首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the purpose of improving accuracy of noninvasive flow measurements in small (1–2 mm diameter) blood vessels, an existing 20 MHz pulsed ultrasound Doppler velocimeter (PUDVM) has been augmented to allow fast Fourier transformation (FFT) of its Doppler shift signal. The modified instrument was used to collect velocity spectra for a benchtop test section delivering precise Poiseuille flows at velocities in the range of physiological interest. The velocity spectra demonstrated a substantial degree of broadening, much of which was attributable to the geometry of the finite sample volume size. Several spectral indices were studied as a function of flow field variables. Results showed that the intensity-weighted mean Doppler shift frequency, when converted to its corresponding velocity vM, agreed very closely with the theoretically predicted local fluid velocity. Measurement linearity and repeatability were evaluated for a number of system variables, indicating that FFT performance was essentially unaffected by several parameters capable of causing major degradation of (phasic) Doppler shift signals produced by conventional zero-crossing-counter circuitry. As presently configured, the augmented PUDVM instrument is fully capable of detailed flow field mapping in small subcutaneous vessels such as human digital arteries.  相似文献   

2.
Ultrasonic waves of 1-15 MHz frequencies easily propagate through soft biological tissues, thus providing qualitative and quantitative information on mechanical and flow properties of blood and red blood cell (RBC) suspensions. Two types of techniques allow to investigate blood behaviors: echographic devices via amplitude detection and Doppler effect based devices via frequency detection of the ultrasonic signal. When ever B mode serves to construct images of tissue slabs from the ultrasonic backscattering coefficient and can give qualitative information on the mechanical properties of blood, A-mode allows to quantify the ultrasonic backscattering coefficient. Ultrasonic Doppler modes also provide both qualitative and quantitative information on blood flow velocity: continuous and pulsed Doppler modes provide curves of blood flow versus time when color Doppler and power Doppler imaging visualize blood flowing in human vessels. Association of echographic and Doppler modes to investigate simultaneously structure and velocity of blood is commercially available. Some examples of results given by such ultrasonic techniques that contribute to characterize, both in vitro and in vivo, structure and flow properties of blood or red blood cell (RBC) suspensions are presented.  相似文献   

3.
Recent applications of 20 MHz pulsed ultrasound Doppler velocimetry (PUDVM) in microsurgical research have necessarily employed piezoelectric crystals whose diameter is not negligible compared to the lumen size (1-2 mm) of many vessels of interest. A three-dimensional numerical model was developed to explore relationships between actual and detected flow field parameters, for (steady) Poiseuille flow, when appreciable velocity gradients exist within the PUDVM sample volume. Validation studies showed that highly accurate velocity profiles could be obtained in the limiting case of a very small sample volume (0.1 mm radius), but that for currently employed crystals (approximately equal to 0.5 mm radius) there was appreciable underestimation of the centersteam velocity, and appreciable overestimation of the flow stream diameter. Errors in perceived velocity and flow rate were found to be relatively insensitive to perturbations in the sample volume thickness, in the size of the sampling range increment, or in the angle of insonation beam divergence. By contrast, these apparent flow parameters were found to be very sensitive to perturbations of sample volume diameter or of the Doppler angle. Small variations in the degree of partial sample volume overlap of the flowstream periphery were shown to be capable of causing large fluctuations in apparent flow stream diameter.  相似文献   

4.
5.
For the investigation of flow through prosthetic arteries a pulsed Doppler ultrasound system has been characterized. Preliminary in vitro experiments using this system are described; they verify its suitability for making velocity profile and flow disturbance measurements. The output from a frequency tracker is compared with spectral analysis of Doppler signals for both laminar and turbulent flow regimes and the root mean square fluctuations on the tracker output signal are used to identify transition from laminar to turbulent flow. In addition, the turbulent itensity of poststenotic flow is quantified at several axial locations and for different rates of flow. Finally, we present velocity profile measurements which were obtained using a deconvolution technique to account for the finite size of the sample volume.  相似文献   

