首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Articular cartilage is an enduring tissue. For most individuals, articular cartilage facilitates a lifetime of pain-free ambulation, supporting millions of loading cycles from activities of daily living. Although early studies into osteoarthritis focused on the role of mechanical fatigue in articular cartilage degeneration, much is still unknown regarding its strength and endurance characteristics. The compressive strength of juvenile, bovine articular cartilage explants was determined to be loading rate-dependent, reaching a maximum strength of 29.5 ± 4.8 MPa at a strain rate of 0.10 %/sec. The fatigue and endurance properties of articular cartilage were characterized utilizing a material testing system, as well as a custom, validated instrument termed the two degrees-of-freedom endurance meter (endurometer). These instruments characterized fatigue in articular cartilage explants at loading levels ranging from 10 to 80 % strength (%S), up to 100,000 cycles. Cartilage explants displayed characteristics of fatigue – fatigue life increased as the loading magnitude decreased. All explants failed within 14,000 cycles at loading levels between 50 and 80 %S. At 10 and 20 %S, all explants endured 100,000 loading cycles. There was no significant difference in equilibrium compressive modulus between run-out explants and unloaded controls, although the pooled modulus increased in response to testing. Histological staining and biochemical assays revealed no material changes in collagen, sulfated glycosaminoglycan, or hydration content between unloaded controls and explants cyclically loaded to run-out. These results suggest articular cartilage may have a putative endurance limit of 20 %S (5.86 MPa), with implications for articular cartilage biomechanics and mechanobiology.  相似文献   

2.
The changes in cardiac and ventilatory responses were measured in 7 endurance athletes during physical exercise on a bicycle ergometer, taking place after a control night and after a night with partial sleep deprivation in the middle of the night. The results show that, despite the maximal work load was not modified with control, heart rate, ventilation and VE/VO2 ratio (ERO2) were greater at the submaximal (75% of the VO2 max) and maximal work load and oxygen consumption decreased at maximal work, after the night of partial sleep deprivation as compared to the control. These findings suggest that acute sleep loss may contribute to alter the endurance performance by impairment of aerobic pathways.  相似文献   

3.
Mechanical fatigue of bone cement leading to damage accumulation is implicated in the loosening of cemented hip components. Even though cracks have been identified in autopsy-retrieved mantles, damage accumulation by continuous growth and increase in number of microcracks has not yet been demonstrated experimentally. To determine just how damage accumulation occurs in the cement layer of a hip replacement, a physical model of the joint was used in an experimental study. The model regenerates the stress pattern found in the cement layers whilst at the same time allowing visualisation of microcrack initiation and growth. In this way the gradual process of damage accumulation can be determined. Six specimens were tested to 5 million cycles and a total of 1373 cracks were observed. It was found that, under the flexural loading allowed by the model, the majority of cracks come from pores in the bulk cement and not from the interfaces. Furthermore, the lateral and medial sides have statistically different damage accumulation behaviours, and pre-load cracks significantly accelerate the damage accumulation process. The experimental results confirm that damage accumulation commences early on in the loading history and that it is continuously increasing with load in the form of crack initiation and crack propagation. The results highlight the importance of replicating the loading and restraint conditions of clinical cement mantles when endeavouring to accurately model the damage accumulation process.  相似文献   

4.
Locust wings are able to sustain millions of cycles of mechanical loading during the lifetime of the insect. Previous studies have shown that cross veins play an important role in delaying crack propagation in the wings. Do cross veins thus also influence the fatigue behaviour of the wings? Since many important fatigue parameters are not experimentally accessible in a small biological sample, here we use the finite element (FE) method to address this question numerically. Our FE model combines a linear elastic material model, a direct cyclic approach and the Paris law and shows results which are in very good agreement with previously reported experimental data. The obtained results of our study show that cross veins indeed enhance the durability of the wings by temporarily stopping cracks. The cross veins further distribute the stress over a larger area and therefore minimize stress concentrations. In addition, our work indicates that locust hind wings have an endurance limit of about 40% of the ultimate tensile strength of the wing material, which is comparable to many engineering materials. The comparison of the results of the computational study with predictions of two most commonly used fatigue failure criteria further indicates that the Goodman criterion can be used to roughly predict the failure of the insect wing. The methodological framework presented in our study could provide a basis for future research on fatigue of insect cuticle and other biological composite structures.  相似文献   

