首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Repetitive transcranial magnetic stimulation (rTMS) is increasingly used to investigate mechanisms of brain functions and plasticity, but also as a promising new therapeutic tool. The effects of rTMS depend on the intensity and frequency of stimulation and consist of changes of cortical excitability, which often persists several minutes after termination of rTMS. While these findings imply that cortical processing can be altered by applying current pulses from outside the brain, little is known about how rTMS persistently affects learning and perception. Here we demonstrate in humans, through a combination of psychophysical assessment of two-point discrimination thresholds and functional magnetic resonance imaging (fMRI), that brief periods of 5 Hz rTMS evoke lasting perceptual and cortical changes. rTMS was applied over the cortical representation of the right index finger of primary somatosensory cortex, resulting in a lowering of discrimination thresholds of the right index finger. fMRI revealed an enlargement of the right index finger representation in primary somatosensory cortex that was linearly correlated with the individual rTMS-induced perceptual improvement indicative of a close link between cortical and perceptual changes. The results demonstrate that repetitive, unattended stimulation from outside the brain, combined with a lack of behavioral information, are effective in driving persistent improvement of the perception of touch. The underlying properties and processes that allow cortical networks, after being modified through TMS pulses, to reach new organized stable states that mediate better performance remain to be clarified.  相似文献   

3.
The influence of ageing on supra-threshold intensity perception of NaCl, KCl, sucrose, aspartame, acetic acid, citric acid, caffeine, quinine HCl, monosodium glutamate (MSG) and inosine 5'-monophosphate (IMP) dissolved in water and in 'regular' product was studied in 21 young (19-33 years) and 21 elderly (60-75 years) persons. While the relative perception (intensity discrimination) seems to be remarkably resistant to the effect of ageing, the absolute perception (intensity rating) decreased with age for all tastants in water, but only for the salty and sweet tastants in product. When assessed while wearing a nose clip, only the perception of salty tastants was diminished with age. The slopes of the psychophysical functions were flatter in the elderly than in the young for the sweet, bitter and umami tastants in water, and for the sour tastants in product only. The age effects found were almost exclusively generic and never compound-specific within a taste. This study indicates that the relevance of determining intensities of tastants dissolved in water for the 'real life' perception of taste in complex food is rather limited.  相似文献   

4.

Background

The haptic perception of ground compliance is used for stable regulation of dynamic posture and the control of locomotion in diverse natural environments. Although rarely investigated in relation to walking, vibrotactile sensory channels are known to be active in the discrimination of material properties of objects and surfaces through touch. This study investigated how the perception of ground surface compliance is altered by plantar vibration feedback.

Methodology/Principal Findings

Subjects walked in shoes over a rigid floor plate that provided plantar vibration feedback, and responded indicating how compliant it felt, either in subjective magnitude or via pairwise comparisons. In one experiment, the compliance of the floor plate was also varied. Results showed that perceived compliance of the plate increased monotonically with vibration feedback intensity, and depended to a lesser extent on the temporal or frequency distribution of the feedback. When both plate stiffness (inverse compliance) and vibration amplitude were manipulated, the effect persisted, with both factors contributing to compliance perception. A significant influence of vibration was observed even for amplitudes close to psychophysical detection thresholds.

Conclusions/Significance

These findings reveal that vibrotactile sensory channels are highly salient to the perception of surface compliance, and suggest that correlations between vibrotactile sensory information and motor activity may be of broader significance for the control of human locomotion than has been previously acknowledged.  相似文献   

5.
The objective and subjective indexes of sound stimulus discrimination have been studied in order to get insight into individual stages of signal processing in the human brain. The experiment employed two methods: electrophysiological (mismatch negativity or MMN recording) and psychophysical (two-alternative forced choice). Two types of spatial sound stimuli simulated gradual and abrupt sound motion from the head midline. The subjective discrimination between the gradual and abrupt motions was estimated as a function of the stimulus trajectory length. MMN as an objective index of spatial discrimination has been obtained in response to the subthreshold and the suprathreshold levels of psychophysical discrimination. An increase in the angular displacement of the moving stimuli resulted in an increase in both the MMN amplitude and the subjective discrimination, although their correlation remained below the significance level. The results obtained are discussed from the point of view of preconscious perception of auditory spatial information.  相似文献   

