首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The purpose of this study was to examine the effects of aging on posture-related changes of the stretch reflex excitability in the ankle extensor, soleus (SOL), and flexor, tibialis anterior (TA) muscles. Fourteen neurologically normal elderly (mean 68 ± 6 years) and 12 young (mean 27 ± 3 years) subjects participated. Under two postural conditions, upright standing (STD) and sitting (SIT), stretch reflex electromyographic (EMG) responses in the SOL/TA muscle were elicited by imposing rapid ankle dorsi-/plantar-flexion. Under the SIT condition, subjects were asked to keep the SOL background EMG level, which is identical to that under the STD condition. In the SOL muscle, both groups showed significant enhancement of the short-latency stretch reflex (SLR) response when the posture changed from SIT to STD. In the TA muscle, the young group showed significant enhancement of the middle- (MLR) and long-latency stretch reflex (LLR) when the posture changed from SIT to STD; no such modulation was observed in the elderly group. Since the TA stretch reflex responses under the STD condition were comparable in the young and elderly groups, the lack of posture-related modulation of the TA muscle in the elderly group might be explained by augmented stretch reflex excitability under the SIT condition. The present results suggest that the (1) SOL SLR responses are modulated both in the young and elderly subjects when the posture is changed from SIT to STD, (2) TA MLR and LLR responses are not modulated in the elderly subjects when the posture is changed from SIT to STD, while each response is same between the young and elderly in STD, and (3) the effect of aging on the posture-related stretch reflex differs in the SOL and TA muscles.  相似文献   

2.
BackgroundSpasticity and spastic dystonia are two separate phenomena of the upper motor neuron syndrome. Spasticity is clinically defined by velocity-dependent hypertonia and tendon jerk hyperreflexia due to the hyper-excitability of the stretch reflex. Spastic dystonia is the inability to relax a muscle leading to a spontaneous tonic contraction. Both spasticity and spastic dystonia are present in patients who are at rest; however, only patients with spasticity are actually able to kept their muscles relaxed prior to muscle stretch. The idea that has inspired the present work is that also in patients with spastic dystonia the stretch reflex is likely to be hyper-excitable. Therefore, velocity-dependent hypertonia could be mediated not only by spasticity, but also by spastic dystonia.MethodsTonic stretch reflexes in the rectus femoris muscle were evoked in 30 patients with multiple sclerosis showing velocity-dependent hypertonia of leg extensors and the habituation of the reflex was studied. Moreover, the capability of relax the muscle prior to muscle stretch (spastic dystonia) was also investigated.ResultsA tonic stretch reflex was evoked in all the enrolled patients. 73% of the patients were able to relax their rectus femoris muscle prior to stretch (spasticity). In the overwhelming majority of these patients, the tonic stretch reflex decreased during repeated stretches. In the remaining 27% of the subjects, the muscle was tonically activated prior to muscle stretch (spastic dystonia). In the patients in whom spastic dystonia progressively increased over the subsequent stretches (50% of the subjects with spastic dystonia), the habituation of the reflex was replaced by a progressive reflex facilitation.DiscussionThis study shows for the first time that velocity-dependent hypertonia can be caused by two distinct phenomena: spasticity and spastic dystonia. The habituation of the tonic stretch reflex, which is a typical feature of spasticity, is replaced by a reflex facilitation in the half of the subject with spastic dystonia. These preliminary findings suggest that differentiating the two types of velocity-dependent muscle hypertonia (spasticity and spastic dystonia) could be clinically relevant.  相似文献   

3.
The purpose of this study was to characterize the effects of aging on the stretch reflex in the ankle muscles, and in particular to compare the effects on the ankle dorsi-flexor (tibialis anterior: TA) and the plantar-flexor (soleus: SOL). Stretch reflex responses were elicited in the TA and SOL at rest and during weak voluntary contractions in 20 elderly and 23 young volunteers. The results indicated that, in the TA muscle, the elderly group had a remarkably larger long-latency reflex (LLR), whereas no aging effect was found in the short latency reflex (SLR). These results were very different from those in the SOL muscle, which showed significant aging effects in the SLR and medium latency reflex (MLR), but not in the LLR. Given the fact that the LLR of the TA stretch reflex includes the cortical pathway, it is probable that the effects of aging on the TA stretch reflex involve alterations not only at the spinal level but also at the cortical level. The present results indicate that the stretch reflexes of each of the ankle antagonistic muscles are affected differently by aging, which might have relevance to the neural properties of each muscle.  相似文献   

