首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LY227942, (+/-)-N-methyl-3-(1-naphthalenyloxy)-3-(2-thiophene)propanamine ethanedioate, is a new, competitive inhibitor of monoamine uptake in synaptosomal preparations of rat brain. LY227942 inhibits uptake of serotonin (5-hydroxytryptamine, 5HT) and norepinephrine (NE) in cortical synaptosomes and uptake of dopamine (DA) in striatal synaptosomes with inhibitor constants (Ki values) of 8.5, 45 and 300 nM, respectively. Upon administration in vivo, LY227942 lowers 5HT and NE uptake in hypothalamus homogenates to half their respective control activities (ED50) at 0.74 and 1.2 mg/kg s.c., 7 and 12 mg/kg i.p., and 12 and 22 mg/kg p.o., but LY227942 at doses up to 30 mg/kg p.o. does not change DA uptake in striatal homogenates. Lowering of 5HT and NE uptake is demonstrated after 15 min and 6 hr, but has dissipated by 16 hr after oral administration. According to radioligand binding determinations, LY227942 possesses only weak affinity for muscarinic receptors, histamine-1 receptors, adrenergic receptors, dopamine receptors and serotonin receptors. These findings suggest that LY227942 has the pharmacological profile of an antidepressant drug and is useful to study the pharmacological responses of concerted enhancement of serotonergic and noradrenergic neurotransmission.  相似文献   

2.
Chiral N,N-disubstituted trifluoro-3-amino-2-propanols represent a recently discovered class of compounds that inhibit the neutral lipid transfer activity of cholesteryl ester transfer protein (CETP). These compounds all contain a single chiral center that is essential for inhibitory activity. (R,S)SC-744, which is composed of a mixture of the two enantiomers, inhibits CETP-mediated transfer of [(3)H]cholesteryl ester ([(3)H]CE) from HDL donor particles to LDL acceptor particles with an IC(50) = 200 nM when assayed using a reconstituted system in buffer and with an IC(50) = 6 microM when assayed in plasma. Upon isolation of the enantiomers, it was found that the (R,+) enantiomer, SC-795, was about 10-fold more potent than the mixture, and that the (S,-) enantiomer, SC-794, did not have significant inhibitory activity (IC(50) > 0.8 microM). All of the activity of the (S,-)SC-794 enantiomer could be accounted for by contamination of this sample with a residual 2% of the highly potent (R,+) enantiomer, SC-795. The IC(50) of (R,+)SC-795, 20 nM, approached the concentration of CETP (8 nM) in the buffer assay. These chiral N,N-disubstituted trifluoro-3-amino-2-propanols were found to associate with both LDL and HDL, but did not disrupt overall lipoprotein structure. They did not affect the on or off rates of CETP binding to HDL disk particles. Inhibition was highly specific since the activities of phospholipid transfer protein and lecithin cholesterol acyl transferase were not affected. Competition experiments showed that the more potent enantiomer (R)SC-795 prevented cholesteryl ester binding to CETP, and direct binding experiments demonstrated that this inhibitor bound to CETP with high affinity and specificity. It is estimated, based on the relative concentrations of inhibitor and lipid in the transfer assay, that (R)SC-795 binds approximately 5000-fold more efficiently to CETP than the natural ligand, cholesteryl ester. We conclude that these chiral N,N-disubstituted trifluoro-3-amino-2-propanol compounds do not affect lipoprotein structure or CETP-lipoprotein recognition, but inhibit lipid transfer by binding to CETP reversibly and stereospecifically at a site that competes with neutral lipid binding.  相似文献   

