首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A hybrid functional electrical stimulation (FES) orthosis is described, comprising a rigid ankle-foot brace, a multi-channel FES stimulator with surface electrodes, body mounted sensors, a ‘rule-based’ controller and an electro-cutaneous display for supplementary sensory feedback. The mechanical brace provides stability, without FES activation of muscles, for standing postures normally adopted by patients. This avoids inducing muscle fatigue during prolonged upright activity. However, stability is conditional upon the position of the ground reaction vector (GRV) relative to the knee joint. The finite state FES controller reacts automatically to destabilizing shifts of the GRV by stimulating appropriate anti-gravity musculature to brace the leg. The FES system also features a control mode to initiate and terminate flexion of the leg during forward progression. A simple mode of supplementary sensory feedback was used during the laboratory standing tests to assist the patient in maintaining a set posture. Preliminary results of laboratory tests for two spinal cord injured subjects are presented.  相似文献   

2.

Background

Recent research has argued that removal of relevant sensory information during the planning and control of simple, self-paced walking can result in increased demand on central processing resources in Parkinson’s disease (PD). However, little is known about more complex gait tasks that require planning of gait adaptations to cross over an obstacle in PD.

Methods

In order to understand the interaction between availability of visual information relevant for self-motion and cognitive load, the current study evaluated PD participants and healthy controls while walking toward and stepping over an obstacle in three visual feedback conditions: (i) no visual restrictions; (ii) vision of the obstacle and their lower limbs while in complete darkness; (iii) vision of the obstacle only while in complete darkness; as well as two conditions including a cognitive load (with a dual task versus without a dual task). Each walk trial was divided into an early and late phase to examine changes associated with planning of step adjustments when approaching the obstacle.

Results

Interactions between visual feedback and dual task conditions during the obstacle approach were not significant. Patients with PD had greater deceleration and step time variability in the late phase of the obstacle approach phase while walking in both dark conditions compared to control participants. Additionally, participants with PD had a greater number of obstacle contacts when vision of their lower limbs was not available specifically during the dual task condition. Dual task performance was worse in PD compared to healthy control participants, but notably only while walking in the dark regardless of visual feedback.

Conclusions

These results suggest that reducing visual feedback while approaching an obstacle shifts processing to somatosensory feedback to guide movement which imposes a greater demand on planning resources. These results are key to fully understanding why trips and falls occur in those with PD.
  相似文献   

3.
Functional Electrical Stimulation (FES) is a technique used to improve mobility and function for patients suffering some neurological related diseases such us Multiple Sclerosis (MS) and stroke. Some patients might require FES applied in more than one location depending on the extent of the neurological condition. Currently, this can be achieved using multi-channel FES systems. However, these systems can be bulky and impractical in daily usage. This research investigates using a wireless distributed FES system to overcome some of the limitations of the current multi-channel systems. A prototype of a three-channel FES system was built and tested. The prototype is used for drop foot stimulation and reciprocal arm swing stimulation while the user is walking, and for elbow extension and wrist/fingers opening stimulation if triggered while standing or sitting. A pilot study was designed to evaluate the reliability and repeatability of the system with 11 healthy volunteers without applying stimulation. This was followed by a case study with a hemiplegic person. The results indicate that the system can successfully detect and generate output responses appropriate to the input signals from the body sensors.  相似文献   

4.
It has been suggested that the foot acts as a twisted osteoligamentous plate to control pronation and facilitate supination during walking. The aim of this study was to investigate the effect of an orthosis inspired by the concept of a foot’s twisted osteoligamentous plate on the kinematics of foot-ankle complex. Thirty-five subjects underwent a kinematic assessment of the foot-ankle complex during walking using three different orthoses: (1) Twisted Plate Spring (TPS) orthosis: inspired by the concept of a twisted osteoligamentous plate shape and made with a spring-like material (carbon fiber); (2) Flat orthosis: control orthosis made of a non-elastic material with a non-inclined surface; and (3) Rigid orthosis: control orthosis made of a non-elastic material, with the same shape of the TPS. Repeated measures analyses of variance demonstrated that the TPS reduced the duration and magnitude of rearfoot eversion (p ≤ 0.03), increased rearfoot inversion relative to shank (p < 0.01), increased forefoot eversion relative to rearfoot (p < 0.01), and increased peak of plantar flexion of forefoot relative to rearfoot during the propulsive phase (p = 0.01) compared to Flat orthosis. The effects of the TPS were different from the Rigid orthosis, demonstrating that, alongside shape, material properties were a determinant factor for the obtained results. The findings of this study help clarify the role of a mechanism similar to a twisted osteoligamentous plate on controlling foot pronation and facilitating supination during the stance phase of walking.  相似文献   

