanense) in China is 89.73 × 104 km2 under current climatic conditions. The potential suitable habitat of Satyrium is mainly distributed in Southwest China. The major environmental variables influencing the geographical distribution of S. ciliatum were isothermality (bio3), temperature seasonality (bio4), and mean temperature of coldest quarter (bio11). Environmental variables such as isothermality (bio3), temperature seasonality (bio4), and precipitation of coldest quarter (bio19) affected the geographical distribution of S. nepalense; and environmental variables such as isothermality (bio3), temperature seasonality (bio4), and lower temperature of coldest month (bio6) affected the geographical distribution of S. yunnanense. The distribution range of Satyrium was extended as global warming increased, showing emissions of greenhouse gases with lower concentration (SSP1‐2.6) and higher concentration (SSP5‐8.5). According to the study, the distribution of suitable habitat will shift with a change to higher elevation areas and higher latitude areas in the future.  相似文献   

8.
气候变化情景下大沙鼠潜在地理分布   总被引:2,自引:1,他引:1  
大沙鼠(Rhombomys opimus)是中亚地区典型的荒漠啮齿动物,其采食和掘洞行为造成了荒漠林和荒漠草原退化加剧,生态环境恶化。基于大沙鼠分布数据、气候、土壤和地形因子数据,采用MaxEnt模型预测大沙鼠在当前气候和温室气体低、中、高3种浓度排放情景下2050年和2070年的潜在适生区,分析亚洲大陆未来气候条件下大沙鼠适生面积和分布格局的变化趋势,探讨影响大沙鼠分布的主要环境因子。结果表明:模型AUC(Area Under Curve)值达到0.9以上,预测的准确性达到"极好"。经刀切法分析(Jackknife)表明,影响大沙鼠在适生区分布最主要的环境变量为温度季节性变化的标准差、土壤基本饱和度、最干季度降水量、最暖季度降水量和土壤可交换钠盐。Rcp2.6、Rcp4.5和Rcp8.5三种气候场景下2050年高适生区面积较当前分别增长15.78%、15.10%和13.44%;Rcp2.6、Rcp4.5和Rcp8.5三种气候场景下2070年高适生区面积较当前增长8.32%、13.18%和18.18%。中国大沙鼠适生区范围内,新疆所分布的大沙鼠适生区分布范围变化较大,3种情景模式下大沙鼠的适生区位置向新疆北部扩张;甘肃适生区位置向西北部扩张;内蒙西北部和阿拉善地区大沙鼠的适生区位置向四周扩张。研究揭示了未来气候下大沙鼠高适生区范围和空间变化,并得到影响其分布的主要环境变量,对其防控具有重要意义。  相似文献   

9.
There is a concern of the spread of introduced trout Salmo trutta and Oncorhynchus mykiss which might have potential effects on native fish species in the Himalaya. We present the first assessment of current habitat expansion of introduced trout induced by environmental drivers and posing threats to the local fish diversity. Maximum Entropy (MaxEnt) model was used and overlaid with presence-only data onto bioclimatic and environmental layers to characterize the conditions most suitable for the habitat expansion of trout. Mean AUC value for S. trutta was 0.919 and 0.881 for O. mykiss respectively showing that the MaxEnt model was highly accurate and statistically significant. The precipitation of driest quarter (Bio_17) alone accounted for 71.4% habitat expansion of S. trutta across rivers’ length and 61.1% in the case of O. mykiss. The Jackknife test of different environmental variable particularly Bio_17 and the coldest quarter (Bio_19) depicted their potential role in habitat expansion. The occurrences of trout in the Himalayan streams predicted trade-offs between few environmental variables and habitat expansion. The findings suggested that habitat expansion of trout was induced by identified environmental drivers impacting the array of biological and ecological integrity in the new geographic spaces concerning trout invasion.  相似文献   