3.
7-[3-(4-[2,3-dimethylphenyl]piperazinyl)propoxy]-2(1H)-quinolinone (OPC-4392), was synthesized in our laboratories and compared with apomorphine, 3-(3-hydroxyphenyl)-N-n-propylpiperidine (3-PPP) and dopamine antagonists in a series of tests designed to characterize dopamine receptor activation and inhibition. The assertion that OPC-4392 acts as an agonist at presynaptic dopamine autoreceptors is supported by the following behavioral and biochemical observations: OPC-4392, 3-PPP and apomorphine inhibited the reserpine-induced increase in DOPA accumulation in the forebrain of mice and in the frontal cortex, limbic forebrain and striatum of rats. In addition, the gamma-butyrolactone (GBL)-induced increase in DOPA accumulation in the mouse forebrain was also inhibited by OPC-4392, 3-PPP and apomorphine. Haloperidol antagonized the inhibitory effect of OPC-4392 in both instances. The inhibitory effect of OPC-4392 on GBL-induced DOPA accumulation lasted for at least 8 hours after oral administration to mice, while that of 3-PPP and apomorphine disappeared in 4 hours after subcutaneous injection. OPC-4392 failed to increase spontaneous motor activity in reserpinized mice, enhance spontaneous ipsilateral rotation in rats with unilateral striatal kainic acid (KA) lesions, induce contralateral rotation in rats with unilateral striatal 6-hydroxydopamine (6-OHDA) lesions and inhibit 14C-acetylcholine (Ach) release stimulated by 20 mM KCl in rat striatal slices. In addition, OPC-4392 appears to block postsynaptic D2 receptors since OPC-4392, as well as dopamine antagonists, was able to inhibit stereotyped behavior and climbing behavior induced by apomorphine in mice, displace the 3H-spiroperidol binding to rat synaptosomal membranes in vitro and reverse the inhibitory effect of apomorphine on Ach release in rat striatal slices. These results suggest that OPC-4392 acts as a dopamine agonist at presynaptic autoreceptors related to dopamine synthesis and acts as dopamine antagonist at postsynaptic D2 receptors.  相似文献   

4.
SCH 23390, an apparently selective antagonist of central D1 dopamine receptors, produced profound catalepsy at low doses (0.1 mg/kg, s.c.). Pretreatment with the selective D2 receptor agonists LY 141865, RU 24213 or LY 171555, the active (-) enantiomer of LY 141865, elicited a dose-dependent inhibition of the cataleptic response. Pergolide and apomorphine were also effective. This effect was not due to altered disposition or penetration of SCH 23390 into the brain since pretreatment with a dose of LY 171555 which completely blocked catalepsy had no effect on the ID50 of SCH 23390 to inhibit 3H-cis-piflutixol binding to D1 receptors measured ex vivo. Alternative mechanisms are considered to explain the results, which offer new insights into striatal dopaminergic regulation of motor activity.  相似文献   

5.
A series of 2beta-[3'-(substituted benzyl)isoxazol-5-yl]- and 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes were prepared and evaluated for affinities at dopamine, serotonin, and norepinephrine transporters using competitive radioligand binding assays. The 2beta-[3'-(substituted benzyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (3a-h) showed high binding affinities for the dopamine transporter (DAT). The IC(50) values ranged from 5.9 to 22nM. On the other hand, the 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (4a-h), with IC(50) values ranging from 65 to 173nM, were approximately 3- to 25-fold less potent than the corresponding 2beta-[3'-(substituted benzyl)isoxazol]tropanes. All tested compounds were selective for the DAT relative to the norepinephrine transporter (NET) and serotonin transporter (5-HTT). 3Beta-(4-Methylphenyl)-2beta-[3'-(4-fluorobenzyl)isoxazol-5-yl]tropane (3b) with IC(50) of 5.9nM at the DAT and K(i)s of 454 and 113nM at the NET and 5-HTT, respectively, was the most potent and DAT-selective analog. Molecular modeling studies suggested that the rigid conformation of the isoxazole side chain in 4a-h might play an important role on their low DAT binding affinities.  相似文献   