5.
6.
A long‐standing controversy questions whether foraging bark beetles assess the suitability of individual host trees using cues at close range while flying or engage in random landing followed by contact assessment. In most cases, visual discrimination mechanisms are ignored. We show that pheromone‐responding mountain pine beetles (MPB), Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), can visually discriminate between ‘host’ (black) and ‘non‐host’ (white) traps arranged in small clusters, in the absence of additional host olfactory information, and that males (but not females) demonstrate a greater preference for combined host visual and olfactory cues. However, white, non‐host traps baited with a host volatile were as attractive as unbaited, black host traps. Our results support the hypotheses that when deciding to land, the MPBs integrate visual and olfactory information and can process cues in both sensory modes at relatively close range (≤2 m). Thus, host selection mechanisms in this species are unlikely to be random with respect to either sensory mode.  相似文献   

7.
The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants'' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants'' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation.  相似文献   

8.
The ‘sensory turn’ in anthropology has generated a significant literature on sensory perception and experience. Whilst much of this literature is critical of the compartmentalization of particular ‘senses’, there has been limited exploration of how anthropologists might examine sensory perception beyond ‘the senses’. Based on ethnographic fieldwork with people who have impaired vision walking the South Downs landscape in England, this article develops such an approach. It suggests that the experiences of seeing in blindness challenge the conceptualization of ‘vision’ (and ‘non-vision’). In place of ‘vision’ (as a sense), the article explores ‘activities of seeing’ – an approach that contextualizes the visual to examine the biographically constituted and idiosyncratic nature of perception within an environment. Through an ethnography of seeing with anatomical eyes and ‘seeing in the mind's eye’, it articulates an approach that avoids associating perception with anatomy, or compartmentalizing experience into ‘senses’.  相似文献   

9.
Standing by means of functional electrical stimulation (FES) after spinal cord injury is a topic widely reported in the neurorehabilitation literature. This practice commonly uses surface stimulation over the quadriceps muscle to evoke knee extension. To date, most FES neuroprostheses still operate without any artificial feedback, meaning that after a fatigue-driven knee buckle event, the stimulation amplitude or pulse width must be increased manually via button presses to re-establish knee-lock. This is often referred to as ‘hand-controlled (HC) operation’. In an attempt to provide a safer, yet clinically practical approach, this study proposed two novel strategies to automate the control of knee extension based on the kinematic feedback of four miniaturised motion sensors. These strategies were compared to the traditional HC strategy on four individuals with complete paraplegia. The standing times observed over multiple trials were in general longer for the automated strategies when compared to HC (0.5–80%). With the automated strategies, three of the subjects tended to need less upper body support over a frame to maintain balance. A stability analysis based on centre of pressure (CoP) measurements also favoured the automated strategies. This analysis also revealed that although FES standing with the assistance of a frame was likely to be safe for the subjects, their stability was still inferior to that of able-bodied individuals. Overall, the unpredictability of knee buckle events could be more effectively controlled by automated FES strategies to re-establish knee-lock when compared to the traditional user-controlled approach, thus demonstrating the safety and clinical efficacy of an automated approach.  相似文献   

10.
Upright posture, standing up from a chair, and gait were analyzed in patients after one-sided total hip replacement and in healthy subjects (control). It was found that the patients predominantly loaded the unoperated leg when they stood quietly or rose from a chair. Subjects’ walking on a 10-m podograph treadmill showed that their walking speed was slower than that of healthy subjects and the swing phase on the side of hip replacement was longer than on the unoperated side. It was assumed that the unequal load on legs during walking, standing, and sit-to-stand performance in patients with total hip replacement was related to the sensory deficit of the artificial joint, leading to the overstrain of the unoperated leg and coxarthrosis in it.  相似文献   

