首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induction of cell killing and mutation to 6-thioguanine resistance was examined in a radiation-sensitive mutant strain LX830 of mouse leukemia cells following gamma irradiation at dose rates of 30 Gy/h (acute), 20 cGy/h (low dose rate), and 6.2 mGy/h (very low dose rate). LX830 cells were hypersensitive to killing by acute gamma rays. A slight but significant increase was observed in cell survival with decreasing dose rate down to 6.2 mGy/h, where the survival leveled off above certain total doses. The cells were also hypersensitive to mutation induction compared to the wild type. The mutation frequency increased linearly with increasing dose for all dose rates. No significant difference was observed in the frequency of induced mutations versus total dose at the three different dose rates so that the mutation frequency in LX830 cells at 6.2 mGy/h was not significantly different from that for moderate or acute irradiation.  相似文献   

2.
The dependence of the incidence of radiation-induced cancer on the dose rate of the radiation exposure is a question of considerable importance to the estimation of risk of cancer induction by low-dose-rate radiation. Currently a dose and dose-rate effectiveness factor (DDREF) is used to convert high-dose-rate risk estimates to low dose rates. In this study, the end point of neoplastic transformation in vitro has been used to explore this question. It has been shown previously that for low doses of low-LET radiation delivered at high dose rates, there is a suppression of neoplastic transformation frequency at doses less than around 100 mGy. In the present study, dose-response curves up to a total dose of 1000 mGy have been generated for photons from (125)I decay (approximately 30 keV) delivered at doses rates of 0.19, 0.47, 0.91 and 1.9 mGy/min. The results indicate that at dose rates of 1.9 and 0.91 mGy/min the slope of the induction curve is about 1.5 times less than that measured at high dose rate in previous studies with a similar quality of radiation (28 kVp mammographic energy X rays). In the dose region of 0 to 100 mGy, the data were equally well fitted by a threshold or linear no-threshold model. At dose rates of 0.19 and 0.47 mGy/min there was no induction of transformation even at doses up to 1000 mGy, and there was evidence for a possible suppressive effect. These results show that for this in vitro end point the DDREF is very dependent on dose rate and at very low doses and dose rates approaches infinity. The relative risks for the in vitro data compare well with those from epidemiological studies of breast cancer induction by low- and high-dose-rate radiation.  相似文献   

3.
Effects of ionizing radiation registered in cells after low dose irradiation are still poorly understood. A pulsed mode of irradiation is even more problematic in terms of predicting the radiation-induced response in cells. Thus, the aim of this paper was to study and analyze the effects of dose and frequency of pulsed X-rays on the frequency of radiation-induced DNA double-strand breaks and their repair kinetics in human peripheral blood lymphocytes in vitro. Analysis of radiation-induced gammaH2AX and 53BP1 repair foci was used to assess the DNA damage in these cells. The dose-response curve of radiation-induced foci of both proteins has shown deviations from linearity to a higher effect in the 12-32 mGy dose range and a lower effect at 72 mGy. The dose-response curve was linear at doses higher than 100 mGy. The number of radiation-induced gammaH2AX and 53BP1 foci depended on the frequency of X-ray pulses: the highest effect was registered at 13 pulses per second. Moreover, slower repair kinetics was observed for those foci induced by very low doses with a nonlinear dose-response relationship.  相似文献   