4.
Spasticity is a disorder of hypertonus associated with neurological diseases, characterized by a decrease in stretch reflex threshold. Stretch reflex threshold of wrist flexors has been recorded in subjects affected by forearm spasticity due to acute neurological lesions, occurred from one to sixty-one months before. In all the subjects a decreased stretch reflex threshold was recorded and a negative correlation between stretch reflex threshold and time of the disease resulted. In five subjects affected by mild spasticity the velocity stretch reflex threshold was tested one-three months after stroke and then six months later. In three cases a further decrease in stretch reflex threshold was recorded. Sixteen subjects affected by heavy forearm spasticity (quantified by Ashworth scale), were treated with Botulinum toxin injections to reduce spasticity. Fourteen of 16 subjects were responsive to the antispastic therapy: a decrease of at least 1 point in the Ashworth scale was detected after the treatment. In all the responsive cases an increase of stretch reflex threshold was recorded. The results confirm that the stretch reflex threshold is decreased in spastic muscles; it decreases progressively in time after the acute lesion. In addition, these results demonstrate that the decreased stretch reflex threshold can be reversed with Botulinum toxin injections. It is known that Botulinum toxin reduce the presynaptic release of Acetylcholine of neuromuscular synapses, but there are experimental evidences that it acts even on spindle's fibres, decreasing the sensitivity of intrafusal muscle fibres. This effect explains how Botulinum toxin increases the stretch reflex threshold in spastic muscles.  相似文献   

5.
A proteomic analysis was performed comparing normal slow twitch type fiber rat soleus muscle and normal fast twitch type fiber tibialis anterior muscle to immobilized soleus and tibialis anterior muscles at 0.5, 1, 2, 4, 6, 8 and 10 days post immobilization. Muscle mass measurements demonstrate mass changes throughout the period of immobilization. Proteomic analysis of normal and atrophied soleus muscle demonstrated statistically significant changes in the relative levels of 17 proteins. Proteomic analysis of normal and atrophied tibialis anterior muscle demonstrated statistically significant changes in the relative levels of 45 proteins. Protein identification using mass spectrometry was attempted for all differentially regulated proteins from both soleus and tibialis anterior muscles. Four differentially regulated soleus proteins and six differentially regulated tibialis anterior proteins were identified. The identified proteins can be grouped according to function as metabolic proteins, chaperone proteins, and contractile apparatus proteins. Together these data demonstrate that coordinated temporally regulated changes in the proteome occur during immobilization-induced atrophy in both slow twitch and fast twitch fiber type skeletal muscle.  相似文献   

6.
The purpose of this study was to test whether the spinal reflex excitability of the soleus muscle is modulated as posture changes from a supine to a passive upright position. Eight healthy subjects (29.6 ± 5.4 yrs) participated in this study. Stretch and H-reflex responses were elicited while the subjects maintained passive standing (ST) and supine (SP) postures. The passive standing posture was accomplished by using a gait orthosis to which a custom-made device was mounted to elicit stretch reflex in the soleus muscle. This orthosis makes it possible to elicit stretch and H-reflexes without background muscle activity in the soleus muscle. The results revealed that the H-reflex amplitude in the ST was smaller than that in the SP condition, which is in good agreement with previous reports. On the other hand, the stretch reflex was significantly larger in the ST than in the SP condition. Since the experimental conditions of both the stretch and H-reflex measurements were exactly the same, the results were attributed to differences in the underlying neural mechanisms of the two reflex systems: different sensitivity of the presynaptic inhibition onto the spinal motoneuron pool and/or a change in the muscle spindle sensitivity.  相似文献   

