首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The genes for arylsulfatase (atsA) and tyramine oxidase (tynA) have been mapped in Klebsiella aerogenes by P1 transduction. They are linked to gdhD and trp in the order atsA-tynA-gdhD-trp-pyrF. Complementation analysis using F' episomes from Escherichia coli suggested an analogous location of these genes in E. coli, although arylsulfatase activity was not detected in E. coli. P1 phage and F' episomes were used to create intergeneric hybrid strains of enteric bacteria by transfer of the ats and tyn genes between K. aerogenes, E. coli, and Salmonella typhimurium. Intergeneric transduction of the tynK gene from K. aerogenes to an E. coli restrictionless strain was one to two orders less frequent than that of the leuK gene. The tyramine oxidase of E. coli and S. typhimurium in regulatory activity resemble very closely the enzyme of K. aerogenes. The atsE gene from E. coli was expressed, and latent arylsulfatase protein was formed in K. aerogenes and S typhimurium. The results of tyramine oxidase and arylsulfatase synthesis in intergeneric hybrids of enteric bacteria suggest that the system for regulation of enzyme synthesis is conserved more than the structure or function of enzyme protein during evolution.  相似文献   

2.
We have determined the nucleotide sequence of a secondary phage lambda attachment site (att) located between the structural genes of the ribitol and D-arabitol catabolic operons of Klebsiella aerogenes. The core region of this secondary attachment site (sequence: GGTTTTTTCGATTAT) shows considerable homology with the 15-base-pair core region common to both the phage att and the primary bacterial att of Escherichia coli K12 (sequence: GCTTTTTTACTAA); however, there is no such clear homology between the sequences flanking the cores of the primary att and this secondary att. Integration of phage lambda into the K. aerogenes secondary att occurred by recombination between the core region of the phage att and an oligo(T.A) stretch located within the K. aerogenes secondary att.  相似文献   

3.
An Escherichia coli K12 strain was constructed that synthesized elevated quantities of Klebsiella aerogenes D-arabitol dehydrogenase; the enzyme accounted for about 5% of the soluble protein in this strain. Some 280 mg of enzyme was purified from 180 g of cell paste. The purified enzyme was active as a monomer of 46,000 mol.wt. The amino acid composition and kinetic constants of the enzyme for D-arabitol and D-mannitol are reported. The apparent Km for D-mannitol was more than 3-fold that for D-arabitol, whereas the maximum velocities with both substrates were indistinguishable. The enzyme purified from the E. coli K12 construct was indistinguishable by the criteria of molecular weight, electrophoretic mobility in native polyacrylamide gel and D-mannitol/D-arabitol activity ratio from D-arabitol dehydrogenase synthesized in wild-type K. aerogenes. Purified D-arabitol dehydrogenase showed no immunological cross-reaction with K. aerogenes ribitol dehydrogenase. During electrophoresis in native polyacrylamide gels, oxidation by persulphate catalysed the formation of inactive polymeric forms of the enzyme. Dithiothreitol and pre-electrophoresis protected against this polymerization.  相似文献   

4.
The genes involved in the 2,3-butanediol pathway coding for alpha-acetolactate decarboxylase, alpha-acetolactate synthase (alpha-ALS), and acetoin (diacetyl) reductase were isolated from Klebsiella terrigena and shown to be located in one operon. This operon was also shown to exist in Enterobacter aerogenes. The budA gene, coding for alpha-acetolactate decarboxylase, gives in both organisms a protein of 259 amino acids. The amino acid similarity between these proteins is 87%. The K. terrigena genes budB and budC, coding for alpha-ALS and acetoin reductase, respectively, were sequenced. The 559-amino-acid-long alpha-ALS enzyme shows similarities to the large subunits of the Escherichia coli anabolic alpha-ALS enzymes encoded by the genes ilvB, ilvG, and ilvI. The K. terrigena alpha-ALS is also shown to complement an anabolic alpha-ALS-deficient E. coli strain for valine synthesis. The 243-amino-acid-long acetoin reductase has the consensus amino acid sequence for the insect-type alcohol dehydrogenase/ribitol dehydrogenase family and has extensive similarities with the N-terminal and internal regions of three known dehydrogenases and one oxidoreductase.  相似文献   