10.
蒙古野驴(Equus hemionus hemionus)是亚洲内陆荒漠、半荒漠和荒漠草原区域的代表性物种。开展其种群数量调查和适宜生境研究可以为该物种的保护管理提供科学决策依据。本研究于2018和2019年夏季,采用样线法对新疆卡拉麦里山有蹄类自然保护区蒙古野驴的地理分布现状和种群数量进行了调查,采用Distance 7.0软件估算了蒙古野驴的种群密度和数量,并通过MaxEnt模型分析筛选环境变量,确定保护区蒙古野驴的适宜生境及其主要影响因子。结果表明: 调查中发现蒙古野驴718群、共4782头,有效分布位点363个。夏季蒙古野驴适宜生境主要位于保护区的中东部,面积为6737.5 km2,占整个保护区的45.4%,估算保护区夏季蒙古野驴的种群密度为(0.5±0.1)头·km-2,保护区内蒙古野驴种群数量为(3246±575)头。MaxEnt模型的预测准确性较高,AUC的平均值为0.890。影响蒙古野驴分布的主要环境因子依次为: 距水源点距离、植被类型、距人类活动区距离、距G216国道的距离、海拔和最干季的降水量。最后,从水源点保护、核心区调整、野生动物通道监测和交通建设4个方面,对蒙古野驴种群的保护管理提出了建议。  相似文献   

11.
Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration.  相似文献   

12.
BackgroundGlossina austeni and Glossina brevipalpis (Diptera: Glossinidae) are the sole cyclical vectors of African trypanosomes in South Africa, Eswatini and southern Mozambique. These populations represent the southernmost distribution of tsetse flies on the African continent. Accurate knowledge of infested areas is a prerequisite to develop and implement efficient and cost-effective control strategies, and distribution models may reduce large-scale, extensive entomological surveys that are time consuming and expensive. The objective was to develop a MaxEnt species distribution model and habitat suitability maps for the southern tsetse belt of South Africa, Eswatini and southern Mozambique.Methodology/Principal findingsThe present study used existing entomological survey data of G. austeni and G. brevipalpis to develop a MaxEnt species distribution model and habitat suitability maps. Distribution models and a checkerboard analysis indicated an overlapping presence of the two species and the most suitable habitat for both species were protected areas and the coastal strip in KwaZulu-Natal Province, South Africa and Maputo Province, Mozambique. The predicted presence extents, to a small degree, into communal farming areas adjacent to the protected areas and coastline, especially in the Matutuíne District of Mozambique. The quality of the MaxEnt model was assessed using an independent data set and indicated good performance with high predictive power (AUC > 0.80 for both species).Conclusions/SignificanceThe models indicated that cattle density, land surface temperature and protected areas, in relation with vegetation are the main factors contributing to the distribution of the two tsetse species in the area. Changes in the climate, agricultural practices and land-use have had a significant and rapid impact on tsetse abundance in the area. The model predicted low habitat suitability in the Gaza and Inhambane Provinces of Mozambique, i.e., the area north of the Matutuíne District. This might indicate that the southern tsetse population is isolated from the main tsetse belt in the north of Mozambique. The updated distribution models will be useful for planning tsetse and trypanosomosis interventions in the area.  相似文献   

13.
为揭示楠木(Phoebe zhennan)在贵州省潜在分布特征及其对环境因子的响应模式,该研究基于楠木在贵州省的地理分布点,运用最大熵模型(MaxEnt)与地理信息系统(ArcGIS)方法,结合气候、土壤及地形等30个环境因子,预测楠木在贵州省的潜在适生区,并分析了影响楠木生长的主要环境因子。结果表明:(1) MaxEnt模型AUC平均值为0.843,对贵州省楠木地理分布预测结果良好;楠木潜在适生区呈现以贵州省东北为重点区,从北到南、由东向西适生等级依次降低的趋势,高适生区主要在黔东北铜仁市、黔北遵义市中东部。(2)楠木在贵州省的潜在分布面积为80 013.47 km2,占全省总面积的45.4%,其中高适生区面积占全省总面积的17.4%。(3)等温性(Bio3)、最暖季度降水量(Bio18)、最湿月降水量(Bio13)、最干月降水量(Bio14)、最冷月最低温(Bio6)和温度季节性变动系数(Bio4)等是影响楠木在贵州省潜在分布的重要环境因子。该研究结果为贵州省楠木资源保护区划、种苗扩繁、造林推广与开发利用提供了科学依据。  相似文献   