5.
Thermal fatigue and wear both seriously affect the service life of some working parts. Environmental temperature will modify the surface conditions and influences the result of wear. In this research, to come close to working conditions, specimens were tested by a combination of thermal cycles and wear. Different cycles of thermal fatigue was carried out first on the gray iron specimens and subsequently wear test was performed to evaluate the effect of these thermal fatigue cycles. In this case, bionic laser processing was used to enhance the wear performance. The results indicated that bionic laser processing reduces the negative effects from thermal fatigue, such as grain fragmentation and oxidation. Because the initiation and growth of cracks as well as oxidation are suppressed in bionic processed areas. Bionic specimens exhibit high wear resistance compared with the common one. The process described can be considered as an effective method to improve the performance of gray iron in combined thermal fatigue and wear service conditions.  相似文献   

6.
A functional endurance test more specific to common occupational tasks is proposed for assessing back muscle capacity. The test involves static intermittent contractions (8-s work-rest cycles) using a predefined absolute load (90 Nm) across subjects. Since the test involved an absolute endurance task, it was hypothesized that performance would be influenced by both the strength and relative endurance of the subjects, thus demonstrating the construct validity of this new test. Fifteen males and 17 females were assessed on three different days to allow familiarization and to measure their Strength as well as their absolute and relative endurance. Absolute and relative endurance were defined as the time to reach exhaustion (Tendabs and Tendrel, respectively) during a fatigue protocol including both an absolute (90 Nm) and a relative (40% of individual strength) load (extension moment at the L5/S1 joint). Strength and Tendrel each explained an almost equivalent portion of Tendabs (total variance explained: 61.5%), thus confirming the construct validity of the functional endurance test. This new test should better identify the back muscle impairments (weakness, fatigability) often observed in chronic low-back-pain patients.  相似文献   

7.
The present study examined respiratory muscle endurance and the magnitude of the sense of effort during inspiratory threshold loading following a dose of caffeine (600 mg) previously observed to increase diaphragm strength. Experiments were performed on 12 normal subjects. Respiratory muscle endurance at a given level of load was assessed from the time of exhaustion and from the time course of the change in the power spectrum (centroid frequency) of the diaphragm electromyogram (EMG). The intensity of the sense of effort during loaded breathing was evaluated using a category (Borg) scale. Increasingly severe loads were associated with more rapid onset of fatigue. At a given load, caffeine prolonged the time to exhaustion and decreased the rate of fall of the centroid frequency of the diaphragm EMG. Caffeine also decreased the sense of effort during loaded breathing in 9 of 11 subjects. Changes in respiratory muscle endurance after caffeine administration were not explained by changes in the pressure-time index of the respiratory muscles or the pattern of thoracoabdominal movement. We conclude that caffeine enhances inspiratory muscle endurance, while concomitantly reducing the sense of effort associated with fatiguing inspiratory muscle contractions.  相似文献   

8.
The mechanisms underlying acute respiratory failure induced by respiratory loads are unclear. We hypothesized that, in contrast to a moderate inspiratory resistive load, a severe one would elicit central respiratory failure (decreased respiratory drive) before diaphragmatic injury and fatigue. We also wished to elucidate the factors that predict endurance time and peak tracheal pressure generation. Anesthetized rats breathed air against a severe load ( approximately 75% of the peak tracheal pressure generated during a 30-s occlusion) until pump failure (fall in tracheal pressure to half; mean 38 min). Hypercapnia and hypoxemia developed rapidly ( approximately 4 min), coincident with diaphragmatic fatigue (decreased ratio of transdiaphragmatic pressure to peak integrated phrenic activity) and the detection in blood of the fast isoform of skeletal troponin I (muscle injury). At approximately 23 min, respiratory frequency and then blood pressure fell, followed immediately by secondary diaphragmatic fatigue. Blood taken after termination of loading contained cardiac troponin T (myocardial injury). Contrary to our hypothesis, diaphragmatic fatigue and injury occurred early in loading before central failure, evident only as a change in the timing but not the drive component of the central respiratory pattern generator. Stepwise multiple regression analysis selected changes in mean arterial pressure and arterial Pco(2) during loading as the principal contributing factors in load endurance time, and changes in mean arterial pressure as the principal contributing factor in peak tracheal pressure generation. In conclusion, the temporal development of respiratory failure is not stereotyped but depends on load magnitude; moreover respiratory loads induce cardiorespiratory, not just respiratory, failure.  相似文献   