4.
The compost worm Eisenia fetida is routinely used in ecotoxicological studies. A standard assay to assess genetic damage in this species would be extremely valuable. Since mitochondrial DNA (mtDNA) is known to exhibit an increased mutation rate following exposure to ionising radiation we assessed the validity of a mtDNA-based assay for measuring increases in mutation rate in laboratory-irradiated compost worms. To this end the mutation frequency in the mtDNA of the compost worm E. fetida was quantified following in vivo gamma-irradiation of adult worms in three dose groups. Five adult worms exposed to 1.4 mGy/h for 55 days (total dose 1.85 Gy), five adult worms exposed to 8.5 mGy/h for 55 days (total dose 11.22 Gy) and five adult control worms were used to assess the effect of irradiation on mtDNA mutation induction. DNA samples extracted from irradiated adult worms were used in high-fidelity PCR of a 486 bp region of mtDNA spanning the ATPase 8 gene, chosen for its high spontaneous mutation rate. PCR products were cloned and sequenced to identify mutations, with 89-102 clones successfully sequenced per individual. A significant elevation in mtDNA mutation frequency (p=0.032) was seen in worms exposed at the higher dose rate (8.5 mGy/h, total dose 11.22 Gy; mutation frequency 27.98+/-4.85 x 10(-5)mutations/bp) in comparison to controls (mutation frequency 12.68+/-3.06 x 10(-5)mutations/bp), but no elevation in mutation frequency (p=0.764) was seen for the lower dose rate (1.4 mGy/h, total dose 1.85 Gy; mutation frequency 13.74+/-1.29 x 10(-5)mutations/bp) compared with controls. This indicates that although the technique has the potential to detect an elevation in mutation frequency, it does not have sufficient sensitivity at the doses likely to be encountered in environmental monitoring scenarios.  相似文献   

5.
Induction of cell killing and mutation to 6-thioguanine resistance was studied in growing mouse leukemia cells in culture following gamma rays at dose rates of 30 Gy/h, 20 cGy/h, and 6.3 mGy/h, i.e., acute, low dose rate, and very low dose rate irradiation. A marked increase was observed in the cell survival with decreasing dose rate; no reduction in the surviving fraction was detected after irradiation at 6.3 mGy/h until a total dose of 4 Gy. Similarly, the induced mutation frequency decreased after low dose rate irradiation compared to acute irradiation. However, the frequency after irradiation at 6.3 mGy/h was unexpectedly high and remained at a level which was intermediate between acute and low dose rate irradiation. No appreciable changes were observed in the responses to acute gamma rays (in terms of cell killing and mutation induction) in the cells which had experienced very low dose rate irradiation.  相似文献   

6.
The purpose of this study was to determine whether adaptation against neoplastic transformation could be induced by exposure to very low-dose-rate low-LET radiation. HeLa x skin fibroblast human hybrid cells were irradiated with approximately 30 kVp photons from an array of (125)I seeds. The initial dose rate was 4 mGy/day. Cell samples were taken at four intervals at various times over a period of 88 days and assayed for neoplastic transformation and the presence of reactive oxygen species (ROS). The dose rate at the end of this treatment period was 1.4 mGy/day. Transformation frequencies and ROS levels were compared to those of parallel unirradiated controls. At the end of 3 months and an accumulated dose of 216 mGy, cells treated with very low-dose-rate radiation were exposed to a high-dose-rate 3-Gy challenge dose of (137)Cs gamma rays, and the effects compared with the effect of 3 Gy on a parallel culture of previously unirradiated cells. Cells exposed to very low-dose-rate radiation exhibited a trend toward a reduction in neoplastic transformation frequency compared to the unirradiated controls. This reduction seemed to diminish with time, indicating that the dose rate, rather than accumulated dose, may be the more important factor in eliciting an adaptive response. This pattern was in general paralleled by a reduction of ROS present in the irradiated cultures compared to controls. The very low-dose-rate-treated cells were less sensitive to the high challenge dose than unirradiated controls, suggesting the induction of an adaptive response. Since there was a suggestion of a dose-rate threshold for induction suppression, a second experiment was run with a fresh batch of cells at an initial dose rate of 1 mGy/day. These cells were allowed to accumulate 40 mGy over 46 days (average dose rate=0.87 mGy/day), and there was no evidence for suppression of transformation frequency compared to parallel unirradiated controls. It is concluded that doses of less than 100 mGy delivered at very low dose rates in the range 1 to 4 mGy/day can induce an adaptive response against neoplastic transformation in vitro. When the dose rate drops below approximately 1 mGy/day, this suppression is apparently lost, suggesting a possible dose-rate-dependent threshold for this process.  相似文献   