6.
B Scatton 《Life sciences》1982,31(25):2883-2890
The relative involvement of D1 (cyclase linked) and D2 dopamine receptors in dopaminergic control of striatal cholinergic transmission has been investigated in the rat by comparing the effects of SKF 38393 and LY 141865 (which act as specific agonists at D1 and D2 dopamine receptors, respectively) on striatal acetylcholine and dopamine metabolite concentrations and on the potassium-evoked release of 3H-acetylcholine from rat striatal slices. LY 141865 given systemically produced a dose-dependent increase in acetylcholine concentrations and a concomitant reduction of homovanillic and dihydroxyphenylacetic acid levels in the striatum (ED50 0.1 mg/kg) whereas SKF 38393 (1–30 mg/kg) did not. SKF 38393 (30 mg/kg) also failed to modify the LY 141865 (1 mg/kg) induced alterations of striatal acetylcholine and dopamine metabolite levels when given concomitantly with the latter compound. In experiments in vitro, LY 141865 reduced (EC50 0.14 μM), whereas SKF 38393 (up to 100 μM) failed to affect, the potassium-evoked release of 3H-acetylcholine from striatal slices. When given concomitantly with LY 141865, SKF 38393 (10 μM) did not modify the ability of the former compound to diminish striatal 3H-acetylcholine release. Finally, SKF 38393 also failed to affect the release of striatal 3H-acetylcholine after chemical lesion of the nigro-striatal dopaminergic pathway. The present results provide evidence for the involvement of D2 but not D1 dopamine receptors in dopaminergic control of striatal cholinergic transmission and indicate that D1 dopamine receptors do not exert any modulatory influence on D2 dopamine receptor mediated dopaminergic transmission.  相似文献   

7.
A series of 2beta-alkynyl and 2beta-(1,2,3-triazol)substituted 3beta-(substituted phenyl)tropanes were synthesized and evaluated for affinities at dopamine, serotonin, and norepinephrine membrane transporters using competitive radioligand binding assays. All tested compounds were found to exhibit nanomolar or subnanomolar affinity for the dopamine transporter (DAT). One of the most potent and selective compounds in the series was 3beta-(4-chlorophenyl)-2beta-(4-nitrophenylethynyl)tropane (10c) that possessed an IC(50) value of 0.9nM at the DAT and K(i) values of 230nM and 620nM at the norepinephrine transporter (NET) and serotonin transporter (5-HTT), respectively.  相似文献   

8.
LR5182 inhibited the uptake of dopamine in rat striatal synaptosomes and the uptake of norepinephrine in cortical synaptosomes with inhibitor constants, Ki values, of 3nM and 58nM, respectively. It was only a week inhibitor of serotonin uptake in cortical synaptosomes with a Ki value of 1.7μM. The uptake of dopamine and norepinephrine were significantly lowered within an hour after an intraperitoneal injection of LR5182. Among known inhibitors of dopamine uptake in synaptosomes of rat brain, LR5182 is most effective and selective. The rigid structure of LR5182 (Figure 1) suggested a gauche conformation of dopamine to be favored by the striatal uptake of dopamine.  相似文献   

9.
Apparent affinities (Ki) of (E)- and (Z)-N-(iodoallyl)spiperone [E)- and (Z)-NIASP) for dopamine D2 and serotonin 5-HT2 receptors were determined in competition binding assays. (Z)-NIASP (Ki 0.35 nM, D2; Ki 1.75 nM, 5-HT2) proved slightly more potent and selective for D2 sites in vitro than (E)-NIASP (Ki 0.72 nM, D2; Ki 1.14 nM, 5-HT2). In vivo, radioiodinated (E)- and (Z)-[125I]-NIASP showed regional distributions in mouse brain which are consonant with prolonged binding to dopamine D2 receptors accompanied by a minor serotonergic component of shorter duration. Stereoselective, dose-dependent blockade of (E)-[125I]-NIASP uptake was found for drugs binding to dopamine D2 sites, while drugs selective for serotonin 5-HT2, alpha 1-adrenergic and dopamine D1 receptors did not inhibit radioligand binding 2 hr postinjection. Specific binding in striatal tissue was essentially irreversible over the time course of the study, and (E)-[125I]-NIASP gave a striatal to cerebellar tissue radioactivity concentration of 16.9 to 1 at 6 hr postinjection. Thus, (E)-[125I]-NIASP binds with high selectivity and specificity to dopamine D2 sites in vivo.  相似文献   

