首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite a widespread recognition of the role of seabird colonies in the fertilization of nutrient-poor polar terrestrial ecosystems, qualitative and quantitative data documenting any consequential influence on soil invertebrate communities are still lacking. Therefore, we studied community structure and abundance of springtails (Collembola) in ornithogenic tundra near two large seabird colonies in Hornsund, south-west Spitsbergen. We found considerably (5–20×) higher densities and biomass of Collembola in the vicinities of both colonies (the effect extending up to ca. 50?m from the colony edge) than in comparable control areas of tundra not influenced by allochtonous nutrient input. The most common springtails observed in the seabird-influenced areas were Folsomia quadrioculata, Hypogastrura viatica and Megaphorura arctica. The latter species appeared the most resistant to ornithogenic nutrient input and was found commonly closest to the bird colonies. Collembolan abundance decreased with increasing distance from the seabird colonies. However, relationships between collembolan density and specific physicochemical soil parameters and vegetation characteristics were weak. The most important factors were the cover of the nitrophilous green alga Prasiola crispa, total plant biomass and soil solution conductivity, all of which were correlated with distance from the colony and estimated amount by guano deposition. Community composition and abundance of springtails showed no evidence of being influenced of seabird diet, with no differences apparent between communities found in ornithogenic tundra developing in the vicinity of planktivorous and piscivorous seabird colonies. The study provides confirmation of the influence of marine nutrient input by seabirds on soil microfaunal communities.  相似文献   

2.
Antarctica is the continent least affected by invasive species, but climate change and increasing human activity are increasing this threat. Antarctic terrestrial ecosystems generally have low biodiversity with simple community structures and little competition for resources. Consequently, species with pre-adaptations or capabilities that allow them to tolerate polar conditions may have disproportionately large ecosystem impacts when introduced to Antarctica compared with other regions of the Earth. Here we investigate the invasion risk associated with the flightless chironomid midge, Eretmoptera murphyi, which was accidentally introduced from South Georgia (54°S) to Signy Island, South Orkney Islands (61°S), probably during plant transplantation experiments in the 1960s. Larval size class distribution analysis indicated that E. murphyi has a 2 year life cycle on Signy Island, supporting previous suggestions. Estimates of litter turnover show that recent large increases in E. murphyi population density and extent are likely to increase nutrient cycling rates on Signy Island substantially. Existing physiological adaptations may allow E. murphyi to colonise higher latitude locations. Growth rate and microhabitat climatic modelling show that temperature constraints on larval development on Anchorage Island (68°S) are theoretically similar to those on Signy Island even though it is ~750 km further south. Establishment of this non-native midge at climatically similar intervening locations along the western Antarctic Peninsula is therefore plausible. Currently, lack of effective natural dispersal mechanisms is probably limiting the spread of the midge. However, dispersal to other areas of the Antarctic Peninsula may occur via human-assisted transportation, highlighting the importance of appropriate biosecurity measures.  相似文献   

3.

Key message

Robust physiology of Myrica cerifera across a chronosequence (i.e., space for time substitution) of shrub thicket age classes contributes to rapid cover expansion observed in the last 50 years.

Abstract

Many studies have documented the causes of woody expansion into grasslands, but few address unique morphological and physiological traits that facilitate expansion. Myrica cerifera, an evergreen N-fixer, is the dominant shrub on many barrier islands of the southeastern United States. Cover of Myrica cerifera has expanded by ~400 % on Hog Island, Virginia, in the past 50 years. Accretion of the northern end of the island has resulted in a chronosequence (i.e., space for time substitution) of both soil age and shrub thicket development. We investigated functional traits and physiological parameters related to light capture, processing and water balance of M. cerifera across shrub thickets of four age classes from ~10 to ~50 years. We hypothesized that light processing capabilities and hydraulic capacity would be reduced with thicket age. Spatial variation in morphology (i.e., leaf thickness, leaf area) and structure (i.e., leaf angle) related to light capture was observed. Yet, little or no differences were detected in stomatal density, photosynthetic pigments, electron transport rate (ETR) and hydraulic conductivity across sites. Previous research has shown declines in leaf N content, productivity and leaf litter production across the chronosequence. In contrast, we observed that physiology remains consistent despite considerable differences in thicket age and development. Myrica cerifera maintains high photosynthetic and hydraulic efficiency, factors which enable expansion and maintenance of shrub thickets in mesic coastal environments.  相似文献   