5.
Wild-type Aerobacter aerogenes 1033 is unable to utilize xylitol. A succession of mutants was isolated capable of growth on this compound (0.2%) at progressively faster rates. Whereas the ability to utilize xylitol was achieved in the first-stage mutant (X1) by constitutive production of ribitol dehydrogenase (for which xylitol is a substrate but not an inducer), the basis for enhanced utilization of xylitol in the second-stage mutant (X2) was an alteration of ribitol dehydrogenase. This enzyme was purified from the various mutants. The apparent K(m) for xylitol was 0.12 m with X2 enzyme and 0.29 m with X1 enzyme. The X2 enzyme was also less heat stable and, at 0.05 m substrate concentration, had a higher ratio of activity with xylitol compared to ribitol than did the X1 enzyme. The third mutant (X3), with an even faster growth rate on xylitol, produced a ribitol dehydrogenase indistinguishable physically or kinetically from that of X2. However, X3 produced constitutively an active transport system which accepts xylitol. The usual function of this system is apparently for the transport of d-arabitol since the latter is not only a substrate but also an inducer of the transport system in parental strains of X3. The sequence of mutations described herein illustrates how genes belonging to different metabolic systems can be mobilized to serve a new biochemical pathway.  相似文献   

6.
The chromosomal DNA replication origins (oriC) from two members of the family Enterobacteriaceae, Enterobacter aerogenes and Klebsiella pneumoniae, have been isolated as functional replication origins in Escherichia coli. The origins in the SalI restriction fragments of 17.5 and 10.2 kilobase pairs, cloned from E. aerogenes and K. pneumoniae, respectively, were found to be between the asnA and uncB genes, as are the origins of the E. coli and Salmonella typhimurium chromosomes. Plasmids containing oriC from E aerogenes, K. pneumoniae, and S. typhimurium replicate in the E. coli cell-free enzyme system (Fuller, et al., Proc. Natl. Acad. Sci. U.S.A. 78:7370--7374, 1981), and this replication is dependent on dnaA protein activity. These SalI fragments from E. aerogenes and K. pneumoniae carry a region which is lethal to E. coli when many copies are present. We show that this region is also carried on the E. coli 9.0-kilobase-pair EcoRI restriction fragment containing oriC. The F0 genes of the atp or unc operon, when linked to the unc operon promoter, are apparently responsible for the lethality.  相似文献   

7.
We have used P1 transduction to create intergeneric hybrid strains of enteric bacteria by moving the genA and hut genes between Klebsiella aerogenes, Escherichia coli and Salmonella typhimurium. The use of E. coli as the recipient in such transductions permits the construction of episomes and specialized transducing phage containing non-E. coli material. The effect of host restriction modification and deoxyribonucleic acid homology on the frequency of intergeneric transduction of these loci has been examined.  相似文献   

8.
The ability to metabolize aromatic beta-glucosides such as salicin and arbutin varies among members of the Enterobacteriaceae. The ability of Escherichia coli to degrade salicin and arbutin appears to be cryptic, subject to activation of the bgl genes, whereas many members of the Klebsiella genus can metabolize these sugars. We have examined the genetic basis for beta-glucoside utilization in Klebsiella aerogenes. The Klebsiella equivalents of bglG, bglB and bglR have been cloned using the genome sequence database of Klebsiella pneumoniae. Nucleotide sequencing shows that the K. aerogenes bgl genes show substantial similarities to the E. coli counterparts. The K. aerogenes bgl genes in multiple copies can also complement E. coli mutants deficient in bglG encoding the antiterminator and bglB encoding the phospho-beta-glucosidase, suggesting that they are functional homologues. The regulatory region bglR of K. aerogenes shows a high degree of similarity of the sequences involved in BglG-mediated regulation. Interestingly, the regions corresponding to the negative elements present in the E. coli regulatory region show substantial divergence in K. aerogenes. The possible evolutionary implications of the results are discussed.  相似文献   