10.
The effects of a newly synthesized compound, 7-(3-[4-(2,3-dimethylphenyl)piperazinyl]propoxy)-2(1H)-quinolinone (OPC-4392), on tyrosine hydroxylation in situ and in vitro were studied using rat striatal slices and tyrosine hydroxylase (TH) purified from bovine adrenal medulla, respectively. OPC-4392 dose-dependently inhibited L-dihydroxyphenylalanine (DOPA) formation in rat striatal slices with IC50 values of about 10(-6) M. The inhibitory effect of OPC-4392 on in situ DOPA formation was dose-dependently reversed by addition of sulpiride, a dopamine D2 receptor antagonist, whereas no change was observed by addition of nomifensine (5 X 10(-6) M), a blocker of dopamine uptake. From in vitro experiment using purified TH, OPC-4392 affected neither the enzymatic activity nor the Km value for 6-methyl-5,6,7,8-tetrahydropterin (6MPH4). These results suggest that OPC-4392 impairs in situ DOPA formation by stimulating presynaptic dopamine D2 receptor as a dopamine agonist, and not by directly inhibiting the TH activity.  相似文献   

11.
The title compound, L-659,989, is a highly potent, competitive, and selective antagonist of the binding of [3H]PAF to its receptors in platelet membranes from rabbits and humans. It exhibits equilibrium inhibition constants for PAF binding of 1.1 nM (rabbit) to 9.0 nM (human), values that are at least 1-2 orders of magnitude lower than those of other PAF antagonists tested. L-659,989 potently inhibits PAF-induced aggregation of rabbit platelets and degranulation of rat (ED50 4.5 nM) and human (ED50 10 nM) neutrophils. L-659,989 inhibits PAF-induced extravasation and lysosomal enzyme release in rats, and is active orally in female rats (ED50 0.2 mg/kg) with an extraordinary oral duration of action of 12 to 16 hours at 1.0 mg/kg p.o.  相似文献   

12.
125I-Spiperone binds with high affinity (KD 0.3 nM) to a single specific site (Bmax 34 pmol/g wet weight) in homogenates of rat corpus striatum. Specific binding is about 40-60 percent of total binding and is displaced stereo-specifically by butaclamol and clopenthixol. Neuroleptic drugs of various classes are potent inhibitors of 125I-spiperone binding (Ki's 1-10 nM). Selective dopamine antagonists such as sulpiride (Ki 50 nM) and dopamine agonists such as apomorphine (Ki 200 nM) are also potent inhibitors. The drug specificity of 125I-spiperone binding correlates well with that of 3H-spiperone binding, providing good evidence that 125I-spiperone labels D2 dopamine receptors in striatal membranes. 125I-Spiperone, with its high specific activity (2200 Ci/mmol) may prove to be a useful ligand in studies examining D2 dopamine receptors in soluble preparations and by autoradiography. Furthermore iodinated spiperone may be useful in radioreceptor assays of neuroleptic drug levels and, in a 123I-labeled form, for imaging of dopamine receptors, in vivo, using single photon tomography.  相似文献   

13.
Atypical antipsychotic properties of 4-(4-fluorobenzylidene)-1-[2-[5-(4-fluorophenyl)-1H-pyrazol-4-yl]ethyl] piperidine (NRA0161) were investigated by in vitro receptor affinities, in vivo receptor occupancies and findings were compared with those of risperidone and haloperidol in rodent behavioral studies. In in vitro receptor binding studies, NRA0161 has a high affinity for human cloned dopamine D(4) and 5-HT(2A) receptor with Ki values of 1.00 and 2.52 nM, respectively. NRA0161 had a relatively high affinity for the alpha(1) adrenoceptor (Ki; 10.44 nM) and a low affinity for the dopamine D(2) receptor (Ki; 95.80 nM). In in vivo receptor binding studies, NRA0161 highly occupied the 5-HT(2A) receptor in rat frontal cortex. In contrast, NRA0161 did not occupy the striatal D(2) receptor. In behavioral studies, NRA0161, risperidone and haloperidol antagonized the locomotor hyperactivity in mice, as induced by methamphetamine (MAP). At a higher dosage, NRA0161, risperidone and haloperidol dose-dependently antagonized the MAP-induced stereotyped behavior in mice and NRA0161 dose-dependently and significantly induced catalepsy in rats. The ED(50) value in inhibiting the MAP-induced locomotor hyperactivity was 30 times lower than that inhibiting the MAP-induced stereotyped behavior and 50 times lower than that which induced catalepsy.These findings suggest that NRA0161 may have atypical antipsychotic activities yet without producing extrapyramidal side effects.  相似文献   