11.
Standing and walking balance control in humans relies on the transformation of sensory information to motor commands that drive muscles. Here, we evaluated whether sensorimotor transformations underlying walking balance control can be described by task-level center of mass kinematics feedback similar to standing balance control. We found that delayed linear feedback of center of mass position and velocity, but not delayed linear feedback from ankle angles and angular velocities, can explain reactive ankle muscle activity and joint moments in response to perturbations of walking across protocols (discrete and continuous platform translations and discrete pelvis pushes). Feedback gains were modulated during the gait cycle and decreased with walking speed. Our results thus suggest that similar task-level variables, i.e. center of mass position and velocity, are controlled across standing and walking but that feedback gains are modulated during gait to accommodate changes in body configuration during the gait cycle and in stability with walking speed. These findings have important implications for modelling the neuromechanics of human balance control and for biomimetic control of wearable robotic devices. The feedback mechanisms we identified can be used to extend the current neuromechanical models that lack balance control mechanisms for the ankle joint. When using these models in the control of wearable robotic devices, we believe that this will facilitate shared control of balance between the user and the robotic device.  相似文献   

12.
Muscle fatigue is both multifactorial and task dependent. Electrical stimulation may assist individuals with paralysis to perform functional activities [functional electrical stimulation (FES), e.g., standing or walking], but muscle fatigue is a limiting factor. One method of optimizing force is to use stimulation patterns that exploit the catchlike property of skeletal muscle [catchlike-inducing trains (CITs)]. Although nonisometric (dynamic) contractions are important parts of both normal physiological activation of skeletal muscles and FES, no previous studies have attempted to identify the effect that the load being lifted by a muscle has on the fatigue produced. This study examined the effects of load on fatigue during dynamic contractions and the augmentation produced by CITs as a function of load. Knee extension in healthy subjects was electrically elicited against three different loads. The highest load produced the least excursion, work, and average power, but it produced the greatest fatigue. CIT augmentation was greatest at the highest load and increased with fatigue. Because CITs were effective during shortening contractions for a variety of loads, they may be of benefit during FES applications.  相似文献   

13.
Freezing of gait (FOG) is arguably the most severe symptom associated with Parkinson’s disease (PD), and often occurs while performing dual tasks or approaching narrowed and cluttered spaces. While it is well known that visual cues alleviate FOG, it is not clear if this effect may be the result of cognitive or sensorimotor mechanisms. Nevertheless, the role of vision may be a critical link that might allow us to disentangle this question. Gaze behaviour has yet to be carefully investigated while freezers approach narrow spaces, thus the overall objective of this study was to explore the interaction between cognitive and sensory-perceptual influences on FOG. In experiment #1, if cognitive load is the underlying factor leading to FOG, then one might expect that a dual-task would elicit FOG episodes even in the presence of visual cues, since the load on attention would interfere with utilization of visual cues. Alternatively, if visual cues alleviate gait despite performance of a dual-task, then it may be more probable that sensory mechanisms are at play. In compliment to this, the aim of experiment#2 was to further challenge the sensory systems, by removing vision of the lower-limbs and thereby forcing participants to rely on other forms of sensory feedback rather than vision while walking toward the narrow space. Spatiotemporal aspects of gait, percentage of gaze fixation frequency and duration, as well as skin conductance levels were measured in freezers and non-freezers across both experiments. Results from experiment#1 indicated that although freezers and non-freezers both walked with worse gait while performing the dual-task, in freezers, gait was relieved by visual cues regardless of whether the cognitive demands of the dual-task were present. At baseline and while dual-tasking, freezers demonstrated a gaze behaviour that neglected the doorway and instead focused primarily on the pathway, a strategy that non-freezers adopted only when performing the dual-task. Interestingly, with the combination of visual cues and dual-task, freezers increased the frequency and duration of fixations toward the doorway, compared to non-freezers. These results suggest that although increasing demand on attention does significantly deteriorate gait in freezers, an increase in cognitive demand is not exclusively responsible for freezing (since visual cues were able to overcome any interference elicited by the dual-task). When vision of the lower limbs was removed in experiment#2, only the freezers’ gait was affected. However, when visual cues were present, freezers’ gait improved regardless of the dual-task. This gait behaviour was accompanied by greater amount of time spent looking at the visual cues irrespective of the dual-task. Since removing vision of the lower-limbs hindered gait even under low attentional demand, restricted sensory feedback may be an important factor to the mechanisms underlying FOG.  相似文献   