4.
Colonial breeding is characteristic of seabirds but nesting at high density has both advantages and disadvantages and may reduce survival and fecundity. African penguins (Spheniscus demersus) initiated breeding at Robben Island, South Africa in 1983. The breeding population on the island increased in the late 1990s and early 2000s before decreasing rapidly until 2010. Before the number breeding peaked, local nest density in the areas where the colony was initiated plateaued, suggesting that preferred nests sites were mostly occupied, and the area used by breeding birds expanded. However, it did not contract again as the population decreased, so that nesting density varied substantially. Breeding success was related positively to the prey available to the breeding birds and negatively to local nest density, particularly during the chick-rearing period, suggesting a density-dependence operating through social interactions in the colony, possibly exacerbated by poor prey availability when the breeding population was large. Although nest density at Robben Island was not high, nesting burrows, which probably reduce the incidence of aggressive encounters in the colony, are scarce and our results suggest that habitat alteration has modified the strength of density-dependent relationships for African penguins. Gaining a better understanding of how density dependence affects fecundity and population growth rates in colonial breeders is important for informing conservation management of the African penguin and other threatened taxa.  相似文献   

5.
Knowledge of the dispersal capacity of species is crucial to assess their extinction risk, and to establish appropriate monitoring and management strategies. The Providence petrel (Pterodroma solandri) presently breeds only at Lord Howe Island (~32,000 breeding pairs) and Phillip Island-7 km south of Norfolk Island (~20 breeding pairs). A much larger colony previously existed on Norfolk Island (~1,000,000 breeding pairs) but was hunted to extinction in the 18th Century. Differences in time of return to nesting sites are presently observed between the two extant colonies. Information on whether the Phillip Island colony is a relict population from Norfolk Island, or a recent colonization from Lord Howe Island, is essential to assess long-term sustainability and conservation significance of this small colony. Here, we sequenced the mitochondrial cytochrome b gene and 14 nuclear introns, in addition to genotyping 10 microsatellite loci, to investigate connectivity of the two extant P. solandri populations. High gene flow between populations and recent colonization of Phillip Island (95 % HPD 56–200 ya) are inferred, which may delay or prevent the genetic differentiation of these insular populations. These results suggest high plasticity in behaviour in this species and imply limited genetic risks surrounding both the sustainability of the small Phillip Island colony, and a proposal for translocation of Lord Howe Island individuals to re-establish a colony on Norfolk Island.  相似文献   

6.
Biological invasions often cause major perturbations in the environment and are well studied among macroorganisms. Less is known about invasion by free-living microbes. Gonyostomum semen (Raphidophyceae) is a freshwater phytoplankton species that has increased in abundance in Northern Europe since the 1980''s and has expanded its habitat range. In this study, we aimed to determine the genetic population structure of G. semen in Northern Europe and to what extent it reflects the species'' recent expansion. We sampled lakes from 12 locations (11 lakes) in Norway, Sweden and Finland. Multiple strains from each location were genotyped using Amplified Fragment Length Polymorphism (AFLP). We found low differentiation between locations, and low gene diversity within each location. Moreover, there was an absence of genetic isolation with distance (Mantel test, p = 0.50). According to a Bayesian clustering method all the isolates belonged to the same genetic population. Together our data suggest the presence of one metapopulation and an overall low diversity, which is coherent with a recent expansion of G. semen.  相似文献   