14.
The fishing cat Prionailurus viverrinus is a wetland specialist species endemic to South and Southeast Asia. Nepal represents the northern limit of its biogeographic range, but comprehensive information on fishing cat distribution in Nepal is lacking. To assess their distribution, we compiled fishing cat occurrence records (n = 154) from Nepal, available in published literature and unpublished data (2009–2020). Bioclimatic and environmental variables associated with their occurrence were used to predict the fishing cat habitat suitability using MaxEnt modeling. Fishing cat habitat suitability was associated with elevation (152–302 m), precipitation of the warmest quarter, i.e., April–June (668–1014 mm), precipitation of the driest month (4–7 mm), and land cover (forest/grassland and wetland). The model predicted an area of 4.4% (6679 km2) of Nepal as potential habitat for the fishing cat. About two‐thirds of the predicted potentially suitable habitat lies outside protected areas; however, a large part of the highly suitable habitat (67%) falls within protected areas. The predicted habitat suitability map serves as a reference for future investigation into fishing cat distribution as well as formulating and implementing effective conservation programs in Nepal. Fishing cat conservation initiatives should include habitats inside and outside the protected areas to ensure long‐term survival. We recommend conservation of wetland sites, surveys of fishing cats in the identified potential habitats, and studying their genetic connectivity and population status.  相似文献   

15.
A major obstacle in prioritizing species or habitats for conservation is the degree of unrecognized diversity hidden within complexes of morphologically similar, “cryptic” species. Given that amphibians are one of the most threatened groups of organisms on the planet, our inability to diagnose their true diversity is likely to have significant conservation consequences. This is particularly true in areas undergoing rapid deforestation, such as Southeast Asia. The Southeast Asian genus Leptolalax is a group of small-bodied, morphologically conserved frogs that inhabit the forest-floor. We examined a particularly small-bodied and morphologically conserved subset, the Leptolalax applebyi group, using a combination of molecular, morphometric, and acoustic data to identify previously unknown diversity within. In order to predict the geographic distribution of the group, estimate the effects of habitat loss and assess the degree of habitat protection, we used our locality data to perform ecological niche modelling using MaxEnt. Molecular (mtDNA and nuDNA), acoustic and subtle morphometric differences revealed a significant underestimation of diversity in the L. applebyi group; at least two-thirds of the diversity may be unrecognised. Patterns of diversification and microendemism in the group appear driven by limited dispersal, likely due to their small body size, with several lineages restricted to watershed basins. The L. applebyi group is predicted to have historically occurred over a large area of the Central Highlands of Vietnam, a considerable portion of which has already been deforested. Less than a quarter of the remaining forest predicted to be suitable for the group falls within current protected areas. The predicted distribution of the L. applebyi group extends into unsurveyed watershed basins, each potentially containing unsampled diversity, some of which may have already been lost due to deforestation. Current estimates of amphibian diversity based on morphology alone are misleading, and accurate alpha taxonomy is essential to accurately prioritize conservation efforts.  相似文献   

16.
Climate change has a significant impact on the growth and distribution of vegetation worldwide. Hydrangea macrophylla is widely distributed and considered a model species for studying the distribution and responses of shrub plants under climate change. These results can inform decision‐making regarding shrub plant protection, management, and introduction of germplasm resources, and are of great importance for formulating ecological countermeasures to climate change in the future. We used the maximum entropy model to predict the change, scope expansion/reduction, centroid movement, and dominant climate factors that restrict the growth and distribution of H. macrophylla in China under current and future climate change scenarios. It was found that both precipitation and temperature affect the distribution of suitable habitat for H. macrophylla. Akaike information criterion (AICc) was used to select the feature combination (FC) and the regularization multiplier (RM). After the establishment of the optimal model (FC = QP, RM = 0.5), the complexity and over‐fitting degree of the model were low (delta AICc = 0, omission rate = 0.026, difference between training and testing area under the curve values = 0.0009), indicating that it had high accuracy in predicting the potential geographical distribution of H. macrophylla (area under the curve = 0.979). Overall, from the current period to future, the potential suitable habitat of this species in China expanded to the north. The greenhouse effect caused by an increase in CO2 emissions would not only increase the area of high‐suitability habitat in Central China, but also expand the area of total suitable habitat in the north. Under the maximum greenhouse gas emission scenario (RCP8.5), the migration distance of the centroid was the longest (e.g., By 2070s, the centroids of total and highly suitable areas have shifted 186.15 km and 89.84 km, respectively).  相似文献   

17.

Key message

Physiological characteristics except WUE of H. ammodendron have obvious response to rainfall pulses of 6–12 mm, and rainfall in this range at least is “effective” precipitation for H. ammodendron.