6.
This paper presents direct measurements of acoustic pressure wave propagation in cat brains irradiated with pulsed 2.45-GHz microwaves. Short rectangular microwave pulses (2 microseconds, 15 kW peak power) were applied singly through a direct-contact applicator located at the occipital pole of a cat's head. Acoustic pressure waves were detected by using a small hydrophone transducer, which was inserted stereotaxically into the brain of an anesthetized animal through a matrix of holes drilled on the skull. The measurements clearly indicate that pulsed microwaves induce acoustic pressure waves which propagate with an acoustic wave velocity of 1523 m/s.  相似文献   

7.
Spectrum analysis of the Doppler signals was performed 0.5 tube diameters downstream from an axisymmetric constriction with an area reduction of 80 percent in steady flow at a jet Reynolds number of 2840. Both pulsed and continuous wave (CW) Doppler spectra showed significant reverse flow components in the separated flow. The pulsed Doppler spectra exhibited sudden changes when the sample volume crossed the shear layer between the center jet and the separated flow. A power spectrum equation was theoretically derived from continuity of flow to define the Doppler shift frequency for the shear layer velocity. The CW Doppler spectrum showed a minimum spectrum density at a frequency which equalled the shear layer Doppler shift frequency derived from the equation. The pulsed spectra exhibited the sudden changes at the same frequency as well.  相似文献   

8.
Measurements and numericaL calculations of laminar flow in a plane 90 degrees bifurcation are presented. The corresponding two-dimensional steady flow Navier-Stokes equations solved by a finite-difference procedure employing pressure and velocity as dependent variables. The influence of Reynolds number and mass flow ratio on the velocity field, streamlines, local shear stress and pressure drop are quantified and shown to be substantial. The circulation patterns and shear stresses are examined in view of available data regarding the formation of atherotic plaques in the human circulatory system. The calculated velocity profiles are compared with measurements obtained with laser Doppler anemometry and the agreement is shown to be satisfactory. Calculations outside the range of measurements which are of value to biomechanics are also presented.  相似文献   

9.
The aim of this work was to evaluate the hemodynamic changes in the utero-placental arterial vessels in rabbits (Orictolagus cuniculus) throughout pregnancy as well as those in the umbilical cord, aorta, and caudal vena cava of fetuses to establish their normal reference ranges for systolic peak velocity (SPV), end diastolic velocity (EDV), pulsatility index (PI), and resistance index (RI). The blood flow waveforms were monitored every 4 d in 10 rabbits from Day 10 of pregnancy onward by means of color and pulsed wave Doppler ultrasonography using a 5.5-7.5 MHz microconvex transabdominal probe. The utero-placental blood flow was characterized by steep increases and decrease in the SPV with a slow diastolic wave and relatively high EDV, whereas that of the umbilical artery was discontinuous until Day 22 of pregnancy, when a diastolic waveform was also detectable. From Day 10 to 22 of pregnancy, the fetal aorta blood flow was discontinuous, but thereafter a diastolic peak was measurable. The blood flow of the fetal caudal vena cava was characterized by a systolic peak followed by a small diastolic peak. Throughout the gestation, the SPV and the EDV of maternal and fetal vessels increased (α < 0.05), whereas the PI and the RI decreased (α < 0.05), except for the utero-placental vessels. This work confirms that the rabbit could also be a valid experimental animal model to study, by Doppler ultrasonography, functional hemodynamic changes of the fetuses and placenta vessels in both normal and pathophysiologic conditions.  相似文献   

10.
With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans.  相似文献   

11.
The aim of this work is to evaluate the haemodynamic characteristics of maternal and foetal vessels during normal pregnancy in queens, using colour Doppler and pulsed wave Doppler ultrasonography, in order to obtain information about maternal and foetal circulation. The blood waveforms of the uteroplacental arteries, aorta, caudal cava vein and umbilical cord of the fetuses were recorded weekly in seven healthy pregnant queens. Also, the measurements of peak systolic, end diastolic velocities, resistance and pulsatility indices were carried out. Uteroplacental blood flow was biphasic while the ones of the umbilical artery and aorta were first systolic and then diastolic. The caudal cava vein showed a typical waveform of venous vessels. During gestation the EDV and PSV of foetal vessels increased ( < 0.05) while the PI and RI of all vessels examined decreased ( < 0.05) except for the IP of the aorta. The Doppler ultrasonography, also in queens, can be used to evaluate the characteristics of maternal and foetal vessel flow and their progressive changes during pregnancy. This study can be considered the basis for further contribution in diagnosing and monitoring high-risk pregnancies in Veterinary Medicine.  相似文献   

