首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effects of retinoic acid on heart formation in the early chick embryo.   总被引:2,自引:0,他引:2  
The vitamin A derivative retinoic acid has previously been shown to have teratogenic effects on heart development in mammalian embryos. The craniomedial migration of the precardiac mesoderm during the early stages of heart formation is thought to depend on a gradient of extracellular fibronectin associated with the underlying endoderm. Here, the effects of retinoic acid on migration of the precardiac mesoderm have been investigated in the early chick embryo. When applied to the whole embryo in culture, the retinoid inhibits the craniomedial migration of the precardiac mesoderm resulting in a heart tube that is stunted cranially, while normal or enlarged caudally. Similarly, a local application of retinoic acid to the heart-forming area disrupts the formation of the cardiogenic crescent and the subsequent development of a single mid-line heart tube. This effect is analogous to removing a segment of endoderm and mesoderm across the heart-forming area and results in various degrees of cardia bifida. At higher concentrations of retinoic acid and earlier developmental stages, two completely separate hearts are produced, while at lower concentrations and later stages there are partial bifurcations. The controls, in which the identical operation is carried out except that dimethyl sulphoxide (DMSO) is used instead of the retinoid, are almost all normal. We propose that one of the teratogenic effects of retinoic acid on the heart is to disrupt the interaction between precardiac cells and the extracellular matrix thus inhibiting their directed migration on the endodermal substratum.  相似文献   

3.
Development of left/right handedness in the chick heart.   总被引:2,自引:0,他引:2  
The chick heart tube develops from the fusion of the right and left areas of precardiac mesoderm and in almost all cases loops to the embryo's right-hand side. We have investigated whether any intrinsic difference exists in the right and left areas of precardiac mesoderm, that influences the direction of looping of the heart tube. Chick embryos incubated to stages 4,5 and 6 were cultured by the New method. Areas of precardiac mesoderm were exchanged between donor and host embryos of the same stage and different stages to form control, double-right and double-left sided embryos. Overall, double-right sided embryos formed many more left-hand loops than double-left sided embryos. At stages 4 and 5 a small percentage of double-right embryos formed left-hand loops (13%) whereas at stage 6 almost 50% of hearts had left-hand loops. Control embryos formed right-hand loops in 97% of cases. The stability of right-hand heart looping by double-left sided embryos, may be related to the process of 'conversion', whereas the direction of looping by double-right sided embryos has become randomised. There is some indication that an intrinsic change occurred in the precardiac mesoderm between stages 5 and 6 that later influenced the direction of looping of the heart tube. The direction of body turning is suggested to be linked to the direction of heart looping.  相似文献   

4.
An anterior-posterior concentration difference of fibronectin associated with the endoderm in early chick embryos has been implicated in the directional migration of precardiac mesoderm cells. We have examined the effect of increasing concentrations of an antibody to fibronectin (FN) to test the essentiality of FN to precardiac cell migration. For controls embryos were incubated in the presence of antibodies produced against several other extracellular components, such as laminin and anti-collagen types I and IV, as well as against integrin, a cell surface FN receptor. Embryos were also incubated in the presence of a high concentration of exogenous FN, as well as in the presence of an RGD-containing synthetic pentapeptide that is recognized by the FN receptor. After incubation of chick embryos in various concentrations of anti-FN (5 to 80 micrograms/ml), a dose-dependent effect of anti-fibronectin was observed, whereby heart development was arrested at high concentrations of anti-FN. Early developmental stages were more susceptible to lower antibody concentrations than later stages. Incubation in the presence of the RGD-containing synthetic peptide resulted in partial cardiabifida. None of the antibodies serving as controls affected cell migration or early heart development. These results support the hypothesis that FN is a major component in the migratory pathway and plays a role in the directional migration of precardiac cells to the embryonic midline.  相似文献   

