首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Neuronal circuits, the functional building blocks of the nervous system, assemble during development through a series of dynamic processes including the migration of neurons to their final position, the growth and navigation of axons and their synaptic connection with target cells. While the role of chemical cues in guiding neuronal migration and axonal development has been extensively analysed, the contribution of mechanical inputs, such as forces and stiffness, has received far less attention. In this article, we review the in vitro and more recent in vivo studies supporting the notion that mechanical signals are critical for multiple aspects of neuronal circuit assembly, from the emergence of axons to the formation of functional synapses. By combining live imaging approaches with tools designed to measure and manipulate the mechanical environment of neurons, the emerging field of neuromechanics will add a new paradigm in our understanding of neuronal development and potentially inspire novel regenerative therapies.  相似文献   

2.
Neurite growth is required for nervous system development and repair. Multiple signals, including neurotrophic factors and intact mechanosensing mechanisms, interact to regulate neurite growth. Degenerin/epithelial Na+ channel (DEG/ENaC) proteins have been identified as putative mechanosensors in sensory neurons. Recently, others have shown that the neurotrophic factor NGF stimulates expression of acid-sensing ion channel molecules, which are members of the DEG/ENaC family. However, it is unknown whether NGF regulates ENaC expression or whether ENaC expression is required for neurite formation. Therefore, the aims of the present study were to determine whether ENaC expression is 1) regulated by NGF and 2) required for NGF-induced neurite growth in pheochromocytoma PC-12 cells. We found NGF-induced expression of - and -subunits of ENaC, but not -ENaC. Tyrosine kinase A (TrkA) receptor blockade abolished NGF-induced - and -ENaC expression and neurite formation. NGF-induced neurite formation was inhibited by disruption of ENaC expression using 1) pharmacological blockade with benzamil, a specific ENaC inhibitor; 2) small interfering RNA; and 3) dominant-negative ENaC molecules. These data indicate NGF-TrkA regulation of ENaC expression may be required for neurite growth and may suggest a novel role for DEG/ENaC proteins in neuronal remodeling and differentiation. mechanosensation; degenerins; neurotrophins; tyrosine kinase A; pheochromocytoma cells  相似文献   

3.
Elasmobranchs possess a multiplicity of mechanisms controlling posture and short distance orientation. Visual–vestibular contributions to posture and locomotion are well documented. So too, are the contributions of vision, olfaction and the octavolateralis senses to short distance orientation, particularly orientation to specific environmental stimuli such as those generated by prey. Less well understood are the mechanisms guiding orientation over longer distances. Anecdotal and systematic observations of behaviour show tidal, daily, repeat long distance, and even seasonal movement patterns. True navigation has not been demonstrated in elasmobranchs and the sensory mechanisms underlying the above movement patterns remain largely speculative. However, they are likely to include responses to water currents, and physical parameters such as temperature, pressure, and the geomagnetic field. Of particular interest in elasmobranchs is that geomagnetic orientation could be mediated directly via a magnetite based sensory system, or indirectly via the electrosensory system. Systematic studies of movement patterns and experimental studies of the underlying mechanisms of orientation are required to gain an increased understanding of orientation and navigation in this intriguing group.  相似文献   

4.
To find out the relative importance of the geomagnetic and solar cues for the orientation at the time of sunset, dunnocks were tested outdoors during the spring migration periods of 1982 and 1983. Experimental magnetic fields were produced by Helmholtz coils. In the various magnetic conditions, the following results were obtained:
  • 1 In the local geomagnetic field, the dunnocks oriented in a seasonally appropriate northerly direction.
  • 2 In a magnetic field the north of which was shifted 120° clock-wise to ESE, the birds showed a corresponding shift in their orientation.
  • 3 In a vertical magnetic field without meaningful directional information, birds previously tested in either the local geomagnetic field or the shifted magnetic field now displayed axially bimodal orientation, with the axes of the two groups differing.
These findings indicate that for migratory dunnocks, the magnetic field plays a dominant role in determining their orientation at the time of sunset, and that magnetic information may affect the dunnocks' response to other directional, presumably solar cues as well.  相似文献   