12.
A physical model consisting of an axisymmetrical jet in a rigid plexiglass pipe was used to study the flow and pressure fluctuations downstream from an aortic stenosis. The fluctuating velocity components, u and v, at several locations in the steady liquid jet were measured using a laser Doppler anemometer system. Simultaneous wall pressure fluctuations were monitored by an array of nine miniature pressure transducers wall mounted in the axial direction. This paper presents the detailed measurements of mean velocity profiles, turbulent intensity distributions and RMS pressure fluctuations. The energy spectra obtained for the pressure fluctuations and the u and v velocity components are compared. Contrary to earlier works, we found that the differences between peak frequencies of the pressure spectra and the characteristic frequencies of the velocity spectra vary with positions downstream from the nozzle. These differences are discussed in light of pseudosound generation by the eddy structures in the stenotic flow field.  相似文献   

13.
A variety of devices has been used for measuring flow properties of deep-lying arteries, but many have limitations. This paper describes a relatively nontraumatic intravenous approach which uses a catheter in connection with a pulsed ultrasonic Doppler velocity meter (PUDVM) and an ultrasound echo track. The venous ultrasound catheter (VUC) has permitted measurements of local instantaneols blood velocity, flow, and wall motion in the abdominal aorta and iliac arteries of beagle dogs; evaluation studies have been conducted to compare the VUC recordings with an independent method for measuring blood flow and wall motion. Coupling of this catheter-tip device with the PUDVM and echo track provides chronic measurements of hemodynamic parameters in these deep vessels which were virtually impossible to obtain previously. This technique may prove useful in monitoring vessel pathology longitudinally as well as in basic experimental situations requiring flow and arterial wall mechanical properties.  相似文献   

14.
Real-time B-mode ultrasonography was combined with a pulsed Doppler ultrasound technique for transcutaneous measurement of human fetal blood flow in the aorta and intra-abdominal part of the umbilical vein. The target vessel was located and its diameter measured in the two-dimensional real-time image. The pulsed Doppler transducer was attached to the real-time transducer at a fixed angle. By processing the Doppler shift signals the instrument estimated the mean and maximum blood velocities and the integral under the velocity curves. This permitted calculation of the blood flow. The method was applied to 26 fetuses in normal late pregnancies. Mean blood flow in the descending part of the fetal aorta based on maximum velocity was 191 ml/kg/min. Mean flow in the intra-abdominal part of the umbilical vein was 110 ml/kg/min. This method of measurement is non-invasive and opens new perspectives in studying fetal haemodynamics.  相似文献   

15.
16.
The presence of atherosclerotic plaques has been shown to be closely related to the vessel geometry. Studies on postmortem human arteries and on the experimental animal show positive correlation between the presence of plaque thickness and low shear stress, departure of unidirectional flow and regions of flow separation and recirculation. Numerical simulations of arterial blood flow and direct blood flow velocity measurements by magnetic resonance imaging (MRI) are two approaches for the assessment of arterial blood flow patterns. In order to verify that both approaches give equivalent results magnetic resonance velocity data measured in a compliant anatomical carotid bifurcation model were compared to the results of numerical simulations performed for a corresponding computational vessel model. Cross sectional axial velocity profiles were calculated and measured for the midsinus and endsinus internal carotid artery. At both locations a skewed velocity profile with slow velocities at the outer vessel wall, medium velocities at the side walls and high velocities at the flow divider (inner) wall were observed. Qualitative comparison of the axial velocity patterns revealed no significant differences between simulations and in vitro measurements. Even quantitative differences such as for axial peak flow velocities were less than 10%. Secondary flow patterns revealed some minor differences concerning the form of the vortices but maximum circumferential velocities were in the same range for both methods.  相似文献   