7.
In the resource-limited Arctic environment, vegetation developing near seabird colonies is exceptionally luxuriant. Nevertheless, there are very few detailed quantitative studies of any specific plant species responses to ornithogenic manuring. Therefore, we studied variability of polar scurvygrass Cochlearia groe nlandica individual biomass and leaf width along a seabird influenced gradient determining environmental conditions for vegetation in south-west Spitsbergen. We found seabird colony effect being a paramount factor responsible for augmented growth of C. groenlandica. The species predominated close to the colony and reached the highest mean values of individual biomass (1.4 g) and leaf width (26.6 mm) 10 m below the colony. Its abundance and size declined towards the coast. Both C. groenlandica individual traits significantly decreased with distance from the colony, soil water and organic matter content and increased with guano deposition, soil δ 15N, conductivity, acidity and nitrate, phosphate and potassium ion content. Our study supports the hypothesis that seabirds have fundamental importance for vegetation growth in poor Arctic environment. Highly plastic species such as C. groenlandica may be a useful instrument in detecting habitat condition changes, for instance resulting from climate change.  相似文献   

8.
Understanding the processes driving seabirds'' reproductive performance through trophic interactions requires the identification of seasonal pulses in marine productivity. We investigated the sequence of environmental and biological processes driving the reproductive phenology and performance of the storm petrel (Hydrobates pelagicus) in the Western Mediterranean. The enhanced light and nutrient availability at the onset of water stratification (late winter/early spring) resulted in annual consecutive peaks in relative abundance of phytoplankton, zooplankton and ichthyoplankton. The high energy-demanding period of egg production and chick rearing coincided with these successive pulses in food availability, pointing to a phenological adjustment to such seasonal patterns with important fitness consequences. Indeed, delayed reproduction with respect to the onset of water stratification resulted in both hatching and breeding failure. This pattern was observed at the population level, but also when confounding factors such as individuals'' age or experience were also accounted for. We provide the first evidence of oceanographic drivers leading to the optimal time-window for reproduction in an inshore seabird at southern European latitudes, along with a suitable framework for assessing the impact of environmentally driven changes in marine productivity patterns in seabird performance.  相似文献   

9.
The white-chinned petrel (Procellaria aequinoctialis) is the seabird species most commonly killed by Southern Hemisphere longline fisheries. Despite the importance of diving ability for mitigating longline bycatch, little is known of this species’ diving behaviour. We obtained data from temperature–depth recorders from nine white-chinned petrels breeding on Marion Island, southwestern Indian Ocean, during the late incubation and chick-rearing period. Maximum dive depth (16 m) was slightly deeper than the previous estimate (13 m), but varied considerably among individuals (range 2–16 m). Males dived deeper than females, and birds feeding chicks dived deeper than incubating birds, but dive rate did not differ between the sexes. Time of day had no significant effect on dive depth or rate. Our findings will help to improve the design and performance of mitigation measures aimed at reducing seabird bycatch in longline fisheries, such as the calculation of minimum line sink rates and optimum aerial coverage of bird-scaring lines.  相似文献   

10.
Gonyostomum semen (Ehrenb) Diesing is a bloom-forming and noxious phytoplankton species, that usually occurs in brown-water lakes and which is often referred to as an invasive species. The aim of our study was to analyze changes over time in the occurrence and distribution of blooms, and to find possible drivers of this change. We also performed spatial analyses to identify environmental factors coupled to Gonyostomum's distribution. The effect of temperature on key processes in the Gonyostomum life cycle was further investigated experimentally to determine potential mechanistic causes. Our results show that G. semen has expanded in Swedish lakes since 1988. At the turn of the Millennium it was present in more than a quarter of the lakes included in the Swedish national lake monitoring program. Gonyostomum-lakes have significantly higher DOC, higher nutrient levels, and lower pH than non-Gonyostomum lakes. Trend analyses show a significant increase in the number of lakes with Gonyostomum, as well as in biomass and occurrence in samples. One explanation is that we more often find water temperatures exceeding 6 °C, which is also the threshold for positive growth in our laboratory experiments. Moreover, according to our partial least square regression model (PLS) analysis in one lake, we find that the increase in biomass is a function of temperature in combination with other factors. Thus, we conclude that an increase in water temperature resulting in longer growth season may be a driver of the expansion of Gonyostomum. However, temperature alone cannot explain why the species has expanded to new lakes within the same climatic region. Possibly an interplay between DOC and temperature can explain the patterns observed.  相似文献   