9.
Tensile fatigue tests of acrylic bone cement were conducted under strain control in a wet environment at 37 degrees C. A constant strain rate of 0.02s-1 was used, resulting in physiologic loading frequencies. Comparison of the tensile fatigue data with the results of previous tension-compression fatigue tests indicates that fatigue failure is governed primarily by the maximum cyclic tensile strain. The compressive portion of the loading cycle has little effect on the number of cycles to failure. A new empirically derived equation is introduced to describe the influence of mean strain and strain amplitude on fatigue endurance. The results emphasize the critical role tensile strains may play in cement failure and loosening of total joint replacements.  相似文献   

10.
An understanding of how fatigue cracks grow in bone is of importance as fatigue is thought to be the main cause of clinical stress fractures. This study presents new results on the fatigue-crack growth behavior of small surface cracks (approximately 75-1000 microm in size) in human cortical bone, and compares their growth rates with data from other published studies on the behavior of both surface cracks and many millimeter, through-thickness large cracks. Results are obtained with a cyclically loaded cantilever-beam geometry using optical microscopy to examine for crack growth after every 100-500 cycles. Based on the current and previous results, small fatigue cracks appear to become more resistant to fatigue-crack growth with crack extension, analogous to the way the fracture resistance of cortical bone increases with crack growth. Mechanistically, a theory attributing such behavior to the development of bridges in the wake of the crack with crack growth is presented. The existence of such bridges is directly confirmed using optical microscopy.  相似文献   

11.
The purposes of this study were 1) to evaluate gender differences in back extensor endurance capacity during isometric and isotonic muscular contractions, 2) to determine the relation between absolute load and endurance time, and 3) to compare men [n = 10, age 22.4 +/- 0.69 (SE) yr] and women (n = 10, age 21.7 +/- 1.07 yr) in terms of neuromuscular activation patterns and median frequency (MF) shifts in the electromyogram (EMG) power spectrum of the lumbar and hip extensor muscles during fatiguing submaximal isometric trunk extension exercise. Subjects performed isotonic and isometric trunk extension exercise to muscular failure at 50% of maximum voluntary contraction force. Women exhibited a longer endurance time than men during the isometric task (146.0 +/- 10.9 vs. 105.4 +/- 7.9 s), but there was no difference in endurance performance during the isotonic exercise (24.3 +/- 3.4 vs. 24.0 +/- 2.8 repetitions). Absolute load was significantly related to isometric endurance time in the pooled sample (R(2) = 0.34) but not when men and women were analyzed separately (R(2) = 0.05 and 0.04, respectively). EMG data showed no differences in neuromuscular activation patterns; however, gender differences in MF shifts were observed. Women demonstrated a similar fatigability in the biceps femoris and lumbar extensors, whereas in men, the fatigability was more pronounced in the lumbar musculature than in the biceps femoris. Additionally, the MF of the lumbar extensors demonstrated a greater association with endurance time in men than in women (R(2) = 0.45 vs. 0.19). These findings suggest that gender differences in muscle fatigue are influenced by muscle contraction type and frequency shifts in the EMG signal but not by alterations in the synergistic activation patterns.  相似文献   

12.
The purpose of this study was to assess the effect of resistance training on upper-body muscular strength and the expression of work capacity and muscular endurance. In addition, a training-induced change in the relationship between muscular strength and endurance was assessed by testing changes in the accuracy of using endurance repetitions to predict 1 repetition maximum (1RM) bench press before and after training. College-aged men (n = 85) and women (n = 62) completed a 12-week linear periodization resistance training program. Before and after training, the subjects were assessed for 1RM and repetitions to fatigue (RTFs) with a submaximal load. After pretraining 1RM determination, the subjects were randomly assigned to perform RTFs at 65% 1RM (n = 74) or 90% 1RM (n = 73). Pretraining and posttraining RTFs were conducted at the same respective % 1RM. Work capacity was determined from repetition weight × RTF. After training, there was a significant increase in 1RM in both men (~14%) and women (~23%). Posttraining RTF was not different from pretraining RTF at 65 %1RM (18.2 ± 5.1 and 19.0 ± 6.0, respectively) but was significantly reduced in the 90% 1RM group (6.1 ± 3.6 vs. 4.5 ± 2.7, respectively). Likewise, there was a differential effect of training on the expression of work capacity, which increased in the 65 % 1RM group (123 ± 155 kg-reps) but decreased in the 90% 1RM group (-62 ± 208 kg-reps); the effect was independent of gender within each testing group. In conclusion, the changes in muscular strength associated with resistance training produced an increase in work capacity when tested with a 65 % 1RM load without a change in endurance. In contrast, both work capacity and endurance decreased when tested with 90% 1RM. Thus, the impact of strength training on work capacity and muscle endurance is specific to the load at which endurance testing is performed.  相似文献   