5.
Advanced spatial-learning adaptations have been shown for migratory songbirds, but it is not well known how the simple genetic program encoding migratory distance and direction in young birds translates to a navigation mechanism used by adults. A number of convenient cues are available to define latitude on the basis of geomagnetic and celestial information, but very few are useful to defining longitude. To investigate the effects of displacements across longitudes on orientation, we recorded orientation of adult and juvenile migratory white-crowned sparrows, Zonotrichia leucophrys gambelii, after passive longitudinal displacements, by ship, of 266-2862 km across high-arctic North America. After eastward displacement to the magnetic North Pole and then across the 0 degrees declination line, adults and juveniles abruptly shifted their orientation from the migratory direction to a direction that would lead back to the breeding area or to the normal migratory route, suggesting that the birds began compensating for the displacement by using geomagnetic cues alone or together with solar cues. In contrast to predictions by a simple genetic migration program, our experiments suggest that both adults and juveniles possess a navigation system based on a combination of celestial and geomagnetic information, possibly declination, to correct for eastward longitudinal displacements.  相似文献   

6.
Site fidelity to breeding and wintering grounds, and even stopover sites, suggests that passerines are capable of accurate navigation during their annual migrations. Geolocator‐based studies are beginning to demonstrate precise population‐specific migratory routes and even some interannual consistency in individual routes. Displacement studies of birds have shown that at least adult birds are capable of goal‐oriented movements, likely involving some type of map or geographic position system. In contrast, juveniles on their first migration use a clock‐and‐compass orientation strategy, with limited knowledge about locations along their migratory routes. Positioning information could come from a variety of cues including visual, olfactory, acoustic, and geomagnetic sources. How information from these systems is integrated and used for avian navigation has yet to be fully articulated. In this review, we (1) define geographic positioning and distinguish the types of navigational strategies that birds could use for orientation, (2) describe sensory cues available to birds for geographic positioning, (3) review the evidence for geographic positioning in birds and methods used to collect that evidence, and (4) discuss ways ornithologists, particularly field ornithologists, can contribute to and advance our knowledge of the navigational abilities of birds. Few studies of avian orientation and navigation mechanisms have been conducted in the Western Hemisphere. To fully understand migratory systems in the Western Hemisphere and develop better conservation policies, information about the orientation and navigation mechanisms used by specific species needs to be integrated with other aspects of their migration ecology and biology.  相似文献   

7.

Background

Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas) displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km) post-nesting migrations no differently from controls.

Methodology/Principal Findings

In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS), which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24–48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected) homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home.

Conclusions/Significance

While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home) likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues.  相似文献   

8.
A central step in organizing the central nervous system development is the growth cone of an axon navigating through guidance cues to reach its specific target. While a great deal of this process has been understood especially in identifying the extracellular guidance cues and their membrane receptors, much less is known about how guidance signals are further relayed to the actin filaments that are central to the mobility of the growth cone. The previous results from our laboratory have shown that Drosophila gene dunc-115 regulates axon projection in the eye and the central nervous system. Furthermore, Dunc-115 has a villin-headpiece (VHD) domain, implying the possibility of binding to actin. To further characterize Dunc-115’s functions, we have identified the isoform Dunc-115L as a possible downstream target in relaying guidance cues further down to the cytoskeleton. Specifically, we have shown that Dunc-115 regulates neural connections in both the eye and the central nervous system in Drosophila and that Dunc-115 contains an actin-binding domain potentially capable of binding to actin filaments. In this report, we show that Dunc-115 binds to actin via its VHD domain directly, suggesting a possible mechanism for how Dunc-115 relays guidance signals.  相似文献   

9.

Background

How neurons and neuronal circuits transform sensory input into behavior is not well understood. Because of its well-described, simple nervous system, Caenorhabditis elegans is an ideal model organism to study this issue. Transformation of sensory signals into neural activity is a crucial first step in the sensory–motor transformation pathway in an animal's nervous system. We examined the properties of chemosensory ASK neurons of C. elegans during sensory stimulation.

Method

A genetically encoded calcium sensor protein, G-CaMP, was expressed in ASK neurons of C. elegans, and the intracellular calcium dynamics of the neurons were observed.

Results

After application of the attractants l-lysine or food-related stimuli, the level of calcium in ASK neurons decreased. In contrast, responses increased upon stimulus removal. Opposite responses were observed after application and removal of a repellent.

Conclusion

The observed changes in response to external stimuli suggest that the activity of ASK neurons may impact stimulus-evoked worm behavior. The stimulus-ON/activity-OFF properties of ASK neurons are similar to those of vertebrate retinal photoreceptors.