6.
In 1923, Max Wertheimer proposed a research programme and method in visual perception. He conjectured the existence of a small set of geometric grouping laws governing the perceptual synthesis of phenomenal objects, or "gestalt" from the atomic retina input. In this paper, we review this set of geometric grouping laws, using the works of Metzger, Kanizsa and their schools. In continuation, we explain why the Gestalt theory research programme can be translated into a Computer Vision programme. This translation is not straightforward, since Gestalt theory never addressed two fundamental matters: image sampling and image information measurements. Using these advances, we shall show that gestalt grouping laws can be translated into quantitative laws allowing the automatic computation of gestalts in digital images. From the psychophysical viewpoint, a main issue is raised: the computer vision gestalt detection methods deliver predictable perception thresholds. Thus, we are set in a position where we can build artificial images and check whether some kind of agreement can be found between the computationally predicted thresholds and the psychophysical ones. We describe and discuss two preliminary sets of experiments, where we compared the gestalt detection performance of several subjects with the predictable detection curve. In our opinion, the results of this experimental comparison support the idea of a much more systematic interaction between computational predictions in Computer Vision and psychophysical experiments.  相似文献   

7.
The presence of non-simultaneous maskers can result in strong impairment in auditory intensity resolution relative to a condition without maskers, and causes a complex pattern of effects that is difficult to explain on the basis of peripheral processing. We suggest that the failure of selective attention to the target tones is a useful framework for understanding these effects. Two experiments tested the hypothesis that the sequential grouping of the targets and the maskers into separate auditory objects facilitates selective attention and therefore reduces the masker-induced impairment in intensity resolution. In Experiment 1, a condition favoring the processing of the maskers and the targets as two separate auditory objects due to grouping by temporal proximity was contrasted with the usual forward masking setting where the masker and the target presented within each observation interval of the two-interval task can be expected to be grouped together. As expected, the former condition resulted in a significantly smaller masker-induced elevation of the intensity difference limens (DLs). In Experiment 2, embedding the targets in an isochronous sequence of maskers led to a significantly smaller DL-elevation than control conditions not favoring the perception of the maskers as a separate auditory stream. The observed effects of grouping are compatible with the assumption that a precise representation of target intensity is available at the decision stage, but that this information is used only in a suboptimal fashion due to limitations of selective attention. The data can be explained within a framework of object-based attention. The results impose constraints on physiological models of intensity discrimination. We discuss candidate structures for physiological correlates of the psychophysical data.  相似文献   

8.
Overbosch  P. 《Chemical senses》1986,11(3):315-329
The psychophysical literature on human taste and smell was searchedfor measurements and theories on the relationship between stimulusintensity and perceived intensity over time. The material availabledid not contain a model which could be applied to changing stimuluslevels, but sufficient data were found to postulate one. Thetime course of perceived intensity during stimulation can bedescribed by a time-dependent version of the power law. Thisinvolves a differential equation which relates the thresholdof perception to the time course of the presented stimulus.The results of our own panel tests correspond fully with thepredictions arising from the theory presented herein. The sametrend is also visible in literature curves.  相似文献   

9.
10.
The motion energy sensor has been shown to account for a wide range of physiological and psychophysical results in motion detection and discrimination studies. It has become established as the standard computational model for retinal movement sensing in the human visual system. Adaptation effects have been extensively studied in the psychophysical literature on motion perception, and play a crucial role in theoretical debates, but the current implementation of the energy sensor does not provide directly for modelling adaptation-induced changes in output. We describe an extension of the model to incorporate changes in output due to adaptation. The extended model first computes a space-time representation of the output to a given stimulus, and then a RC gain-control circuit (“leaky integrator”) is applied to the time-dependent output. The output of the extended model shows effects which mirror those observed in psychophysical studies of motion adaptation: a decline in sensor output during stimulation, and changes in the relative of outputs of different sensors following this adaptation.  相似文献   