13.
Cortical bone specimens were damaged using repeated blocks of tensile creep loading until a near-terminal amount of creep damage was generated (corresponding to a reduction in elastic modulus of 15%). One group of cortical bone specimens was submitted to the near-terminal damage protocol and subsequently underwent fatigue loading in tension with a maximum strain of 2000 με (Damage Fatigue, n=5). A second group was submitted to cyclic fatigue loading but was not pre-damaged (Control Fatigue, n=5). All but one specimen (a damaged specimen) reached run-out (10 million cycles, 7.7 days). No significant differences in microscopic cracks or other tissue damage were observed between the two groups or between either group and additional, completely unloaded specimens. Our results suggest that damage in cortical bone allograft that is not obvious or associated with a stress riser may not substantially affect its fatigue life under physiologic loading.  相似文献   

14.
The goal of this study was to quantify the micromechanics of the cement–bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement–bone specimens were subjected to a tensile fatigue load, while local displacements and crack growth on the specimen's surface were monitored. FEA models were created from these specimens based upon micro-computed tomography data. To accurately model interfacial gaps at the interface between the bone and cement, a custom-written erosion algorithm was applied to the bone model. A fatigue load was simulated in the FEA models while monitoring the local displacements and crack propagation. The results showed the FEA models were able to capture the general experimental creep damage behavior and creep stages of the interface. Consistent with the experiments, the majority of the deformation took place at the contact interface. Additionally, the FEA models predicted fatigue crack patterns similar to experimental findings. Experimental surface cracks correlated moderately with FEA surface cracks (r2=0.43), but did not correlate with the simulated crack volume fraction (r2=0.06). Although there was no relationship between experimental surface cracks and experimental creep damage displacement (r2=0.07), there was a strong relationship between the FEA crack volume fraction and the FEA creep damage displacement (r2=0.76). This study shows the additional value of FEA of the cement–bone interface relative to experimental studies and can therefore be used to optimize its mechanical properties.  相似文献   

15.
Strength training with low load under conditions of vascular occlusion has been proposed as an alternative to heavy-resistance exercise in the rehabilitation setting, when large forces acting upon the musculoskeletal system are unwanted. Little is known, however, about the relative intensity at which occlusion of blood flow significantly reduces dynamic muscular endurance and, hence, when it may increase the training effect. The purpose of this study was to investigate endurance during dynamic knee extension at different loads with and without cuff occlusion. Sixteen subjects (20-45 years of age) with strength-training experience were recruited. At 4 test sessions, the subjects performed unilateral knee extensions to failure with and without a pressure cuff around the thigh at 20, 30, 40, and 50% of their 1 repetition maximum (1RM). The pressure cuff was inflated to 200 mm Hg during exercise with occlusion. Significant differences in the number of repetitions performed were found between occluded and nonoccluded conditions for loads of 20, 30, and 40% of 1RM (p < 0.01) but not for the 50% load (p = 0.465). Thus, the application of a pressure cuff around the thigh appears to reduce dynamic knee extension endurance more at a low load than at a moderate load. These results may have implications regarding when it could be useful to apply a tourniquet in order to increase the rate of fatigue and perhaps also the resulting training effect. However, the short- and long-term safety of training under ischemic conditions needs to be addressed in both healthy and less healthy populations. Furthermore, the high acute pain ratings and the delayed-onset muscle soreness associated with this type of training may limit its potential use to highly motivated individuals.  相似文献   

16.
Bellucci G  Seedhom BB 《Biorheology》2002,39(1-2):193-199
Although fatigue has been implicated in cartilage failure there are only two studies by the same author, and in both of which cartilage was tested in the direction parallel to the collagen orientation in the surface layer. In the present work articular cartilage was tested also along the perpendicular direction, being the direction in which cartilage possesses lower tensile strength.Specimens were tested under cyclic tensile load. Number of cycles at failure was recorded as well as elongation of the specimen. To date 72 specimens have been tested all from one knee joint.The number of cycles to failure ranged between two and 1.5 million. The surface and deep layers have better fatigue properties whether tested in the parallel or the perpendicular direction, while the middle layer was far weaker. Better fatigue behaviour was observed with specimens tested in parallel than in perpendicular direction to the fibres.  相似文献   