General significance

Analysis of sensory–motor transformation pathways based on the activity and structure of neuronal circuits is an important goal in neurobiology and is practical in C. elegans. Our study provides insights into the mechanism of such transformation in the animal.  相似文献   

10.
The magnetic compass of migratory birds has been suggested to be light-dependent. Retinal cryptochrome-expressing neurons and a forebrain region, "Cluster N", show high neuronal activity when night-migratory songbirds perform magnetic compass orientation. By combining neuronal tracing with behavioral experiments leading to sensory-driven gene expression of the neuronal activity marker ZENK during magnetic compass orientation, we demonstrate a functional neuronal connection between the retinal neurons and Cluster N via the visual thalamus. Thus, the two areas of the central nervous system being most active during magnetic compass orientation are part of an ascending visual processing stream, the thalamofugal pathway. Furthermore, Cluster N seems to be a specialized part of the visual wulst. These findings strongly support the hypothesis that migratory birds use their visual system to perceive the reference compass direction of the geomagnetic field and that migratory birds "see" the reference compass direction provided by the geomagnetic field.  相似文献   

11.
Orientation toward breeding ponds plays an important role in the seasonal movements of amphibians. In this study, adult marbled newts were tested in a circular arena to determine sensory cues used to locate breeding ponds. Animals were collected from a temporary pond situated in northern Spain, taken to the experimental site 340 m distant, and tested for orientation under a variety of conditions (i.e., orientation under a clear night sky, orientation under an overcast night sky, and orientation under a clear night sky in the presence of an altered geomagnetic field). These investigations have demonstrated that the marbled newt is able to orient using celestial cues. Animals chose a compass course in the direction of their breeding pond only when celestial cues were available. Conversely, the ambient geomagnetic field does not seem to be relevant to orientation of marbled newts since they were unable to orient themselves using the ambient geomagnetic field in the absence of celestial cues. Electronic Publication  相似文献   

12.
Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal’s ability to locate the source of odor cues in realistic turbulent environments—a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing.  相似文献   

13.
14.
Summary Displaced juvenile alligators,Alligator mississipiensis, were released on land in a 9 m diameter dodecagonal arena to test their ability to orient in the absence of terrestrial landmarks. Navigational ability seemed to improve with age. When displaced along a fairly direct route yearlings (age 7–14 months) compensated for their displacement, moving in the direction from the arena to their home sites. When displaced by a circuitous route, yearlings failed to compensate for their displacement, exhibiting instead simple compass orientation in a direction that would have returned them to water had they been released on land near the site where they were captured. The older juveniles were oriented in a homeward direction under all displacement and test conditions.The latter animals may have been using geomagnetic map information to select their homeward directions as the errors in their homeward bearings correlated with small deviations in the geomagnetic field's dip angle at the time of the test (1980r s=–0.6047,P=0.0131, all testsr s= –0.4652,P=0.0084). This effect appeared to depend on a very short-term assessment of geomagnetic conditions, as values measured 20 min before or 30 min after the tests began did not correlate with the directions the animals moved. The older juveniles appeared to use magnetically quiet hours on the night of their capture as the baseline from which to measure the geomagnetic deviations that occurred at the time of the arena test. The magnitude of the magnetic effect in the older animals suggests that the geomagnetic information may have been used to perform a map step, as small fluctuations in dip angle correlated with much larger deviations in homeward bearings. In addition, the compass-oriented yearlings and the seemingly route-based behavior of the homeward-oriented yearlings did not appear to be influenced by geomagnetic conditions. These findings have many parallels in results obtained from bird orientation studies, providing evidence that navigation may share a common basis in different vertebrate groups.  相似文献   

15.
16.
SYNOPSIS. The gymnotiform electric fish, Eigenmannia, exhibitsextraordinary sensitivity to small timing differences betweensensory signals. The jamming avoidance response, gradual frequencyshifts of the electric organ discharges, requires the detectionof temporal disparities between sensory signals impinging upondifferent electroreceptors. This behavior occurs reliably evenwith temporal disparities being smaller than one microsecond.Since individual sensory receptors are not capable of encodingsuch minute timing with certainty, the high behavioral sensitivitymust, therefore, emerge from signal processing within the centralnervous system. Individual neurons, at the top of a well definedneuronal hierarchy have been found to be sensitive to temporaldisparities in the range of 1 microsecond. The response propertiesof these neurons as well as behavioral results suggest thatspatial convergence of sensory information plays a major rolein the emergence of this temporal hyperacuity.  相似文献   