9.
Escherichia coli K12 cannot grow on D-arabitol, L-arabitol, ribitol or xylitol (Reiner, 1975). Using a mutant of E. coli K12 (strain 3; Sridhara et al., 1969) that can grow on L-1,2-propanediol, a second-stage mutant was isolated which can utilize D-arabitol as sole source of carbon and energy for growth. D-Arabitol is probably transported into the bacteria by the same system as that used for the transport of L-1,2-propanediol. The second-stage mutant constitutively synthesizes a new dehydrogenase, which is not present in the parent strain 3. This enzyme, whose native substrate may be D-galactose, apparently dehydrogenates D-arabitol to D-xylulose, and its structural gene is located at 68.5 +/- 1 min on the E. coli genetic map. D-Xylulose is subsequently catabolized by the enzymes of the D-xylose metabolic pathway.  相似文献   

10.
P4 is a satellite phage of P2 and is dependent on phage P2 gene products for virion assembly and cell lysis. Previously, we showed that a virulent mutant of phage P4 (P4 vir1) could be used as a multicopy, autonomously replicating plasmid vector in Escherichia coli and Klebsiella pneumoniae in the absence of the P2 helper. In addition to establishing lysogeny as a self-replicating plasmid, it has been shown that P4 can also lysogenize E. coli via site-specific integration into the host chromosome. In this study, we show that P4 also integrates into the K. pneumoniae chromosome at a specific site. In contrast to that in E. coli, however, site-specific integration in K. pneumoniae does not require the int gene of P4. We utilized the alternative modes of P4 lysogenization (plasmid replication or integration) to construct cloning vectors derived from P4 vir1 that could exist in either lysogenic mode, depending on the host strain used. These vectors carry an amber mutation in the DNA primase gene alpha, which blocks DNA replication in an Su- host and allows the selection of lysogenic strains with integrated prophages. In contrast, these vectors can be propagated as plasmids in an Su+ host where replication is allowed. To demonstrate the utility of this type of vector, we show that certain nitrogen fixation (nif) genes of K. pneumoniae, which otherwise inhibit nif gene expression when present on multicopy plasmids, do not exhibit inhibitory effects when introduced as merodiploids via P4 site-specific integration.  相似文献   

11.
D-apiose reductase from Aerobacter aerogenes   总被引:1,自引:0,他引:1       下载免费PDF全文
A strain of Aerobacter aerogenes PRL-R3 has been isolated which utilizes d-apiose as its sole source of carbon. A new enzyme, d-apiose reductase, was discovered in this strain. The enzyme was not present when the strain was grown on d-glucose. d-Apiose reductase catalyzes the nicotinamide adenine dinucleotide-dependent interconversion of d-apiose and d-apiitol. The enzyme is specific for d-apiose and d-apiitol, with a few possible exceptions. The K(m) for d-apiose is 0.02 m. The K(m) for d-apiitol is 0.01 m. The enzyme is almost completely specific for the reduced and oxidized forms of nicotinamide adenine dinucleotide. When cell-free extracts were centrifuged at 100,000 x g for 1 hr, the enzyme remained in solution. Optimal activity for the reduction of d-apiose was obtained at pH 7.5 in glycylglycine buffer, whereas for the oxidation of d-apiitol it was obtained at pH 10.5 in glycine buffer. Enzymatic reduction of d-apiose was not appreciably affected by the presence of 0.02 m ethylenediaminetetraacetate. Paper chromatography and specific spray reagents were used to identify d-apiitol and d-apiose as the products of this reversible reaction. d-Apiose and d-apiitol did not serve as substrates for ribitol dehydrogenase and d-arabitol dehydrogenase from A. aerogenes PRL-R3.  相似文献   