17.
A flexural model of four-point bending fatigue that has been experimentally validated for human cortical bone under load control was used to determine how load and displacement control testing affects the fatigue behavior of human cortical bone in three-point and symmetric four-point bending. Under load control, it was predicted that three-point bending produced no significant differences in fatigue life when compared to four-point bending. However, three-point bending produced less stiffness loss with increasing cycles than four-point bending. In four-point bending, displacement control was predicted to produce about one and a half orders of magnitude greater fatigue life when compared to load control. This prediction agrees with experimental observations of equine cannon bone tested in load and displacement control (Gibson et al., 1998). Displacement controlled three-point bending was found to produce approximately a 25% greater fatigue life when compared to load control. The prediction of longer fatigue life under displacement control may have clinical relevance for the repair of damaged bone. The model can also be adapted to other geometric configurations, including modeling of whole long bones, and with appropriate fatigue data, other cortical bone types.  相似文献   

18.
Muscular strength and fatigability of strength-trained (ST) and untrained (UT) women were compared during a 6-min bout of maximal rhythmic exercise involving the elbow flexor muscles given at a rate of 30 contractions.min-1. Fifteen ST and 15 UT subjects, aged 18-34 years and pair-matched for body size, were tested for differences in initial strength, final strength, absolute endurance, relative endurance, and rate of fatigue. Results revealed a significant difference in initial strength, final strength, and absolute endurance in favor of ST subjects. No significant difference was found for relative endurance, and rates of fatigue were similar for both groups. It is concluded that muscular strength and endurance are enhanced in women engaged in a training program designed primarily to increase muscular strength and hypertrophy, but fatigability is not affected.  相似文献   

19.
The cement–bone interface provides fixation for the cement mantle within the bone. The cement–bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect the mechanical response of the cement–bone interface at various load levels in terms of plastic displacement and crack formation. Two FEA models were created, which were based on micro-computed tomography data of two physical cement–bone interface specimens. These models were subjected to tensile fatigue loads with four different magnitudes. Three deformation modes of the cement were considered: ‘only creep’, ‘only damage’ or ‘creep and damage’. The interfacial plastic deformation, the crack reduction as a result of creep and the interfacial stresses in the bone were monitored. The results demonstrate that, although some models failed early, the majority of plastic displacement was caused by fatigue damage, rather than cement creep. However, cement creep does decrease the crack formation in the cement up to 20%. Finally, while cement creep hardly influences the stress levels in the bone, fatigue damage of the cement considerably increases the stress levels in the bone. We conclude that at low load levels the plastic displacement is mainly caused by creep. At moderate to high load levels, however, the plastic displacement is dominated by fatigue damage and is hardly affected by creep, although creep reduced the number of cracks in moderate to high load region.  相似文献   

20.
To determine which exercises do not overload the graft-fixation complex during intensive rehabilitation from reconstructive surgery of the anterior cruciate ligament (ACL), it would be useful to measure ACL graft loads during rehabilitative activities in vivo in humans. A previous paper by Ventura et al. (1998) reported on the design of an implantable transducer integrated into a femoral fixation device and demonstrated that the transducer could be calibrated to measure graft loads to better than 10 percent full-scale error in cadaveric knees. By measuring both the static and fatigue strengths of the transducer, the purpose of the present study was to determine whether the transducer could be safely implanted in humans without risk of structural failure. Eight devices were loaded to failure statically. Additionally, seven devices were tested using the up-and-down method to estimate the median fatigue strength at a life of 225,000 cycles. The average ultimate strength was 1856 +/- 74 N and the median fatigue strength was 441 N at a life of 225,000 cycles. The maximum graft load during normal daily activities is estimated to be 500 N and the 225,000 cycle life corresponds to that of the average healthy individual during a 12-week period. Considering that patients who have had an ACL reconstruction are less ambulatory than normal immediately following surgery and that biologic incorporation of the graft should be well developed by 12 weeks thus decreasing the load transmitted to the fixation device, the FDT can be safely implanted in humans without undue risk of structural failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号