5.
The effect of 5-bromodeoxyuridine (BrdU) on cardiac muscle differentiation   总被引:3,自引:0,他引:3  
Cultured cardiac muscle cells undergo cell division and form beating progeny. Incorporation of BrdU into the nuclei of daughter cells does not suppress their ability to beat and form cross-striated myofibrils. Fluorescence microscopy of clones derived from single beating cells fed with BrdU-treated medium for over 2 weeks reveal cytoplasmic fibrils stainable with fluorescein-labeled antimyosin. The effect of BrdU on the emergence of cardiac muscle phenotype was also investigated by utilizing cardiac myogenic precursor cells from precardiac mesoderm in early embryos (stage 4–stage 9). These studies show that the cardiac myogenic cells fall into the following categories with respect to their ability to express the differentiated phenotype in the presence of BrdU: (1) precardiac mesodermal cells that are inhibited; (2) precardiac mesodermal cells that are not inhibited; and (3) beating cardiac muscle cells that are not inhibited. The entry of precardiac cells from the first category to the second and to the third appears to be unsynchronized.  相似文献   

6.
7.
Origins and patterning of avian outflow tract endocardium   总被引:3,自引:0,他引:3  
Outflow tract endocardium links the atrioventricular lining, which develops from cardiogenic plate mesoderm, with aortic arches, whose lining forms collectively from splanchnopleuric endothelial channels, local endothelial vesicles, and invasive angioblasts. At two discrete sites, outflow tract endocardial cells participate in morphogenetic events not within the repertoire of neighboring endocardium: they form mesenchymal precursors of endocardial cushions. The objectives of this research were to document the history of outflow tract endocardium in the avian embryo immediately prior to development of the heart, and to ascertain which, if any, aspects of this history are necessary to acquire cushion-forming potential. Paraxial and lateral mesodermal tissues from between somitomere 3 (midbrain level) and somite 5 were grafted from quail into chick embryos at 3-10 somite stages and, after 2-5 days incubation, survivors were fixed and sectioned. Tissues were stained with the Feulgen reaction to visualize the quail nuclear marker or with antibodies (monoclonal QH1 or polyclonals) that recognize quail but not chick cells. Many quail endothelial cells lose the characteristic nuclear heterochromatin marker, but they retain the species-specific epitope recognized by these antibodies. Precursors of outflow tract but not atrioventricular endocardium are present in cephalic paraxial and lateral mesoderm, with their greatest concentration at the level of the otic placode. Furthermore, the ventral movement of individual angiogenic cells is a normal antecedent to outflow tract formation. Cardiac myocytes were never derived from grafted head mesoderm. Thus, unlike the atrioventricular regions of the heart, outflow tract endocardial and myocardial precursors do not share a congruent embryonic history. The results of heterotopic transplantation, in which trunk paraxial or lateral mesoderm was grafted into the head, were identical, including the formation of cushion mesenchyme. This means that cushion positioning and inductive influences must operate locally within the developing heart tubes.  相似文献   

8.
Gross anatomical, histological and histochemical studies of heart development in Mexican salamanders, Ambystoma mexicanum, are reported. Gross observation suggests that heart development in this urodele species is similar to other amphibians. Histological studies in early embryos show the ventromedially migrating sheets of precardiac mesoderm to be composed of two layers of cells. The right and left dorsal layers fuse and give rise to the myocardium, while the ventral layers form the pericardium. The endocardium arises from cells released by the leading edges of the migrating mesoderm mantles. In early myocardial cells, most of the proteins and carbohydrates are contained in yolk platelets; subsequently, these substances become distributed throughout the cytoplasmic matrixes. In early heart cells free lipid droplets are abundant but decline in size and number as development progresses. Concomitantly, there is an increase in bound lipids. Reticular fibers are detected in the endocardial-myocardial spaces simultaneously with trabeculae formation. Collagen appears somewhat later in development.  相似文献   

9.
The heart is the first organ to form and function during vertebrate embryogenesis. Using a secreted protein, noggin, which specifically antagonizes bone morphogenetic protein (BMP)-2 and -4, we examined the role played by BMP during the initial myofibrillogenesis in chick cultured precardiac mesoendoderm (mesoderm + endoderm; ME). Conditioned medium from COS7 cells transfected with Xenopus noggin cDNA inhibited the expression of sarcomeric proteins (such as sarcomeric alpha-actinin, Z-line titin, and sarcomeric myosin), and so myofibrillogenesis was perturbed in cultured stage 4 precardiac ME; however, it did not inhibit the expression of smooth muscle alpha-actin (the first isoform of alpha-actin expressed during cardiogenesis). In cultured stage 5 precardiac ME, noggin did not inhibit either the formation of I-Z-I components or the expression of sarcomeric myosin, but it did inhibit the formation of A-bands. Although BMP4 was required to induce expressions of sarcomeric alpha-actinin, titin, and sarcomeric myosin in cultured stage 6 posterolateral mesoderm (noncardiogenic mesoderm), smooth muscle alpha-actin was expressed without the addition of BMP4. Interestingly, in cultured stage 6 posterolateral mesoderm, BMP2 induced the expressions of sarcomeric alpha-actinin and titin, but not of sarcomeric myosin. These results suggest that (1) BMP4 function lies upstream of the initial formation of I-Z-I components and A-bands separately in a stage-dependent manner, and (2) at least two signaling pathways are involved in the initial cardiac myofibrillogenesis: one is an unknown pathway responsible for the expression of smooth muscle alpha-actin; the other is BMP signaling, which is involved in the expression of sarcomeric alpha-actinin, titin, and sarcomeric myosin.  相似文献   