7.
Trp53 heterozygous mice are radiation-sensitive and cancer-prone. Groups of 7-8-week-old female Trp53 heterozygous mice were exposed to 4 Gy of 60Co gamma radiation at high (0.5 Gy/min) or low (0.5 mGy/min) dose rate. Other groups received 10 or 100 mGy at low dose rate 24 h prior to the 4-Gy dose. Tumor frequency and latency were measured over the animals' life span. Exposure to 10 mGy prior to 4 Gy resulted in a small (approximately 5%) but significant life-span regain and increased latency (approximately 9%) for all malignant tumors taken together, but 100 mGy further reduced life span slightly (approximately 7%). Latency responses were tumor type-specific. The prior 10-mGy exposure resulted in a small (approximately 7%) regain in latency for lymphomas but no change in latency for spinal osteosarcomas. Increasing the adapting dose to 100 mGy eliminated the increase in lymphoma latency and further reduced life span (approximately 8%). A 10-mGy dose prior to 4 Gy at low dose rate had no effects. Adapting exposures had no significant effect on tumor frequency. We conclude that a single low dose induced a small protective response in vivo in Trp53+/- mice, reducing the carcinogenic effects of a subsequent large, high-dose-rate exposure by increasing tumor latency. The upper dose threshold at which low-dose protective effects gave way to detrimental effects was tumor type-specific, as found previously for spontaneous tumors in these same cancer-prone mice (Radiat. Res. 159, 320-327, 2003). However, the upper dose thresholds appear to be lower (below 100 mGy) for radiation-induced tumors than for the same tumors appearing spontaneously.  相似文献   

8.
The dose response for adaption to radiation at low doses was compared in normal human fibroblasts (AG1522) exposed to either (60)Co gamma rays or (3)H beta particles. Cells were grown in culture to confluence and exposed at either 37 degrees C or 0 degrees C to (3)H beta-particle or (60)Co gamma-ray adapting doses ranging from 0.1 mGy to 500 mGy. These cells, and unexposed control cells, were allowed to adapt during a fixed 3-h, 37 degrees C incubation prior to a 4-Gy challenge dose of (60)Co gamma rays. Adaption was assessed by measuring micronucleus frequency in cytokinesis-blocked, binucleate cells. No adaption was detected in cells exposed to (60)Co gamma radiation at 37 degrees C after a dose of 0.1 mGy given at a low dose rate or to 500 mGy given at a high dose rate. However, low-dose-rate exposure (1-3 mGy/min) to any dose between 1 and 500 mGy from either radiation, delivered at either temperature, caused cells to adapt and reduced the micronucleus frequency that resulted from the subsequent 4-Gy exposure. Within this dose range, the magnitude of the reduction was the same, regardless of the dose or radiation type. These results demonstrate that doses as low as (on average) about one track per cell (1 mGy) produce the same maximum adaptive response as do doses that deposit many tracks per cell, and that the two radiations were not different in this regard. Exposure at a temperature where metabolic processes, including DNA repair, were inactive (0 degrees C) did not alter the result, indicating that the adaptive response is not sensitive to changes in the accumulation of DNA damage within this range. The results also show that the RBE for low doses of tritium beta-particle radiation is 1, using adaption as the end point.  相似文献   

9.
The Comet Assay and micronucleus assays have been used to evaluate the condition of the nuclear DNA in erythrocytes of peripheral blood of roach (Rutilus rutilus L.) from water-storage of low-level radioactive waste. The Rutilus rutilus L. from the Shershny reservoir, Chelyabinsk, was used as a control population. Radionuclide maintenance in water, sediments and roach in those reservoirs and Shershny reservoir was defined. The dose rate for Rutilus rutilus L. was calculated using program complex ERICA Assessment Tool 1.0 May 2009. Our investigation has shown that a chronic radiation of population (dose rate - 5.2 mGy/day and 19.5 mGy/day) leads to a significantly higher level of the DNA damage in erythrocytes of peripheral blood and increases the speed of nuclear DNA reparation after irradiation of erythrocytes in vitro. We suppose that it may be a result of the increased quantity of active form of oxygen in cells of the fish in water-storage of low-level radioactive waste.  相似文献   