7.
Spasticity after a stroke is usually assessed in a score form by subjectively determining the resistance of a joint to an externally imposed passive movement. This work presents a spasticity measurement system for on-line quantifying the stretch reflex of paretic limbs. Four different constant stretch velocities in a ramp-and-hold mode are used to elicit the stretch reflex of the elbow joint in spastic subjects. The subjects are tested at supine position with the upper limb stretched towards the ground, in contrast with the horizontally stretched movement used in other studies. By subtracting the baseline torque, reflex torque measured at a selected low stretch velocity of 5 deg/sec, the influence of gravity torque and inertial in vertical stretching mode can be minimized. The averaged speed-dependent reflex torque (ASRT), defined as the measured torque deviated from the baseline torque, is used for quantifying the spastic hypertonia. Four subjects having incurred cerebrovascular accident (CVA) are recruited for time-course study in which the measurements are taken at 72 hours, one week, one month, three months, and six months after onset of stroke. During the development of spasticity, the changes of ASRT and velocity sensitivity of ASRT of the involved and the intact elbow joints are discussed.  相似文献   

8.
The purpose of this study was to examine the extent of modification of the preactivation and stretch reflex response in ankle joint muscles to different contact surfaces and visual input during movement to absorb impact. Experimental movements like landing were performed using a special sliding apparatus. Seven subjects made landings on the hard surface (Hard-S) of a metal force platform or soft surface (Soft-S) of a foam cushion with eyes open or closed. The electromyographic activities from the medial gastrocnemius (MG), soleus (Sol), and tibialis anterior (TA) muscles, contact force, and ankle joint angle were recorded. The preactivation levels of MG and TA to Hard-S increased compared to Soft-S. After foot contact, dorsiflexion velocity, impulse, and responses of the stretch reflex in MG and Sol were significantly larger on Hard-S than Soft-S. With eyes closed, there were trends of decrease in the preactivation. Although the dorsiflexion velocity and impulse showed no significant differences between both visual conditions, the stretch reflex responses with eyes closed were larger than those with eyes open for both surfaces. These results suggest that the preactivation is modulated to different surface and the reflex gain is enlarged by visual suppression.  相似文献   

9.
Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163–191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during treadmill-based clinical gait analysis.  相似文献   

10.
The amount of intramyocellular lipids in skeletal muscle was assessed by proton magnetic resonance spectroscopy during a voluntary fasting period of 120 h in four healthy lean volunteers. The aim of the study was to determine whether muscular lipid uptake in the presence of high plasma lipid levels, or lipid oxidation due to lacking glycogen as a source of energy in musculature, are the dominant effects on intramyocellular lipid levels under fasting conditions in various muscle types. Intramyocellular lipids were quantified in the tibialis anterior (mixed type I and type II fibers, predominantly type II) and the soleus muscle (predominantly type I fibers) before and after 24 h, 72 h, and 120 h of fasting. An extreme increase in intramyocellular lipids to levels of 369 % (median) was found in the tibialis anterior muscle compared to baseline value (intramyocellular lipid level prior to fasting, set to 100 %; p = 0.02). The soleus muscle with clearly higher baseline content of intramyocellular lipids (2 - 4-fold compared to tibialis anterior) revealed slightly delayed and less pronounced uptake of intramyocellular lipids during fasting to 152 % (median) after 120 h (p = 0.02). The absolute increment in intramyocellular lipids (in terms of ratios between lipid and creatine signals) was also higher in tibialis anterior than in soleus (not statistically significant). These findings indicate augmentation of the intramyocellular lipid pool during long-term elevation of plasma FFA in the presence of low plasma insulin concentrations in both muscles investigated. The rate of muscular lipid oxidation during fasting is clearly lower than the increased uptake of FFA by myocytes.  相似文献   