11.
Common Mynas Acridotheres tristis were introduced to the small, isolated barren island of Ascension in the tropical Atlantic Ocean in the 1880s. The founder population of 52 pairs increased at a rate of 2 % per annum. Mynas cause egg losses in other species by puncturing and consuming eggs, puncturing eggs with no consumption or displacing incubating birds that then desert viable eggs. The principal target seabirds of Mynas on Ascension Island are Sooty Terns Onychoprion fuscatus which number 388,000 birds and constitute 97 % of all seabirds on the island. Five censuses of Mynas and 20 of the Sooty Tern population were carried out between 1994 and 2015, and Myna depredation was monitored on 10 occasions between 2000 and 2008. Of all seabird eggs laid annually, we estimated that 19 % of them were depredated by c. 1000 Mynas. In declining severity of impacts of Mynas on all eggs lost, we estimated that 40 % was attributable to desertion, 39 % to puncturing eggs with no consumption and 21 % to puncturing and consumption. As far as we know, our study is the first to estimate the scale of seabird egg depredation by Mynas. Care is needed when applying our findings to other seabird populations. The scarcity of alternative food sources and the ease of locating high densities of Sooty Tern eggs on Ascension Island may have magnified the frequency of egg depredation by Mynas. That said, it is clear that Mynas are major egg predators and the severity of their impacts on native avian populations can be high.  相似文献   

12.
Knowledge on variations in stomata is useful in reflecting leaf physiological characteristics of CO2 uptake and water transpiration, and predicting the responses of plants to future climate change. Stomatal density and number of stomatal rows (current-year, 1- and 2-year-old needles) in relation to tree age (ranging from 25 to 320 years old), elevation (ranging from 738 to 1,380 m a.s.l.), and sun exposure (sun and shade exposure) were investigated in Pinus koraiensis trees. Stomatal density and number of stomatal rows in relation to tree age and elevation showed a humped curve with the maximum values at intermediate levels of tree age (210 years old) and elevation (1,050 m a.s.l.), respectively. Needle age but not sun exposure significantly affected the stomatal density across tree ages and elevations. Our results suggest that variations in stomatal density of Pinus koraiensis needles are related to ontogenetic growth and environmental factors.  相似文献   

13.
选取2008年寒害后和恢复重建5年后红树林群落水土生要素进行纵向对比,选取水域pH、化学需氧量(COD)、溶解氧(DO)、总悬浮物(TSS)、总无机氮(TIN)、正磷酸盐(PO_4-P)等水环境指标和(S)pH、氧化还原电位(Eh)、有机质(OM)等沉积物指标进行不同类型红树林群落间的横向对比。自变量指标中水环境指标所占比例较大,约为2—3,弥补了红树林湿地植被、沉积物和水文等3个自然因素中水文条件研究较为缺乏的现状。结合各类红树林群落水、土、生三要素进行典范对应分析(CCA)的结果表明:1)典范对应分析方法用于分析淇澳岛大围湾各类红树林典型群落寒害后及寒害5年后的群落生物过程特征与各种生境因子间的相关关系,效果良好,前4组自变量的典型变量可以解释标准变量中绝大部分(约80%以上)的信息。2)恢复重建5年后,淇澳岛大围湾各类红树林群落中中潮位的无瓣海桑(Sonneratia apetala)群落和高潮位的桐花树(Aegiceras comiculatum)群落拓展最快,面积分别增加26.58hm~2和23.1 hm~2,而互花米草(Spartina alterniflora)群落因无瓣海桑群落的扩张而受到抑制,面积下降31.51hm~2。3)水域pH、沉积物(S)pH、OM、DO、COD等水土指标与冠幅、胸径、基径、盖度和高度等生物过程指标依次正相关,而PO_4-P、TSS和TIN等水域指标与生物过程指标依次负相关。4)珠海淇澳岛大围湾红树林湿地生态系统对水域悬浮物和营养元素的固定效果明显,但其植被生物过程受水土因素,尤其是水文因素,影响较大,其中影响最大的生境因素是pH值(包括水域pH值和沉积物(S)pH值)。低中潮位、中性至弱碱性的表层沉积物生境条件较为适合无瓣海桑和老鼠簕(Acanthus ilicifolius)等红树植物群落的初期恢复。  相似文献   