10.
The topoisomerase II inhibitor etoposide is used routinely to treat a variety of cancers in patients of all ages. As a result of its extensive use in the clinic and its association with secondary malignancies it has become a compound of great interest with regard to its genotoxic activity in vivo. This paper describes a series of assays that were employed to determine the in vivo genotoxicity of etoposide in a murine model system. The alkaline comet assay detected DNA damage in the bone marrow mononuclear compartment over the dose range of 10--100mg/kg and was associated with a large and dose dependent rise in the proportion of cells with severely damaged DNA. In contrast, the bone marrow micronucleus assay was found to be sensitive to genotoxic damage between the doses of 0.1--1mg/kg without any corresponding increases in cytotoxicity. An increase in the mutant frequency was undetectable at the Hprt locus at administered doses of 1 and 10mg/kg of etoposide, however, an increase in the mutant frequency was seen at the Aprt locus at these doses. We conclude that the BMMN assay is a good short-term predictor of the clastogenicity of etoposide at doses that do not result in cytotoxic activity, giving an indication of potential mutagenic effects. Moreover, the detection of mutants at the Aprt locus gives an indication of the potential of etoposide to cause chromosomal mutations that may lead to secondary malignancy.  相似文献   

11.
Seven years after the publication of the first diagnostic reference levels (DRL) order, the analysis of the data allows the French Institute for radiation protection and nuclear safety (IRSN) to assess and evaluate the increase of the nuclear medicine departments involvement and of the level administered activities to the patients during the most common examinations performed in France. IRSN analyses show a good agreement between the distribution of transmitted examinations and the frequency of examinations performed in France, taking into account 95% of the number of examinations and 95% of the dose delivered to patients by nuclear medicine. These analyses highlight the necessary consistency between DRL regulation, the French society of nuclear medicine (SFMN) recommendations and national practice. The IRSN recommendations established from data analyses have leaded the authorities to publish a new DRL order in January 2012. This first update of the regulation takes into account actual clinical practice in nuclear medicine and introduces fundamental points as pediatric DRL. In the future, periodical updates will be implemented in order to take into account procedures and devices evolutions.  相似文献   

12.
13.
J. D. Dodge 《Protoplasma》1965,59(3-4):485-493
Summary Irradiation ofProrocentrum micans with ultra violet light gave rise to the normal exponential survival-dose relationship. The number of cells able to engage in nuclear division also decreased with increase of dose. Some chromosome breaks and exchanges giving rise to anaphase bridges were observed and a morphological mutant (cell form) was discovered.  相似文献   

14.
PurposeTo compare abdominal imaging dose from 3D imaging in radiology (standard/low-dose/dual-energy CT) and radiotherapy (planning CT, kV cone-beam CT (CBCT)).MethodsDose was measured by thermoluminescent dosimeters (TLD’s) placed at 86 positions in an anthropomorphic phantom. Point, organ and effective dose were assessed, and secondary cancer risk from imaging was estimated.ResultsOverall dose and mean organ dose comparisons yield significantly lower dose for the optimized radiology protocols (dual-source and care kV), with an average dose of 0.34±0.01 mGy and 0.54±0.01 mGy (average ± standard deviation), respectively. Standard abdominal CT and planning CT involve considerably higher dose (13.58 ± 0.18 mGy and 18.78±0.27 mGy, respectively). The CBCT dose show a dose fall-off near the field edges. On average, dose is reduced as compared with the planning or standard CT (3.79 ± 0.21 mGy for 220° rotation and 7.76 ± 0.37 mGy for 360°), unless the high-quality setting is chosen (20.30 ± 0.96 mGy). The mean organ doses show a similar behavior, which translates to the estimated secondary cancer risk. The modelled risk is in the range between 0.4 cases per million patient years (PY) for the radiological scans dual-energy and care kV, and 300 cases per million PY for the high-quality CBCT setting.ConclusionsModern radiotherapy imaging techniques (while much lower in dose than radiotherapy), involve considerably more dose to the patient than modern radiology techniques. Given the frequency of radiotherapy imaging, a further reduction in radiotherapy imaging dose appears to be both desirable and technically feasible.  相似文献   