11.
Neurophysiological studies in healthy subjects suggest that increased spinal inhibitory reflexes from the tibialis anterior (TA) muscle to the soleus (SOL) muscle might contribute to decreased spasticity. While 50?Hz is an effective frequency for transcutaneous electrical nerve stimulation (TENS) in healthy subjects, in stroke survivors, the effects of TENS on spinal reflex circuits and its appropriate frequency are not well known. We examined the effects of different frequencies of TENS on spinal inhibitory reflexes from the TA to SOL muscle in stroke survivors. Twenty chronic stroke survivors with ankle plantar flexor spasticity received 50-, 100-, or 200-Hz TENS over the deep peroneal nerve (DPN) of the affected lower limb for 30?min. Before and immediately after TENS, reciprocal Ia inhibition (RI) and presynaptic inhibition of the SOL alpha motor neuron (D1 inhibition) were assessed by adjusting the unconditioned H-reflex amplitude. Furthermore, during TENS, the time courses of spinal excitability and spinal inhibitory reflexes were assessed via the H-reflex, RI, and D1 inhibition. None of the TENS protocols affected mean RI, whereas D1 inhibition improved significantly following 200-Hz TENS. In a time-series comparison during TENS, repeated stimulation did not produce significant changes in the H-reflex, RI, or D1 inhibition regardless of frequency. These results suggest that the frequency-dependent effect of TENS on spinal reflexes only becomes apparent when RI and D1 inhibition are measured by adjusting the amplitude of the unconditioned H-reflex. However, 200-Hz TENS led to plasticity of synaptic transmission from the antagonist to spastic muscles in stroke survivors.  相似文献   

12.
mRNAs extracted from rabbit soleus, normal and 28-day, indirectly stimulated tibialis anterior muscles were translated in an in vitro system. Analysis for translation products by 2-dimensional electrophoresis showed fast myosin light chains in tibialis anterior, and slow myosin light chains in soleus muscle. The stoichiometry of the in vitro translated light chain varies from that seen in normal fast and slow twitch muscles. The stimulated muscle contained mRNA coding, both for fast and slow myosin light chains, although the pattern of slow myosin light chains appears not to be complete at this point of time of the transformation process.  相似文献   

13.
The force-length relationship of the human muscle-tendon complex (MTC) of the triceps surae and the achilles tendon was investigated in various stretch load conditions. Six male subjects performed various vertical jumps with maximal effort: squat jumps (SJ), counter movement jumps (CMJ) and drop jumps (DJ) from a height of 24 cm, 40 cm and 56 cm. The force-length relationship was calculated from the signals of the components of the ground reaction forces and the kinematic data obtained from the high-speed film records. Surface electromyograms (EMG) of the soleus, gastrocnemius and tibialis anterior muscles were also recorded. The force-length diagrams showed individually high sensitivity to the imposed stretch load. In conditions with relatively low stretch load requirements there was a counter-clockwise direction observable, indicating that the energy absorbed during the eccentric, or lengthening phase was lower than the energy delivered during the concentric, or shortening phase. In high load conditions this relationship was reversed indicating a negative energy balance. The EMG-length diagrams of SJ and CMJ consisted of an initial isometric loading of the muscle, followed by a shortening phase with only slightly reduced EMG amplitudes. In DJ, however, the diagrams showed an initial lengthening of the MTC with fairly constant activation amplitudes. After 40 ms an isometric loading of the muscle, lasting for approximately 80 ms, was followed by a shortening phase. It was concluded that segmental stretch reflex activation represented the predominant activation process during the isometric loading phase, to meet the adequate stiffness properties of the MTC.  相似文献   

14.
15.
Recent studies have revealed that the stretch reflex responses of both ankle flexor and extensor muscles are coaugmented in the early stance phase of human walking, suggesting that these coaugmented reflex responses contribute to secure foot stabilization around the heel strike. To test whether the reflex responses mediated by the stretch reflex pathway are actually induced in both the ankle flexor and extensor muscles when the supportive surface is suddenly destabilized, we investigated the electromyographic (EMG) responses induced after a sudden drop of the supportive surface at the early stance phase of human walking. While subjects walked on a walkway, the specially designed movable supportive surface was unexpectedly dropped 10 mm during the early stance phase. The results showed that short-latency reflex EMG responses after the impact of the drop (<50 ms) were consistently observed in both the ankle flexor and extensor muscles in the perturbed leg. Of particular interest was that a distinct response appeared in the tibialis anterior muscle, although this muscle showed little background EMG activity during the stance phase. These results indicated that the reflex activities in the ankle muscles certainly acted when the supportive surface was unexpectedly destabilized just after the heel strike during walking. These reflex responses were most probably mediated by the facilitated stretch reflex pathways of the ankle muscles at the early stance phase and were suggested to be relevant to secure stabilization around the ankle joint during human walking.  相似文献   