14.
ObjectiveTo investigate the effects of functional electrical stimulation (FES) combined with conventional rehabilitation program on the effort and speed of walking, the surface electromyographic (sEMG) activity and metabolic responses in the management of drop foot in stroke subjects.MethodsFifteen patients with a drop foot resulting from stroke at least 3 months prior to the start of the trial took part in this study. All subjects were treated 1 h a day, 5 days a week, for 12 weeks, including conventional stroke rehabilitation program and received 30 min of FES to the tibialis anterior (TA) muscle of the paretic leg in clinical settings. Baseline and post-treatment measurements were made for temporal and spectral EMG parameters of TA muscle, walking speed, the effort of walking as measured by physiological cost index (PCI) and metabolic responses.ResultsThe experimental results showed a significant improvement in mean-absolute-value (21.7%), root-mean-square (66.3%) and median frequency (10.6%) of TA muscle EMG signal, which reflects increased muscle strength. Mean increase in walking speed was 38.7%, and a reduction in PCI of 34.6% between the beginning and at end of the trial. Improvements were also found in cardiorespiratory responses with reduction in oxygen consumption (24.3%), carbon dioxide production (19.9%), heart rate (7.8%) and energy cost (22.5%) while walking with FES device.ConclusionsThe results indicate that the FES may be a useful therapeutic tool combined with conventional rehabilitation program to improve the muscle strength, walking ability and metabolic responses in the management of drop foot with stroke patients.  相似文献   

15.
Reading performance during standing and walking was assessed for information presented on earth-fixed and head-fixed displays by determining the minimal duration during which a numerical time stimulus needed to be presented for 50% correct naming answers. Reading from the earth-fixed display was comparable during standing and walking, with optimal performance being attained for visual character sizes in the range of 0.2° to 1°. Reading from the head-fixed display was impaired for small (0.2-0.3°) and large (5°) visual character sizes, especially during walking. Analysis of head and eye movements demonstrated that retinal slip was larger during walking than during standing, but remained within the functional acuity range when reading from the earth-fixed display. The detrimental effects on performance of reading from the head-fixed display during walking could be attributed to loss of acuity resulting from large retinal slip. Because walking activated the angular vestibulo-ocular reflex, the resulting compensatory eye movements acted to stabilize gaze on the information presented on the earth-fixed display but destabilized gaze from the information presented on the head-fixed display. We conclude that the gaze stabilization mechanisms that normally allow visual performance to be maintained during physical activity adversely affect reading performance when the information is presented on a display attached to the head.  相似文献   

16.
Sensory activity contributes to motor control in two fundamentally different ways. It may mediate 'error signals' following sudden external perturbations and it may contribute to the pre-programmed motoneuronal drive. Here we review data, which illustrate these two functions of sensory feedback in relation to human walking. When ankle plantarflexors are unloaded in the stance phase there is a sudden decrease in the sensory activity in muscle and tendon afferents from the active muscles. This decrease in sensory activity results in a drop in EMG activity recorded from the soleus muscle, which demonstrates that the sensory activity contributes importantly to the activation of the muscles. Data suggests that a spinal pathway from gr. II muscle afferents is responsible for this positive feedback contribution to the motoneuronal drive during walking.When cutaneous nerves from the foot are stimulated in the early swing phase of walking a late reflex response may be observed in the tibialis anterior muscle. This reflex may help to ensure that the foot is lifted effectively over an obstacle. Data suggest that this reflex response is at least partly mediated by a transcortical reflex pathway. It seems to be important that reactions to external perturbations are integrated at a supraspinal level during human walking.  相似文献   

17.
This paper presents a case study that tested the feasibility and efficacy of using injectable microstimulators (BIONs) in a functional electrical stimulation (FES) device to correct foot drop. Compared with surface stimulation of the common peroneal nerve, stimulation with BIONs provides more selective activation of specific muscles. For example, stimulation of the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles with BIONs produces ankle flexion without excessive inversion or eversion of the foot (i.e., balanced flexion). Efficacy was assessed using a 3-dimensional motion analysis of the ankle and foot trajectories during walking with and without stimulation. Without stimulation, the toe on the affected leg drags across the ground. BION stimulation of the TA muscle and deep peroneal nerve (which innervates TA and EDL) elevates the foot such that the toe clears the ground by 3 cm, which is equivalent to the toe clearance in the less affected leg. The physiological cost index (PCI) measured effort during walking. The PCI equals the change in heart rate (from rest to activity) divided by the walking speed; units are beats per metre. The PCI is high without stimulation (2.29 +/- 0.37, mean +/- SD) and greatly reduced with surface (1.29 +/- 0.10) and BIONic stimulation (1.46 +/- 0.24). Also, walking speed increased from 9.4 +/- 0.4 m/min without stimulation to 19.6 +/- 2.0 m/min with surface and 17.8 +/- 0.7 m/min with BIONic stimulation. These results suggest that FES delivered by a BION is an alternative to surface stimulation and provides selective control of muscle activation.  相似文献   