15.
Diagnostic Reference Levels provide a method of ensuring that patient doses in medical procedures are kept at acceptable levels. Their application in dentistry can provide an indication of current dose levels and can assist in potentially significant dose reduction in Ireland given the number of patients screened annually.This study involved retrospective analyses of entrance surface dose and dose-width-product measurements obtained in Irish Dental Practices for both Intra-Oral and Panoramic units respectively, followed by comparisons with Monte-Carlo generated computer models of these procedures. Analysis was performed on data from 33 Intra-Oral units for an Adult Mandibular Molar entrance surface dose, 198 readings for a proposed mGy/mAs reference level and 50 Panoramic machines for a dose-width product investigation.The third quartile value of the entrance surface dose for a standard Adult Mandibular Molar Intra-Oral radiograph is (2.40 ± 0.92)mGy, compared to a computer-modelled value of 2.60 mGy. The third quartile mGy/mAs value for Intra-Oral procedures is (1.03 ± 0.38)mGy/mAs, compared to a computer-modelled value of 0.75 mGy/mAs. The third quartile dose width product for an Adult Panoramic radiograph is (59.89 ± 20.97)mGymm, compared to a computer-modeled value of 62.40 mGymm.It is proposed to introduce Diagnostic Reference Levels of 2.4 mGy for an Adult Mandibular Molar Intra-Oral radiograph and 60 mGymm for an Adult Panoramic radiograph. The use of a new reference quantity in Intra-Oral radiology is also suggested. This has a value of 1 mGy/mAs and may be introduced alongside established procedures. These levels can be taken as guides to acceptable doses, but it should be noted that further reductions are practical under ALARA principles.  相似文献   

16.
Activity of nuclear DNA-polymerase in the liver, lung and spleen tissues of mice subjected to long-term chronic gamma-irradiation (1.3 mGy/h) has been investigated. Chronic gamma-irradiation with a cumulative dose of 1.7 Gy during 55 days raises DNA polymerase activity in the irradiated tissue nuclei. Analysis of DNA-polymerase activity in the liver nuclei have demonstrated that this increase is connected with activation of DNA-polymerase beta.  相似文献   

17.
This paper considers the dose-effect relationship for unstable chromosome aberration yields in human lymphocytes in very low-dose range. Data are presented for (60)Co γ-ray doses of 0, 10, 20, 40 and 1000 mGy. More than 5,000 metaphases were scored for each data point at the very low doses, and each cell was double-checked using a semi-automated metaphase finding/relocation system. Aberration yields of dicentrics plus centric rings followed an excellent linear dose response down to zero dose; the yields were significantly above the control frequency from 20 mGy.  相似文献   