17.
Blood flow velocity was measured in the dog aorta distal to mechanically induced constrictions of various degrees of severity employing an 8-MHz pulsed Doppler ultrasound velocimeter and a phase-lock loop frequency tracking method for extracting velocity from the Doppler quadrature signals. The data were analyzed to construct ensemble average velocity waveforms and random velocity disturbances. In any individual animal the effect of increasing the degree of stenosis beyond approximately 25 percent area reduction was to produce increasing levels of random velocity disturbance. However, variability among animals was such that the sensitivity of random behavior to the degree of stenosis was degraded to the point that it appears difficult to employ Doppler ultrasound measurements of random disturbances to discriminate among stenoses with area reductions less than approximately 75 percent. On the other hand, coherent vortex structures in velocity waveforms consistently occurred distal to mild constrictions (25-50 percent area reduction). Comparison of the phase-lock loop Doppler ultrasound data with simultaneous measurements using invasive hot-film anemometry, which possesses excellent frequency response, demonstrates that the ultrasound method can reliably detect those flow phenomena in such cases. Thus, the identification of coherent, rather than random, flow disturbances may offer improved diagnostic capability for noninvasively detecting arteriosclerotic plaques at relatively early stages of development.  相似文献   

18.
Vortex shedding at vascular anastomoses were investigated in vitro using a 20 MHz pulsed-wave Doppler velocimeter. Centreline velocity measurements were made at various axial distances in simplified polyurethane models of proximal and distal end-to-side anastomoses of angles 15, 30, 45, 60 and 80 degrees using pulsatile flow waveforms similar to those in femoropopliteal bypass grafts. The in-phase and quadrature Doppler signals were recorded and the maximum frequency waveform, averaged over 64 cycles, was obtained using short-time Fourier transform. A fourth-order Butterworth low-pass filter was employed to separate the vortex velocity signal from the convective velocity. The vortex signal envelope was calculated using a Hilbert transform method and the vortex amplitude was taken as the maximum of this envelope. The results show that higher vortex amplitude were found in the proximal anastomoses and under resting flow conditions. Although the vortex amplitudes generally increased with angles of anastomosis, they were found to be higher in the 60 degrees than in the 80 degrees proximal anastomosis. The vortex structures were investigated using spectrograms and these show prominent features at 40-50 Hz indicative of the short-duration oscillatory signals during the decelerative phase of systole expected from the passage of vortices. The study indicates that flow disturbances due to vortex shedding may be a common feature in femoropopliteal bypass grafts.  相似文献   

19.
Effects of intracoronary infused (2 pM/kg/min for 5 min) endothelin-I on coronary blood flow was studied using modification of the method of Vetterlein and Schmidt. Blood flow in extracorporeal circuit was measured by 20 MHz pulsed Doppler flowmeter. One end of the circuit was connected to the left common carotid artery and the other was connected to the especially curved glass cannule which was placed to the origin of the coronary artery and through the right common carotid artery. Five-minute infusion of endothelin was followed by transitory dilatation and then by constriction of coronary vessels. Blockade of dihydropyridine-sensitive Ca-channels potentiated endothelin-induced vasodilation and decreased the constrictor response three-fold.  相似文献   

20.
The measurement of blood velocity fields, volume flow, and arterial wall motion in the descending thoracic aorta provides essential hemodynamic information for both research and clinical diagnosis. The close proximity of the esophagus to the aorta in the dog makes it possible to obtain such data nonsurgically using an ultrasonic esophageal probe; however, the accuracy of such a probe is limited if the angle between the sound beam and the flow axis, known as the Doppler angle, is not precisely known. By use of a pulsed Doppler velocity meter (PUDVM) and a triangulation procedure, accurate empirical measurement of the Doppler angle has been obtained, allowing quantification of blood velocity scans across the aorta. Volume flow is obtained by integration of blood velocity profiles and arterial wall motion is measured with an ultrasonic echo tracking device. Accuracy of the probe was substantiated by comparison with ultrasonic and electromagnetic implanted flow cuff measurements. Use of the probe in measurement of blood velocity, volume flow and arterial wall motion at various locations along the 8- and 10-cm length of the descending thoracic aorta in adult beagle dogs is detailed. The simplicity, accuracy, and nontraumatic aspect of the technique should allow increasing use of such a probe in numerous research and clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号