18.
Knowledge about intra-limb coordination (ILC) during challenging walking conditions provides insight into the adaptability of central nervous system (CNS) for controlling human gait. We assessed the effects of cognitive load and speed on the pattern and variability of the ILC in young people during walking. Thirty healthy young people (19 female and 11 male) participated in this study. They were asked to perform 9 walking trials on a treadmill, including walking at three paces (preferred, slower and faster) either without a cognitive task (single-task walking) or while subtracting 1?s or 3?s from a random three-digit number (simple and complex dual-task walking, respectively). Deviation phase (DP) and mean absolute relative phase (MARP) values—indicators of variability and phase dynamic of ILC, respectively—were calculated using the data collected by a motion capture system. We used a two-way repeated measure analysis of variance for statistical analysis. The results showed that cognitive load had a significant main effect on DP of right shank–foot and thigh–shank, left shank–foot and pelvis–thigh (p<0.05), and MARP of both thigh–shank segments (p<0.01). In addition, the main effect of walking speed was significant on DP of all segments in each side and MARP of both thigh–shank and pelvis–thigh segments (p<0.001). The interaction of cognitive load and walking speed was only significant for MARP values of left shank–foot and right pelvis–thigh (p<0.05 and p<0.001, respectively). We suggest that cognitive load and speed could significantly affect the ILC and variability and phase dynamic during walking.  相似文献   

19.
The purpose of this research was to compare children’s lower extremity muscle activity and kinematics while walking at fast pace and training at fast speeds with and without motor-assistance on a pediatric-modified motor-assisted elliptical. Twenty-one children without disabilities were recruited and fifteen completed all three training conditions at self-selected fast pace. Repeated-measures ANOVAs identified muscle demand (peak, mean, duration) differences across device conditions and fast walking. Root mean square error compared overall kinematic profiles and statistical parametric mapping identified kinematic differences between conditions. Motor-assisted training reduced lower extremity muscle demands compared to training without the motor’s assistance (16 of 21 comparisons) and to fast walking (all but one comparison). Training without the motor’s assistance required less muscle effort than fast walking (16 of 21 comparisons). Kinematic differences between device conditions and fast walking were greater distally (thigh, knee, ankle) than proximally (trunk, pelvis, hip). In summary, transitioning from training with to without the motor’s assistance promoted progressively greater activity across the lower extremity muscles studied, with sagittal plane kinematic changes most apparent at the distal joints. Our findings highlight how motor-assistance can be manipulated to customize physiologic challenges to lower extremity muscles prior to fast overground walking.  相似文献   

20.
ABSTRACT: BACKGROUND: Increasing evidence suggests that use of augmented visual feedback could be a useful approach to stroke rehabilitation. In current clinical practice, visual feedback of movement performance is often limited to the use of mirrors or video. However, neither approach is optimal since cognitive and self-image issues can distract or distress patients and their movement can be obscured by clothing or limited viewpoints. Three-dimensional motion capture has the potential to provide accurate kinematic data required for objective assessment and feedback in the clinical environment. However, such data are currently presented in numerical or graphical format, which is often impractical in a clinical setting. Our hypothesis is that presenting this kinematic data using bespoke visualisation software, which is tailored for gait rehabilitation after stroke, will provide a means whereby feedback of movement performance can be communicated in a more meaningful way to patients. This will result in increased patient understanding of their rehabilitation and will enable progress to be tracked in a more accessible way. METHODS: The hypothesis will be assessed using an exploratory (phase II) randomised controlled trial. Stroke survivors eligible for this trial will be in the subacute stage of stroke and have impaired walking ability (Functional Ambulation Classification of 1 or more). Participants (n = 45) will be randomised into three groups to compare the use of the visualisation software during overground physical therapy gait training against an intensity-matched and attention-matched placebo group and a usual care control group. The primary outcome measure will be walking speed. Secondary measures will be Functional Ambulation Category, Timed Up and Go, Rivermead Visual Gait Assessment, Stroke Impact Scale-16 and spatiotemporal parameters associated with walking. Additional qualitative measures will be used to assess the participant's experience of the visual feedback provided in the study. DISCUSSION: Results from the trial will explore whether the early provision of visual feedback of biomechanical movement performance during gait rehabilitation demonstrates improved mobility outcomes after stroke and increased patient understanding of their rehabilitation.Trial registrationCurrent Controlled Trials ISRCTN79005974.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号