18.
Somatic intrachromosomal recombination can result in inversions and deletions in DNA, which are important mutations in cancer. The pKZ1 chromosomal inversion assay is a sensitive assay for studying the effects of DNA damaging agents using chromosomal inversion as a mutation end-point. We have previously demonstrated that the chromosomal inversion response in pKZ1 spleen after single low doses of X-radiation exposure does not follow the linear no-threshold dose–response model. Here, we optimised a chromosomal inversion screening method to study the effect of low dose X-radiation exposure in pKZ1 prostatic tissue. In the present study, a significant induction in inversions was observed after ultra-low doses of 0.005–0.01 mGy or after a high dose of 1000 mGy, whereas a reduction in inversions to below the sham-treated frequency was observed between 1 and 10 mGy exposure. This is the first report of a reduction to below endogenous frequency for any mutation end-point in prostate. In addition, the doses of radiation studied were at least three orders of magnitude lower than have been reported in other mutation assays in prostate in vivo or in vitro. In sham-treated pKZ1 controls and in pKZ1 mice treated with low doses of 1–10 mGy the number of inversions/gland cross-section rarely exceeded three. Up to 4 and 7 inversions were observed in individual prostatic gland cross-sections after doses ≤0.02 mGy and after 1000 mGy, respectively. The number of inversions identified in individual cross-sections of prostatic glands of untreated mice and all treated mice other than the 1000 mGy treatment group followed a Poisson distribution. The dose–response curves and fold changes observed after all radiation doses studied were similar in spleen and prostate. These results suggest that the pKZ1 assay is measuring a fundamental response to DNA damage after low dose X-radiation exposure which is independent of tissue type.  相似文献   

19.
K Ijiri 《Radiation research》1989,118(1):180-191
Apoptosis is a pattern of cell death involving nuclear pycnosis, cytoplasmic condensation, and karyorrhexis. Apoptosis induced by continuous irradiation with gamma rays (externally given by a 137Cs source) or with beta rays (from tritiated water injected ip) was quantified in the crypts of two portions of mouse bowel, the small intestine and descending colon. The time-course change in the incidence of apoptosis after each type of radiation could be explained on the basis of the innate circadian rhythm of the cells susceptible to apoptotic death and of the excretion of tritiated water (HTO) from the body. For 6-h continuous gamma irradiation at various dose rates (0.6-480 mGy/h) and for 6 h after injection of HTO of various radioactivities (0.15-150 GBq per kg body wt), the relationships between dose and incidence of apoptosis were obtained. Survival curves were then constructed from the curves for dose vs incidence of apoptosis. For the calculation of the absorbed dose from HTO, the water content both of the mouse body and of the cells was assumed to be 70%. One megabecquerel of HTO per mouse (i.e., 40 MBq/kg body wt) gave a dose rate of 0.131 mGy/h. The mean lethal doses (D0) were calculated for gamma rays and HTO, and relative biological effectiveness values of HTO relative to gamma rays were obtained. The D0 values for continuous irradiation with gamma rays were 210 mGy for small intestine and 380 mGy for descending colon, and the respective values for HTO were 130 and 280 mGy, indicating the high radiosensitivity of target cells for apoptotic death. The relative biological effectiveness of HTO relative to 137Cs gamma rays for cell killing in both the small intestine and the descending colon in the mouse was 1.4-2.1.  相似文献   

20.
PurposeThe diagnostic reference level (DRL) has been established to optimize the diagnostic methods and reduce radiation dose during radiographic examinations. The aim of this study was to present a completely new solution based on Cloud-Fog software architecture for automatic establishment of the DRL values during dental cone-beam computed tomography (CBCT) according to digital imaging and communications in medicine (DICOM) structured reports.Methods and MaterialsA Cloud-Fog software architecture was used for automatic data handling. This architecture used the DICOM structured reports as a source for extracting the required information by fog devices in the imaging center. These devices transferred the derived information to the cloud server. The cloud server calculated the value of indication-based DRL in dental CBCT imaging based upon the parameters and adequate quantities of the absorbed dose. The feedback of DRL value was continuously announced to the imaging centers in 6 phases. In each phase, the level of the dose was optimized in imaging centers.ResultsThe DRL value was established for 5-specific indications, including third molar teeth (511 mGy.cm2), implant (719 mGy.cm2), form and position anomalies of the tooth (408 mGy.cm2), dentoalveolar pathologies (612 mGy.cm2), and endodontics (632 mGy.cm2). The determination of the DRL value in each phase revealed a downward trend until stabilization.ConclusionThe new solution presented in this study makes it possible to calculate and update the DRL value nationally and automatically among all centers. Also, the results showed that this approach is successful in establishing stabilized DRL values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号