11.
On the basis of the general character and operation of the process of perception, a formalism is sought to mathematically describe the subjective or abstract/mental process of perception. It is shown that the formalism of orthodox quantum theory of measurement, where the observer plays a key role, is a broader mathematical foundation which can be adopted to describe the dynamics of the subjective experience. The mathematical formalism describes the psychophysical dynamics of the subjective or cognitive experience as communicated to us by the subject. Subsequently, the formalism is used to describe simple perception processes and, in particular, to describe the probability distribution of dominance duration obtained from the testimony of subjects experiencing binocular rivalry. Using this theory and parameters based on known values of neuronal oscillation frequencies and firing rates, the calculated probability distribution of dominance duration of rival states in binocular rivalry under various conditions is found to be in good agreement with available experimental data. This theory naturally explains an observed marked increase in dominance duration in binocular rivalry upon periodic interruption of stimulus and yields testable predictions for the distribution of perceptual alteration in time.  相似文献   

12.
Wright  R. H. 《Chemical senses》1978,3(1):73-79
The molecular-kinetic theory as applied to the interaction ofgaseous molecules with a solid surface leads to formulae whichare consistent with the results of psychophysical measurementsof perceived odor intensity.  相似文献   

13.
A multilayer neural nerwork model for the perception of rotational motion has been developed usingReichardt's motion detector array of correlation type, Kohonen's self-organized feature map and Schuster-Wagner's oscillating neural network. It is shown that the unsupervised learning could make the neurons on the second layer of the network tend to be self-organized in a form resembling columnar organization of selective directions in area MT of the primate's visual cortex. The output layer can interpret rotation information and give the directions and velocities of rotational motion. The computer simulation results are in agreement with some psychophysical observations of rotation-al perception. It is demonstrated that the temporal correlation between the oscillating neurons would be powerful for solving the "binding problem" of shear components of rotational motion.  相似文献   

14.
Recent studies combining psychophysical and neurophysiological experiments in behaving monkeys have provided new insights into how several cortical areas integrate efforts to solve a vibrotactile discrimination task. In particular, these studies have addressed how neural codes are related to perception, working memory and decision making in this model. The primary somatosensory cortex drives higher cortical areas where past and current sensory information are combined, such that a comparison of the two evolves into a behavioural decision. These and other observations in visual tasks indicate that decisions emerge from highly-distributed processes in which the details of a scheduled motor plan are gradually specified by sensory information.  相似文献   

15.
This article provides an overview of the published research of John Gibbon. It describes his experimental research on scalar timing and his development of scalar timing theory. It also describes his methods of research which included mathematical analysis, conditioning methods, psychophysical methods and secondary data analysis. Finally, it describes his application of scalar timing theory to avoidance and punishment, autoshaping, temporal perception and timed behavior, foraging, circadian rhythms, human timing, and the effect of drugs on timed perception and timed performance of Parkinson's patients. The research of Gibbon has shown the essential role of timing in perception, classical conditioning, instrumental learning, behavior in natural environments and in neuropsychology.  相似文献   

16.
Cellular mechanisms underlying synaptic plasticity are in line with the Hebbian concept. In contrast, data linking Hebbian learning to altered perception are rare. Combining functional magnetic resonance imaging with psychophysical tests, we studied cortical reorganization in primary and secondary somatosensory cortex (SI and SII) and the resulting changes of tactile perception before and after tactile coactivation, a simple type of Hebbian learning. Coactivation on the right index finger (IF) for 3 hr lowered its spatial discrimination threshold. In parallel, blood-oxygen level-dependent (BOLD) signals from the right IF representation in SI and SII enlarged. The individual threshold reduction was linearly correlated with the enlargement in SI, implying a close relation between altered discrimination and cortical reorganization. Controls consisting of a single-site stimulation did not affect thresholds and cortical maps. Accordingly, changes within distributed cortical networks based on Hebbian mechanisms alter the individual percept.  相似文献   