10.
PTEN抑制胚胎原肠胚形成期EMT的过程   总被引:1,自引:0,他引:1  
Li Y  Wang XY  Wang LJ  Xu T  Lu XY  Cai DQ  Geng JG  Yang XS 《遗传》2011,33(6):613-619
PTEN(Phosphatase and tensin homolog)是一种重要的抑癌基因,具有非常广泛的生物学活性,例如在细胞的生长发育、迁移、凋亡和信号传导等均发挥重要作用。PTEN基因表达始于在胚胎早期的上胚层,而后主要出现在神经外胚层和胚胎中胚层结构,表明PTEN可能参与胚胎早期发育过程的细胞迁移、增殖和分化。文章主要应用在体改变早期胚胎PTEN的表达水平来观察其对上胚层至中胚层细胞转换—EMT(Epithe-lial-mesenchymal transition)的作用。首先,原位杂交结果提示,内源性PTEN表达在原条以及之后的中胚层细胞结构如体节等。在体PTEN转染实验,体外培养至HH3期的鸡胚胎,转染Wt PTEN-GFP或移植Wt PTEN-GFP原条组织至未转染的同时期的宿主胚胎相同部位后,观察到PTEN转染细胞大都由上胚层迁移至原条并滞留于原条,不再参与中胚层细胞形成。移植实验也得到相似结果,发现在Wt PTEN-GFP阳性原条组织移植后很少细胞迁移出原条。另外在原肠胚期PTEN siRNA降调胚胎一侧PTEN基因后,降调侧中胚层细胞数明显少于正常侧。上述研究结果均提示PTEN基因在胚胎原肠胚期三胚层形成过程中可能具有抑制EMT的作用。  相似文献   

11.
Cell Interactions in Cardiac Development   总被引:1,自引:0,他引:1  
During early heart formation, the pre-cardiac mesoderm becomes regionally differentiated into segments destined to form ventricle, atria and sinoatrial tissue. Each region develops a characteristic beatrate and form of action potential, shaped by current through specific ion channels and membrane pumps. Fragments of pre-sinoatrial mesoderm that would normally have a rapid intrinsic beatrate, develop into beating heart tissue with a slow beatrate, characteristic of the ventricle, when transplanted into the prospective conoventricular region at stage 6–7. These transplants also express the ventricular isoform of myosin heavy chain, suggesting that regional commintment of the precardiac mesoderm is influenced by local cues. Application of the patch-clamp technique to single cells isolated from the ventricle of hearts at different ages during the first week of embryonic development has revealed changes in four currents that underlie the shaping of the ventricular action potential: the excitatory sodium current, the inward rectified K current, the delayed rectifier K current, and the T-type Ca current.  相似文献   

12.
An integral component of gastrulation in all organisms is epithelial to mesenchymal transition (EMT), a fundamental morphogenetic event through which epithelial cells transform into mesenchymal cells. The mesenchymal cells that arise from epithelial cells during gastrulation contribute to various tissue rudiments during subsequent development, including the notochord, somites, heart, gut, kidney, body wall and lining of the coelom. The process of gastrulation has been the subject of several hundred scientific papers. Despite all that has been written, it is likely that what we currently know about gastrulation is still considerably less than what remains to be learned. One critical remaining question that we consider here is how does gastrulation cease at the right place along the body axis, and at the right time? In this commentary, we focus on the molecular mechanism for the cessation of gastrulation, using the chick embryo as a model system.Key words: epithelial to mesenchymal transition (EMT), gastrulation, basal membrane, tail bud, ventral ectodermal ridge (VER), BMP, noggin, E-cadherin, chick embryo  相似文献   