17.
Sea turtles are known to perform long-distance, oceanic migrations between disparate feeding areas and breeding sites, some of them located on isolated oceanic islands. These migrations demonstrate impressive navigational abilities, but the sensory mechanisms used are still largely unknown. Green turtles breeding at Ascension Island perform long oceanic migrations (>2200 km) between foraging areas along the Brazilian coast and the isolated island. By performing displacement experiments of female green turtles tracked by satellite telemetry in the waters around Ascension Island we investigated which strategies most probably are used by the turtles in locating the island. In the present paper we analysed the search trajectories in relation to alternative navigation strategies including the use of global geomagnetic cues, ocean currents, celestial cues and wind. The results suggest that the turtles did not use chemical information transported with ocean currents. Neither did the results indicate that the turtles use true bi-coordinate geomagnetic navigation nor did they use indirect navigation with respect to any of the available magnetic gradients (total field intensity, horizontal field intensity, vertical field intensity, inclination and declination) or celestial cues. The female green turtles successfully locating Ascension Island seemed to use a combination of searching followed by beaconing, since they searched for sensory contact with the island until they reached positions NW and N of the Island and from there presumably used cues transported by wind to locate the island during the final stages of the search.  相似文献   

18.
Axons follow highly stereotyped and reproducible trajectories to their targets. In this review we address the properties of the first pioneer neurons to grow in the developing nervous system and what has been learned over the past several decades about the extracellular and cell surface substrata on which axons grow. We then discuss the types of guidance cues and their receptors that influence axon extension, what determines where cues are expressed, and how axons respond to the cues they encounter in their environment.This article provides an overview of how growth cones respond to the cellular substrata and molecular cues they encounter as they extend through the developing nervous system. It elaborates on the primer by Kolodkin and Tessier-Lavigne (2010) and touches on many of the topics covered in greater detail in the articles that follow. The first sections describe how axons extend in a directed manner, the substrata on which they grow, interactions between pioneer and follower axons, and growth cone behaviors in emerging tracts and at decision points. The subsequent sections discuss examples of specific cues, their distributions, how their distributions are determined, and how growth cones integrate multiple cues during pathfinding.  相似文献   

19.
Migratory orientation of Scandinavian and Greenland wheatears was recorded during the autumn migration periods of 1988 and 1989. Orientation cage tests were conducted under clear sunset skies, to investigate the importance of different visible sky sections on orientation performance. In addition, wheatears were released under clear starry skies and under total overcast to examine the orientation of free-flying birds. The following results were obtained:
  • 1 Wheatears tested with a restricted visible sky section (90° centered around zenith) in orientation cages, showed a mean orientation towards geographic W/geomagnetic NW (Greenland) and towards geographic and magnetic WNW-NW (Sweden). These mean directions are clearly inconsistent with the expected autumn migration directions, SW-SSW in Scandinavia and SE in Greenland, as revealed by ringing recoveries for the two populations.
  • 2 When the birds were allowed a much more extensive view of the sky, almost down to the horizon (above 10° elevation), Scandinavian wheatears chose headings in agreement with ringing data. Greenland birds were not significantly oriented.
  • 3 Release experiments under clear starry skies resulted in mean vanishing directions in good agreement with ringing data from both sites. Greenland wheatears released under total overcast showed a similar orientation as under clear skies, indicating that a view of the stars may not be of crucial importance for selecting a seasonally accurate migratory direction.
The results suggest that an unobstructed view of the sky, including visual cues low over the horizon, is important, possibly in combination with geomagnetic cues, for the orientation of migratory naive wheatears. Furthermore, the birds showed remarkably similar orientation responses in Greenland and Scandinavia, respectively, indicating that they use basically the same orientation system, despite considerable differences in visual and geomagnetic orientation premises at the two different geographic and magnetic latitudes.  相似文献   

20.
The ability of neurons to form a single axon and multiple dendrites underlies the directional flow of information transfer in the central nervous system. Dendrites and axons are molecularly and functionally distinct domains. Dendrites integrate synaptic inputs, triggering the generation of action potentials at the level of the soma. Action potentials then propagate along the axon, which makes presynaptic contacts onto target cells. This article reviews what is known about the cellular and molecular mechanisms underlying the ability of neurons to initiate and extend a single axon during development. Remarkably, neurons can polarize to form a single axon, multiple dendrites, and later establish functional synaptic contacts in reductionist in vitro conditions. This approach became, and remains, the dominant model to study axon initiation and growth and has yielded the identification of many molecules that regulate axon formation in vitro ( Dotti et al. 1988). At present, only a few of the genes identified using in vitro approaches have been shown to be required for axon initiation and outgrowth in vivo. In vitro, axon initiation and elongation are largely intrinsic properties of neurons that are established in the absence of relevant extracellular cues. However, the importance of extracellular cues to axon initiation and outgrowth in vivo is emerging as a major theme in neural development ( Barnes and Polleux 2009). In this article, we focus our attention on the extracellular cues and signaling pathways required in vivo for axon initiation and axon extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号