14.
A new series of diphenyl piperazine derivatives containing the phenyl substituted aminopropanol moiety, which were modified at sites between the diphenyl and piperazine moieties, was prepared and evaluated for dopamine transporter binding affinity with [(3)H]GBR12935 in rat striatal membranes. These synthesized compounds showed apparent dopamine transporter binding affinities (IC(50)<30 nM) and some of them were approximately equivalent in activity to GBR12909 known as a potent dopamine uptake inhibitor, showing the activities with IC(50) values of nanomolar range. Among them, 1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-hydroxy-3-(phenylamino)propyl]piperazine 2 was evaluated for extracellular dopamine levels in rat striatum using in vivo brain microdialysis. The intraperitoneal administration of 2 (0.01, 0.03, or 0.1 mmol/kg) induced dose-dependent increases of dopamine levels in rat striatal dialysates. The maximum increases in dopamine levels induced by 2 were greater than those by GBR12909. The pharmacological data of these novel diphenyl piperazine derivatives show that the compounds have potent dopamine uptake inhibitory activities in the central nervous system.  相似文献   

15.
MK-0591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-yl-methoxy)- indol-2-yl]-2,2-dimethyl propanoic acid, previously L-686,708) is a potent inhibitor of leukotriene (LT) biosynthesis in intact human and elicited rat polymorphonuclear leukocytes (PMNLs) (IC50 values 3.1 and 6.1 nM, respectively) and in human, squirrel monkey, and rat whole blood (IC50 values 510, 69, and 9 nM, respectively). MK-0591 had no effect on rat 5-lipoxygenase. MK-0591 has a high affinity for 5-lipoxygenase activating protein (FLAP) as evidenced by an IC50 value of 1.6 nM in a FLAP binding assay and inhibition of the photoaffinity labelling of FLAP by two different photoaffinity ligands. Inhibition of activation of 5-lipoxygenase was shown through inhibition of the translocation of the enzyme from the cytosol to the membrane in human PMNLs. MK-0591 was a potent inhibitor of LT biosynthesis in vivo, first, following ex vivo challenge of blood obtained from treated rats and squirrel monkeys, second, in a rat pleurisy model, and, third, as monitored by inhibition of the urinary excretion of LTE4 in antigen-challenged allergic sheep. Inhibition of antigen-induced bronchoconstriction by MK-0591 was observed in inbred rats pretreated with methysergide, Ascaris-challenged squirrel monkeys, and Ascaris-challenged sheep (early and late phase response). These results indicate that MK-0591 is a potent inhibitor of LT biosynthesis both in vitro and in vivo indicating that the compound will be suitable for assessing the role of leukotrienes in pathological situations.  相似文献   

16.
17.
In present study, a series of new 2-(1,3,4-oxadiazol-2-ylthio)-1-phenylethanone derivatives (6a-6x) as potential focal adhesion kinase (FAK) inhibitors were synthesized. The bioassay assays demonstrated that compound 6i showed the most potent activity, which inhibited the growth of MCF-7 and A431 cell lines with IC(50) values of 140 ± 10 nM and 10 ± 1 nM, respectively. Compound 6i also exhibited significant FAK inhibitory activity (IC(50)=20 ± 1 nM). Docking simulation was performed to position compound 6i into the active site of FAK to determine the probable binding model.  相似文献   

18.
Cocaine inhibits tritium-labeled dopamine ([3H]DA) uptake in rat (IC50 approximately 400 nM) and sheep (IC50 approximately 1 microM) striatum. GBR 12909, a selective DA uptake inhibitor, potently inhibits [3H]DA uptake in rat (IC50 less than 10 nM), but is less effective (only 60% of the uptake is inhibited at a concentration of 10 microM) and less potent (IC50 approximately 300 nM) in sheep. [3H]DA release from slices of rat or sheep striatum is stimulated by potassium (15-50 mM). In the presence of nomifensine (10 microM), cocaine (10 microM) had no effect on potassium-stimulated [3H]DA release in either species. [3H]DA release is increased by N-methyl-D-aspartate (NMDA) (10-1000 microM) in rat striatum but NMDA did not stimulate [3H]DA release in sheep striatum. These findings suggest that NMDA receptors either are absent from or do not regulate release of preloaded [3H]DA in sheep striatum.  相似文献   