13.
14.
Cadherins and N-CAM are Ca++-dependent and Ca++-independent cell adhesion molecules respectively. These molecules play a key role in morphogenesis and histogenesis. We determined the spatiotemporal pattern of N-cadherin and N-CAM-180 kDa expression by immunohistochemistry during development in two South-American anuran species (Bufo arenarum, toad and Hyla nana, frog). Both N-cadherin and N-CAM were not detectable during early developmental stages. Expression of N-cadherin appeared between the inner and the outer ectoderm layers at stages 19-20. At stages 24-25, N-cadherin was expressed in the neural tube and the heart. In early tadpoles, N-cadherin expression increased along with the central nervous system (CNS) morphogenesis, and reached its maximum level at metamorphic climax stage. N-Cadherin expression was not uniformly distributed. At stage 42, olfactory placodes and retina expressed N-cadherin. Contrary to N-CAM, the strongly myelinated cranial nerves were not labeled. N-Cadherin was present in several mesoderm derivatives such as the notochord, heart and skeletal muscle. The non-neural ectoderm and the endoderm were always negative. Expression of N-CAM appeared first in the neural tube at stages 24-25 and the level of expression became uniform from pre-metamorphic to metamorphic climax tadpoles. At this latter stage, a clear N-CAM immunolabeling appeared in the nerve terminals of pharynx and heart. N-Cadherin and N-CAM were found mainly co-expressed in the CNS from early tadpole to metamorphic climax tadpole. Our results show that the expression of N-CAM and N-cadherin is evolutionary conserved. Their increased expression during late developmental stages suggests that N-CAM and N-cadherin are involved in cell contact stabilization during tissue formation.  相似文献   

15.
A role for N-cadherin in mesodermal morphogenesis during gastrulation   总被引:1,自引:0,他引:1  
Cell adhesion molecules mediate numerous developmental processes necessary for the segregation and organization of tissues. Here we show that the zebrafish biber (bib) mutant encodes a dominant allele at the N-cadherin locus. When knocked down with antisense oligonucleotides, bib mutants phenocopy parachute (pac) null alleles, demonstrating that bib is a gain-of-function mutation. The mutant phenotype disrupts normal cell-cell contacts throughout the mesoderm as well as the ectoderm. During gastrulation stages, cells of the mesodermal germ layer converge slowly; during segmentation stages, the borders between paraxial and axial tissues are irregular and somite borders do not form; later, myotomes are fused. During neurulation, the neural tube is disorganized. Although weaker, all traits present in bib mutants were found in pac mutants. When the distribution of N-cadherin mRNA was analyzed to distinguish mesodermal from neuroectodermal expression, we found that N-cadherin is strongly expressed in the yolk cell and hypoblast in the early gastrula, just preceding the appearance of the bib mesodermal defects. Only later is N-cadherin expressed in the anlage of the CNS, where it is found as a radial gradient in the forming neural plate. Hence, besides a well-established role in neural and somite morphogenesis, N-cadherin is essential for morphogenesis of the mesodermal germ layer during gastrulation.  相似文献   

16.
An integral component of gastrulation in all organisms is epithelial-mesenchymal transition (EMT), a fundamental morphogenetic event through which epithelial cells transform into mesenchymal cells. The mesenchymal cells that arise from epithelial cells during gastrulation contribute to various tissue rudiments during subsequent development, including the notochord, somites, heart, gut, kidney, body wall, and lining of the coelom. The process of gastrulation has been the subject of several hundred scientific papers. Despite all that has been written, it is likely that what we currently know about gastrulation is still considerably less than what remains to be learned. One critical remaining question that we consider here is how does gastrulation cease at the right place along the body axis, and at the right time? In this commentary, we focus on the molecular mechanism for the cessation of gastrulation, using the chick embryo as a model system.  相似文献   