Abstract

In water-limited ecosystems, pulses of rainfall can trigger a cascade of plant physiological responses. Small precipitation events account for a large proportion of the precipitation received in arid regions. Their potential ecological importance, however, has previously been ignored. Here the responses of the physiological characteristics of Haloxylon ammodendron (H. ammodendron) to rainfall were evaluated by rainfall manipulative experiments during the growing season of 2012 in the desert region of Northwestern China. Net Photosynthesis rate (P n), transpiration (Tr), water use efficiency (WUE), stomatal conductance (G s), internal concentration of CO2 (C i), sap flow, leaf water potential (Ψ), and soil volumetric water content (SVWC) were monitored throughout the experimental period. The results showed that the water status of H. ammodendron is highly sensitive to rainfall pulses. P n, Tr, and G s increased with rainfall and then decreased gradually after rainfall. WUE decreases after rainfall and increases in times of increasing drought, although within a narrow range. H. ammodendron has a special buffering ability induced by harsh environmental conditions, particularly the rainfall patterns. Collectively, a 6-mm or greater rainfall amount is “effective” precipitation for H. ammodendron from the perspective of plant physiology. This study result is essential to the theories and practice of combating desertification.  相似文献   

18.
Ephedra sinica is a rare and vulnerable species in China, and the habitat of Ephedra sinica is seriously threatened (by climate change and human activities). Predicting the suitable growth areas and constructing ecological corridors for Ephedra sinica in China will help to protect it scientifically. Based on 306 valid distribution records and 13 selected environmental factors, the maximum entropy (MaxEnt) model was used to simulate the potential current habitat zones and future (2050 and 2070) habitat zones of Ephedra sinica under four climate change scenarios. The minimum cumulative resistance (MCR) model was applied to extract important ecological corridors of Ephedra sinica. The results indicate that: (1) Under the current environment, the total area of the suitable habitat for Ephedra sinica in China is 42.24 × 105 km2, mainly distributed in Northwest China and North China. (2) Suitable area increases as the RCP rises. The center of mass of the habitat zone moved northward from Shaanxi Province to Ordos City in Inner Mongolia Autonomous Region. (3) Of the 13 environmental factors selected, the primary factor was elevation (20.8 %), followed by wettest month precipitation (18.2 %) and temperature seasonality (15.2 %). (4) Built 19 ecological corridors, with a total corridor length of 430.2 km, including seven long-distance passages and 12 short-distance corridors. All corridors are far from the artificial surface, mostly near high-altitude areas. The 19 ecological corridors constructed using the MCR model will also provide considerable importance for the survival of Ephedra sinica on a longer time scale in the future.  相似文献   

19.
Hybrid speciation is thought to be facilitated by escape of early generation hybrids into new habitats, subsequent environmental selection and adaptation. Here, we ask whether two homoploid hybrid plant species (Helianthus anomalus, H. deserticola) diverged sufficiently from their ancestral parent species (H. annuus, H. petiolaris) during hybrid speciation so that they are more fit than the parent species in hybrid species habitats. Hybrid and parental species were reciprocally transplanted into hybrid and parental habitats. Helianthus anomalus was more fit than parental species in the H. anomalus actively moving desert dune habitat. The abilities to tolerate burial and excavation and to obtain nutrients appear to be important for success in the H. anomalus habitat. In contrast, H. deserticola failed to outperform the parental species in the H. deserticola stabilized desert dune habitat, and several possible explanations are discussed. The home site advantage of H. anomalus is consistent with environmental selection having been a mechanism for adaptive divergence and hybrid speciation and supports the use of H. anomalus as a valuable system for further assessment of environmental selection and adaptive traits.  相似文献   

20.
高惠  滕丽微  汪洋  王继飞  刘振生 《生态学报》2017,37(11):3926-3931
阿拉善马鹿(Cervus alashanicus)目前仅分布于贺兰山地区,对该物种进行生境适宜性的评价和分析是物种有效保护的前提和基础。2013—2014年通过样线调查及巡山资料查询,确定阿拉善马鹿出现位点86个,结合13种环境变量数据,利用最大熵(maximum entropy,MaxEnt)模型,并根据最大约登指数划定适宜与不适宜生境区,对贺兰山地区阿拉善马鹿的生境适宜性进行评价。ROC曲线(receiver operating characteristic curve)检测证明模型预测精度较高,研究结果表明:阿拉善马鹿主要分布于贺兰山东坡的中部和南部,以及西坡的中北部,适宜生境面积为667.87 km~2,占研究区域面积的18.2%;矿区、坡度和海拔是影响阿拉善马鹿分布的最主要环境变量,矿区对阿拉善马鹿的影响最大,建议管理部门加大对此人为干扰的管控力度,控制和减少现有矿区的规模,以促进该种群的发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号