19.
Parkinson's disease (PD) is a prevalent age-related motor dysfunction resulting from the hyperactivity of the indirect striatal pathway, which is controlled in an antagonistic manner by inhibitory dopamine D2 and facilitatory adenosine A(2A) receptors. Thus, dopamine precursors like l-DOPA are the standard therapy and A(2A) antagonists are now tested as anti-parkinsonians. Increased free radicals levels occur on aging and are proposed to be a contributing factor for PD. We now tested if free radicals affected A(2A) and D2 receptors in striatal membranes of young adult (2 months) and old (24 months) rats. The A(2A) receptor antagonist [3H]SCH 58261 bound to striatal membranes with a KD of 0.9 nM and a Bmax of 953 fmol/mg protein in young rats and with a KD of 0.8 nM and a Bmax of 725 fmol/mg protein in aged rats (24% decrease). The D2 receptor antagonist [3H]raclopride bound to striatal membranes with a KD of 4.0 nM and a Bmax of 598 fmol/mg protein in young rats and with a KD of 4.3 nM and a Bmax of 368 fmol/mg protein in aged rats (38% decrease). Exposure of striatal membranes to a free radical generation system (2 mM FeSO4 and 4 mM ascorbate) caused a similar decrease of [3H]SCH 58261 (35%) and [3H]raclopride (37%) binding in young adult rats but caused a greater decrease of [3H]SCH 58261 (49%) than of [3H]raclopride (20%) binding in aged rats. Thus, in aged rats, there is an unbalance of A(2A)/D2 receptor density favouring A(2A) receptors, which is restored on exposure to free radicals. This supports the hypothesis that the effectiveness of A(2A) receptor antagonists as anti-parkinsonians, demonstrated in young adult animals, may not be affected by a modified A(2A)/D2 receptor density in aged individuals suffering from exposure to increased free radical levels, as occurs in PD.  相似文献   

20.
Zinc ions in the micromolar range exhibited a strong inhibitory activity toward platelet activating factor (PAF)-induced human washed platelet activation, if added prior to this lipid chemical mediator. The concentration of Zn2+ required for 50% inhibition of aggregation (IC50) was inversely proportional to the concentration of PAF present. The IC50 values (in microM) for Zn2+ were 8.8 +/- 3.9, 27 +/- 5.8, and 34 +/- 1.7 against 2, 5, and 10 nM PAF, respectively (n = 3-6). Zn2+ exhibited comparable inhibitory effects on [3H]serotonin secretion and the IC50 values (in microM) were 10 +/- 1.2, 18 +/- 3.5, and 35 +/- 0.0 against 2, 5, and 10 nM PAF, respectively (n = 3). Under the same experimental conditions, aggregation and serotonin secretion induced by ADP (5 microM), arachidonic acid (3.3 microM), or thrombin (0.05 U/ml) were not inhibited. Introduction of Zn2+ within 0-2 min after PAF addition not only blocked further platelet aggregation and [3H]serotonin secretion but also caused reversal of aggregation. Analysis of [3H]PAF binding to platelets showed that Zn2+ as well as unlabeled PAF prevented the specific binding of [3H]PAF. The inhibition of [3H]PAF specific binding was proportional to the concentration of Zn2+ and the IC50 value was 18 +/- 2 microM against 1 nM [3H]PAF (n = 3). Other cations, such as Cd2+, Cu2+, and La3+, were ineffective as inhibitors of PAF at concentrations where Zn2+ showed its maximal effects. However, Cd2+ and Cu2+ at high concentrations exhibited a significant inhibition of the aggregation induced by 10 nM PAF with IC50 values being five- and sevenfold higher, respectively, than the IC50 for Zn2+, and with the IC50 values for inhibition of binding of 1 nM [3H]PAF being 5 and 19 times higher, respectively, than the IC50 for Zn2+. The specific inhibition of PAF-induced platelet activation and PAF binding to platelets suggested strongly that Zn2+ interacted with the functional receptor site of PAF or at a contiguous site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号