17.
A neural model is constructed based on the structure of a visual orientation hypercolumn in mammalian striate cortex. It is then assumed that the perceived orientation of visual contours is determined by the pattern of neuronal activity across orientation columns. Using statistical estimation theory, limits on the precision of orientation estimation and discrimination are calculated. These limits are functions of single unit response properties such as orientation tuning width, response amplitude and response variability, as well as the degree of organization in the neural network. It is shown that a network of modest size, consisting of broadly orientation selective units, can reliably discriminate orientation with a precision equivalent to human performance. Of the various network parameters, the discrimination threshold depends most critically on the number of cells in the hypercolumn. The form of the dependence on cell number correctly predicts the results of psychophysical studies of orientation discrimination. The model system's performance is also consistent with psychophysical data in two situations in which human performance is not optimal. First, interference with orientation discrimination occurs when multiple stimuli activate cells in the same hypercolumn. Second, systematic errors in the estimation of orientation can occur when a stimulus is composed of intersecting lines. The results demonstrate that it is possible to relate neural activity to visual performance by an examination of the pattern of activity across orientation columns. This provides support for the hypothesis that perceived orientation is determined by the distributed pattern of neural activity. The results also encourage the view of neural activity. The results also are determined by the responses of many neurons rather than the sensitivity of individual cells.  相似文献   

18.
Many theories of human stereovision are based on feature matching and the related correspondence problem. In this paper, we present psychophysical experiments indicating that localized image features such as Laplacian zerocrossings, intensity extrema, or centroids are not necessary for binocular depth perception. Smooth one-dimensional intensity profiles were combined into stereograms with mirror-symmetric half-images such that these localized image features were either absent or did not carry stereo information. In a discrimination task, subjects were asked to distinguish between stereograms differing only by an exchange of these half-images (ortho- vs. pseudoscopic stereograms). In a depth ordering task, subjects had to judge which of the two versions appeared in front. Subjects are able to solve both tasks even in the absence of the mentioned image features. The performance is compared to various possible stereo mechanisms. We conclude that localized image features and the correspondences between them are not necessary to perceive stereoscopic depth. One mechanism accounting for our data is correlation or mean square difference. Received: 8 February 1994 / Accepted in revised form: 15 September 1994  相似文献   

19.
Flow data from a cell sorter have been processed by hardwired circuits which include amplification, discrimination, coincidence requirements, peak sensing and holding, A-D conversion, and a computerized pulse height analysis with storage of the spectra obtained. Two dimensional spectra can be stored directly in memory, on tape and disk. Three and four parametric cellular events can be recorded on line during the flow measurement in a sequential mode on tape for subsequent recall. Simple processing of these data can be performed for displaying of two dimensional projections from these multidimensional spaces based on threshold conditions for the remaining parameters. Interfaced transmission of the stored data to a large scale computer enables more sophisticated data analysis. Data reduction by means of a multidimensional probability analysis has been carried out in order to transfer the spectra to a computerized picture system for display. This system creates perspective two-dimensional images from a three-dimensional data space. Frequency can be converted into grey levels. Hard copy in color (color as the third dimension and color intensity as frequency) simplifies the visualization of multiparametric flow data sets.  相似文献   

20.
Zhaoping L  Geisler WS  May KA 《PloS one》2011,6(5):e19248
We show that human ability to discriminate the wavelength of monochromatic light can be understood as maximum likelihood decoding of the cone absorptions, with a signal processing efficiency that is independent of the wavelength. This work is built on the framework of ideal observer analysis of visual discrimination used in many previous works. A distinctive aspect of our work is that we highlight a perceptual confound that observers should confuse a change in input light wavelength with a change in input intensity. Hence a simple ideal observer model which assumes that an observer has a full knowledge of input intensity should over-estimate human ability in discriminating wavelengths of two inputs of unequal intensity. This confound also makes it difficult to consistently measure human ability in wavelength discrimination by asking observers to distinguish two input colors while matching their brightness. We argue that the best experimental method for reliable measurement of discrimination thresholds is the one of Pokorny and Smith, in which observers only need to distinguish two inputs, regardless of whether they differ in hue or brightness. We mathematically formulate wavelength discrimination under this wavelength-intensity confound and show a good agreement between our theoretical prediction and the behavioral data. Our analysis explains why the discrimination threshold varies with the input wavelength, and shows how sensitively the threshold depends on the relative densities of the three types of cones in the retina (and in particular predict discriminations in dichromats). Our mathematical formulation and solution can be applied to general problems of sensory discrimination when there is a perceptual confound from other sensory feature dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号