17.
18.
小鼠早期胚胎发育包含原肠运动和器官发生等重要发育过程,这些过程受多种信号通路调控,其中有Wnt、BMP、Nodal、FGF等信号通路,它们之间进行精细严密的协调,保证胚胎发育的正确进行。β-联蛋白作为Wnt配体的共同下游信号分子,在小鼠原肠运动和器官发生中发挥至关重要的作用。Wntless/GPR177在以前的研究中已被报道参与调节Wnt配体的成熟、分选和分泌等,小鼠全身剔除Wntless(Wls)将严重影响胚胎体轴形成。在该研究中,Wls被特异性地在上胚层、心血管中胚层和心肌祖细胞中剔除,以探索Wls如何参与到小鼠原肠运动和心血管发育中。我们发现,在上胚层剔除Wls后,明显阻断了上皮-间充质转化过程,这是中胚层迁移中的关键步骤。在Wls条件性剔除的上胚层中,β-联蛋白表达模式发生变化,表达水平明显下降;E-钙黏着蛋白和N 钙黏着蛋白明显上升。此外,被剔除Wls的上胚层中,细胞凋亡明显增加。不论是在心脏中胚层还是在心脏前体细胞中,剔除Wls都导致严重的心血管发育缺陷和胚胎死亡,证明Wls对心脏发育同样十分重要。这些研究结果证明,Wntless在小鼠原肠运动和心脏发育中均发挥十分重要的作用。  相似文献   

19.
The pathway of directional movement of chick precardiac mesoderm cells was studied by indirect immunofluorescence and by scanning electron microscopy. Directional movement of the precardiac cells begins at stage 6 from the lateral sides of the embryo at the level of Hensen's node. The cells move anteriorly in an arc to the embryo's midline. By stage 8 the cells arrive at the lateral sides of the anterior intestinal portal and movement ceases. The interval of this directional movement is approximately 10 hr. During migration the precardiac cells are in close association with the underlying endoderm. As migration proceeds, the cells encounter increasing amounts of fibrils in the substratum at the mesoderm-endoderm interface. Concomitant with increasing fibril formation there is an increase in fibronectin (FN) in the heart-forming region. During stage 5 FN first appears in the lateral heart-forming regions and increases in amount during the period of cell migration. By stage 7 a concentration difference of FN is apparent in the lateral regions with more FN cephalad and decreasing amounts caudad. At stages 7 and 8 large amounts of extracellular FN-associated fibrils are observed at the lateral sides of the anterior intestinal portal where the cells stop moving. The precardiac cells moving into this region are oriented perpendicular to the anterior intestinal portal and in close association with these fibrils. There is no evidence that the fibrillar meshwork forming the substratum of the precardiac mesoderm cells is physically oriented as a guide for directional movement. The correlations between FN distribution at the mesoderm-endoderm interface and directional cell movement suggest that the precardiac cells may migrate by haptotaxis, i.e., by moving along the substratum toward areas of greater adhesiveness.  相似文献   

20.
General mechanisms initiating the gastrulation process in early animal development are still elusive, not least because embryonic morphology differs widely among species. The rabbit embryo is revived here as a model to study vertebrate gastrulation, because its relatively simple morphology at the appropriate stages makes interspecific differences and similarities particularly obvious between mammals and birds. Three approaches that centre on mesoderm specification as a key event at the start of gastrulation were chosen. (1) A cDNA fragment encoding 212 amino acids of the rabbit Brachyury gene was cloned by RT-PCR and used as a molecular marker for mesoderm progenitors. Whole-mount in situ hybridisation revealed single Brachyury-expressing cells in the epiblast at 6.2 days post conception, i.e. several hours before the first ingressing mesoderm cells can be detected histologically. With the anterior marginal crescent as a landmark, these mesoderm progenitors are shown to lie in a posterior quadrant of the embryonic disc, which we call the posterior gastrula extension (PGE), for reasons established during the following functional analysis. (2) Vital dye (DiI) labelling in vitro suggests that epiblast cells arrive in the PGE from anterior parts of the embryonic disc and then move within this area in a complex pattern of posterior, centripetal and anterior directions to form the primitive streak. (3) BrdU labelling shows that proliferation is reduced in the PGE, while the remaining anterior part of the embryonic disc contains several areas of increased proliferation. These results reveal similarities with the chick with respect to Brachyury expression and cellular migration. They differ, however, in that local differences in proliferation are not seen in the pre-streak avian embryo. Rather, rabbit epiblast cells start mesoderm differentiation in a way similar to Drosophila, where a transient downregulation of proliferation initiates mesoderm differentiation and, hence, gastrulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号