14.
Penguin colony is one of the Earth’s simplest ecosystems. As the seabird with the largest population in Antarctica, penguin is a unique indicator of Antarctic environment and climate changes. In this study, we collected an ornithogenic sediment core from Gardner Island in Vestfold Hills, East Antarctica, reconstructed an 8,500 years variation history of penguin population and vegetation abundance on this island, and examined the evolution of the penguin colony. We used the levels of two molecular markers cholesterol and cholestanol as the proxy indicators of penguin population size. Other molecular markers, including C24:0 alkenoic acid, C18 n-alkanol and phytol were used as the proxy indicators of aquatic moss, algae, and general vegetation, respectively. It is shown that the growth of algae was mainly affected by the nutritional supply from penguin droppings, so their abundance was positively linked with penguin population. The growth of aquatic moss, however, was controlled more by the degree of water body transparency than by nutrient availability. Because the pollution of water body increased as penguin population grew, aquatic moss abundance showed a seesaw-like relationship with penguin population. These results suggested that penguins played a dominant role in this simple ecosystem in the Antarctic environment. The reconstructed relationship between penguin population and vegetation abundance may offer new insights to understand ancient Antarctic environment and ecology.  相似文献   

15.
Within the past several decades, seabird populations have been actively restored in locales where they were reduced or extirpated. Chick translocation, acoustic vocalization playbacks, and decoys are now used widely to lure breeding seabirds to restoration sites. In this first worldwide review of seabird restoration projects we evaluate the factors affecting project success or failure and recommend future directions for management. We identified 128 active restoration projects that were implemented to protect 47 seabird species in 100 locales spanning 14 countries since active restoration methods were pioneered in 1973. Active seabird restoration can achieve conservation goals for threatened and endangered species, and for species affected by anthropogenic impacts (e.g., oil spills, invasive species, fisheries). It also can be used to relocate populations from undesired breeding locales to more favorable locations, and to establish multiple breeding locations to reduce risks posed by catastrophic events. Active restoration can help to restore ecological processes, as large seabird colonies function to cycle marine nutrients to terrestrial ecosystems and create habitats for commensal species. Active restoration is especially appropriate where the original causes of decline are no longer working to suppress colony establishment and growth. Successful restoration efforts require careful planning and long-term commitments. We introduce the different forms of active seabird restoration techniques, review their utility for different seabird species, and use case studies to suggest how to optimize this technique to restore seabird species globally. Wildlife managers can use this review to guide their seabird restoration projects in the planning, implementation, and monitoring stages; tailor their restoration to seabird-specific life histories; and identify areas for further research to improve restoration utility in the future. © 2011 The Wildlife Society.  相似文献   

16.
Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher’s equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase–a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics.  相似文献   

17.
We tested the hypothesis that the community structure and biochemical composition of macroalgae reflect the degree of nutrient concentrations in the water column. Benthic community structure and tissue nitrogen (N) content of macroalgae on intertidal rocky shores at three sites were investigated in relation to sewage effluents on Mireuk Island, Tongyeong city, on the southern coast of Korea. Ulva australis clearly dominated at site 1, which was close to a sewage treatment plant, where higher dissolved inorganic N and dissolved inorganic phosphate concentrations were observed. U. australis-dominated communities also appeared at site 2 (intermediate levels of nutrient enrichment). The macroalgal assemblage at site 3 (unimpacted site) was significantly different from those at sites 1 and 2. Five species (U. australis, Sargassum fusiforme, Grateloupia elliptica, Gelidium amansii, and Sargassum horneri) were dominant at site 3, representing 87 % of the total coverage throughout the study period. Species richness (d), evenness (J'), and diversity index (H') were highest at site 3, intermediate at site 2, and lowest at site 1, showing a negative relationship with nutrient levels. These results indicate that macroalgal community structure can be used as a bioindicator in water quality assessment. The tissue N content of green and red algae was responsive to nutrient availability, while the tissue N content of brown algae was relatively unchanged among the sites. This suggests that tissue N content as a bioindicator for detecting the influence of sewage effluent should be considered to reflect the N storage capacity of macroalgae.  相似文献   