16.
Neuromuscular electrical stimulation (NMES) can be used as treatment for spasticity. The present study examined differences in time-dependent effects of NMES depending on stimulation frequency. Forty healthy subjects were separated into four groups (no-stim, NMES of 50, 100, and 200?Hz). The un-conditioned H-reflex amplitude and the H-reflex conditioning-test paradigm were used to measure the effectiveness on monosynaptic Ia excitation of motoneurons in the soleus (SOL) muscle, disynaptic reciprocal Ia inhibition from tibialis anterior (TA) to SOL, and presynaptic inhibition of SOL Ia afferents. Each trial consisted of a 30-min period of NMES applied to the deep peroneal nerve followed by a 30-min period with no stimulation to measure prolonged effects. Measurements were performed periodically. Stimulation applied at all frequencies produced a significant reduction in monosynaptic Ia excitation of motoneurons in the SOL muscle, however, only stimulation with 50?Hz showed prolonged reduction after NMES. NMES frequency did not affect the amount of disynaptic reciprocal Ia inhibition and presynaptic inhibition of Ia afferents. The results show a frequency-dependent effect of NMES on the monosynaptic Ia excitation of motoneurons. This result has implications for selecting the optimal NMES frequency for treatment in patients with spasticity.  相似文献   

17.
Animal experiments suggest that an increase in sympathetic outflow can depress muscle spindle sensitivity and thus modulate the stretch reflex response. The results are, however, controversial, and human studies have failed to demonstrate a direct influence of the sympathetic nervous system on the sensitivity of muscle spindles. We studied the effect of increased sympathetic outflow on the short-latency stretch reflex in the soleus muscle evoked by tapping the Achilles tendon. Nine subjects performed three maneuvers causing a sustained activation of sympathetic outflow to the leg: 3 min of static handgrip exercise at 30% of maximal voluntary contraction, followed by 3 min of posthandgrip ischemia, and finally during a 3-min mental arithmetic task. Electromyography was measured from the soleus muscle with bipolar surface electrodes during the Achilles tendon tapping, and beat-to-beat changes in heart rate and mean arterial blood pressure were monitored continuously. Mean arterial pressure was significantly elevated during all three maneuvers, whereas heart rate was significantly elevated during static handgrip exercise and mental arithmetic but not during posthandgrip ischemia. The peak-to-peak amplitude of the short-latency stretch reflex was significantly increased during mental arithmetic (P < 0.05), static handgrip exercise (P < 0.001), and posthandgrip ischemia (P < 0.005). When expressed in percent change from rest, the mean peak-to-peak amplitude increased by 111 (SD 100)% during mental arithmetic, by 160 (SD 103)% during static handgrip exercise, and by 90 (SD 67)% during posthandgrip ischemia. The study clearly indicates a facilitation of the short-latency stretch reflex during increased sympathetic outflow. We note that the enhanced stretch reflex responses observed in relaxed muscles in the absence of skeletomotor activity support the idea that the sympathetic nervous system can exert a direct influence on the human muscle spindles.  相似文献   

18.
During lengthening of an activated skeletal muscle, the force maintained following the stretch is greater than the isometric force at the same muscle length. This is termed residual force enhancement (RFE), but it is unknown how muscle damage following repeated eccentric contractions affects RFE. Using the dorsiflexors, we hypothesised muscle damage will impair the force generating sarcomeric structures leading to a reduction in RFE. Following reference maximal voluntary isometric contractions (MVC) in 8 young men (26.5±2.8y) a stretch was performed at 30°/s over a 30° ankle excursion ending at the same muscle length as the reference MVCs (30° plantar flexion). Surface electromyography (EMG) of the tibialis anterior and soleus muscles was recorded during all tasks. The damage protocol involved 4 sets of 25 isokinetic (30°/s) lengthening contractions. The same measures were collected at baseline and immediately post lengthening contractions, and for up to 10min recovery. Following the lengthening contraction task, there was a 30.3±6.4% decrease in eccentric torque (P<0.05) and 36.2±9.7% decrease in MVC (P<0.05) compared to baseline. Voluntary activation using twitch interpolation and RMS EMG amplitude of the tibialis anterior remained near maximal without increased coactivation for MVC. Contrary to our hypothesis, RFE increased (~100-250%) following muscle damage (P<0.05). It appears stretch provided a mechanical strategy for enhanced muscle function compared to isometric actions succeeding damage. Thus, active force of cross-bridges is decreased because of impaired excitation-contraction coupling but force generated during stretch remains intact because force contribution from stretched sarcomeric structures is less impaired.  相似文献   

19.
Glucose transport is regarded as the principal rate control step governing insulin-stimulated glucose utilization by skeletal muscle. To assess this step in human skeletal muscle, quantitative PET imaging of skeletal muscle was performed using 3-O-methyl-[11C]glucose (3-[11C]OMG) in healthy volunteers during a two-step insulin infusion [n = 8; 30 and 120 mU.min(-1).m(-2), low (LO) and high (HI)] and during basal conditions (n = 8). Positron emission tomography images were coregistered with MRI to assess 3-[11C]OMG activity in regions of interest placed on oxidative (soleus) compared with glycolytic (tibialis anterior) muscle. Insulin dose-responsive increases of 3-[11C]OMG activity in muscle were observed (P < 0.01). Tissue activity was greater in soleus than in tibialis anterior (P < 0.05). Spectral analysis identified that two mathematical components interacted to shape tissue activity curves. These two components were interpreted physiologically as likely representing the kinetics of 3-[11C]OMG delivery from plasma to tissue and the kinetics of bidirectional glucose transport. During low compared with basal, there was a sixfold increase in k3, the rate constant attributed to inward glucose transport, and another threefold increase during HI (0.012 +/- 0.003, 0.070 +/- 0.014, 0.272 +/- 0.059 min(-1), P < 0.001). Values for k3 were similar in soleus and tibialis anterior, suggesting similar kinetics for transport, but compartmental modeling indicated a higher value in soleus for k1, denoting higher rates of 3-[11C]OMG delivery to soleus than to tibialis anterior. In summary, in healthy volunteers there is robust dose-responsive insulin stimulation of glucose transport in skeletal muscle.  相似文献   

20.
Electrical or magnetic stimulation of the human motor cortex causes a strong, short latency facilitation of tibialis anterior (TA) motoneurons but only weak, longer latency changes in the excitability of soleus (SOL) motoneurons. The facilitation of TA motoneurons has been attributed to the monosynaptic action of the "fast" corticospinal pathway. The present study further investigates the cortical control of soleus motoneurons in man. In tests of reaction time to auditory stimuli, normal subjects took significantly longer to activate soleus motoneurons than tibialis anterior motoneurons. Thus we could not demonstrate the existence of a "fast" pathway from the brain to SOL motoneurons that, for some reason, is not activated by magnetic stimulation. The hypothesis that the cortex might control soleus motoneurons indirectly by modulation of the Ia input from muscle spindles was tested. Magnetic stimulation of the cortex was used to condition the facilitation of soleus motoneurons resulting from the stimulation of group I fibres in the tibial nerve. There were no consistent changes in Ia facilitation. We conclude (i) that there is no evidence so far that SOL motoneurons are excited by a direct pathway from the cortex (similar to that projecting to TA motoneurons) and (ii) that the observed changes in firing probability of soleus motoneurons produced by magnetic stimulation over the motor cortex do not result from modulation of presynaptic inhibition of Ia afferents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号