18.
Yellow crazy ants (Anoplolepis gracilipes) are a significant threat to biodiversity due to a rapidly expanding range and the potential to disrupt ecosystem interactions at multiple trophic levels. Extirpation of ground-nesting seabirds subsequent to yellow crazy ant invasion has been reported anecdotally. Yellow crazy ant control is difficult and resulting positive effects on nesting seabirds is undocumented. We report the effects of ant invasion and subsequent control on burrow-nesting seabirds following the invasion of more than half of a 1.25-ha wedge-tailed shearwater (Ardenna pacifica) colony located on eastern O‘ahu. The number of active seabird burrows in invaded areas dropped from 125 in 2006 to 6 in 2010, with no corresponding decline in active burrows in adjacent, uninvaded areas. Ant control efforts in 2011 reduced ant densities by more than 97% and resulted in a substantial increase in active burrows (43 in 2011). In invaded areas, burrows appeared to be abandoned by adults prior to egg-laying. Chicks surviving in invaded areas exhibited mild to severe developmental abnormalities, and overall had shorter culmens, tarsi and wingchords, smaller eye diameters, and lower weights than chicks outside invaded areas. We conclude that yellow crazy ants constitute a significant, and likely underestimated, risk to ground-nesting seabirds. Loss of seabird nesting colonies can have significant effects on nutrient inputs, and can bring about shifts in plant communities and faunal composition. Range expansion of yellow crazy ants is expected and ant/seabird interactions are likely to increase.  相似文献   

19.
The seabird tick Ixodes uriae parasitizes over 60 host species in the circumpolar regions of both hemispheres. To assess the impacts of these ticks on the growth and development of nestling seabirds, we used a logistic growth model to interpolate between successive measures of mass (g) and wing chord (mm) for 558 Cassin's auklet Ptychoramphus aleuticus and 344 rhinoceros auklet Cerorhinca monocerata chicks over 11 years (1997–2008, less 2003) on Triangle Island, British Columbia, Canada. From the model, we estimated the asymptotic measure and the age at inflection point for each chick's growth trajectory, and assessed their relationships with tick load relative to other sources of annual and seasonal variation in growth. Most chicks (72.4% of Cassin's auklets, 62.2% of rhinoceros auklets) hosted ≥ 1 ticks, and the median tick load on infested chicks was two in both species. Infestation rates varied by a factor of about two among years (0.42 to 0.87 overall), but were uncorrelated between species and with air temperatures over the preceding winter. The probability of hosting a tick declined strongly with chick age, mainly in the first 20 days after hatching, and to near zero by fledging. Asymptotic weights and/or wing lengths declined with tick load in both species, but at normal loads the reductions were minor relative to those imposed by other factors; only at very high loads, which were rare, were effects likely to be biologically relevant. Tick load and survival to fledging were unrelated in both species. While our study found little influence of ticks, we believe there is need for further study of the relationships between parasites and seabird demography, especially in light of ongoing environmental change.  相似文献   

20.
Stomatal behavior in response to drought has been the focus of intensive research, but less attention has been paid to stomatal density. In this study, 5-week-old maize seedlings were exposed to different soil water contents. Stomatal density and size as well as leaf gas exchange were investigated after 2-, 4- and 6-week of treatment, which corresponded to the jointing, trumpeting, and filling stages of maize development. Results showed that new stomata were generated continually during leaf growth. Reduced soil water content significantly stimulated stomatal generation, resulting in a significant increase in stomatal density but a decrease in stomatal size and aperture. Independent of soil water conditions, stomatal density and length in the trumpeting and filling stages were greater than in the jointing stage. Irrespective of growth stage, severe water deficit significantly reduced stomatal conductance (G s), decreasing the leaf transpiration rate (T r) and net photosynthetic rate (P n). Stomatal density was significantly negatively correlated with both P n and T r but more strongly with T r, so the leaf instantaneous water use efficiency (WUE i ) correlated positively with stomatal density. In conclusion, drought led to a significant increase in stomatal density and a reduction in stomatal size and aperture, resulting in decreased P n and T r. Because the negative correlation of stomatal density to T r was stronger than that to P n, leaf WUE i tended to increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号