12.
A mutant strain of Klebsiella aerogenes was constructed and, when incubated anaerobically with L-fucose and glycerol, synthesized and excreted a novel methyl pentitol, 6-deoxy L-talitol. The mutant was constitutive for the synthesis of L-fucose isomerase but unable to synthesize L-fuculokinase activity. Thus, it could convert the L-fucose to L-fuculose but was incapable of phosphorylating L-fuculose to L-fuculose 1-phosphate. The mutant was also constitutive for the synthesis of ribitol dehydrogenase, and in the presence of sufficient reducing power this latter enzyme catalyzed the reduction of the L-fuculose to 6-deoxy L-talitol. The reducing equivalents required for this reaction were generated by the oxidation of glycerol to dihydroxyacetone with an anaerobic glycerol dehydrogenase. The parent strain of K. aerogenes was unable to utilize the purified 6-deoxy L-talitol as a sole source of carbon and energy for growth; however, mutant could be isolated which had gained this ability. Such mutants were found to be constitutive for the synthesis of ribitol dehydrogenase and were thus capable of oxidizing 6-deoxy L-talitol to L-fuculose. Further metabolism of L-fuculose was shown by mutant analysis to be mediated by the enzymes of the L-fucose catabolic pathway.  相似文献   

13.
The amino acid sequence of human placental 17 beta-hydroxysteroid dehydrogenase (17 beta-OH-steroid dehydrogenase) was found to be similar to that of the NodG protein of Rhizobium meliloti. The computer-based comparison score is 11.5 SD higher than that obtained with 2500 comparisons of randomized sequences of these proteins. The probability of getting such a score by chance is 6 x 10(-31). 17 beta-OH-steroid dehydrogenase is also similar to Klebsiella aerogenes ribitol dehydrogenase and Escherichia coli glucitol-6-phosphate dehydrogenase. We propose that the steroid recognition site on 17 beta-OH-steroid dehydrogenase evolved from an ancestral recognition site for polyols such as ribitol and glucitol-6-phosphate.  相似文献   

14.
Genetic control of glutamine synthetase in Klebiella aerogenes.   总被引:7,自引:45,他引:7       下载免费PDF全文
Mutations at two sites, glnA and glnB, of the Klebsiella aerogenes chromosome result in the loss of glutamine synthetase. The locations of these sites on the chromosome were established by complementation by episomes of Escherichia coli and by determination of their linkage to other genetic sites by transduction with phage P1. The glnB gene is located at a position corresponding to 48 min on the Taylor map of the E. coli chromosome; it is linked to tryA, nadB, and GUA. The glnA gene is at a position corresponding to 77 min on the Taylor map and is linked to rha and metB; it is also closely linked to rbs, located in E. coli at 74 min, indicating a difference in this chromosomal region between E. coli and K. aerogenes. Mutations in the glnA site can also lead to nonrepressible synthesis of active glutamine synthetase. The examination of the fine genetic structure of glnA revealed that one such mutation is located between two mutations leading to the loss of enzymatic activity. This result, together with evidence that the structural gene for glutamine synthetase is at glnA, suggests that glutamine synthetase controls expression of its own structural gene by repression.  相似文献   

15.
Ribitol catabolic pathway in Klebsiella aerogenes   总被引:12,自引:11,他引:1       下载免费PDF全文
In Klebsiella aerogenes W70, there is an inducible pathway for the catabolism of ribitol consisting of at least two enzymes, ribitol dehydrogenase (RDH) and d-ribulokinase (DRK). These two enzymes are coordinately controlled and induced in response to d-ribulose, an intermediate of the pathway. Whereas wild-type K. aerogenes W70 are unable to utilize xylitol as a carbon and energy source, mutants constitutive for the ribitol pathway are able to utilize RDH to oxidize the unusual pentitol, xylitol, to d-xylulose. These mutants are able to grow on xylitol, presumably by utilization of the d-xylulose produced. Mutants constitutive for l-fucose isomerase can utilize the isomerase to convert d-arabinose to d-ribulose. In the presence of d-ribulose, RDH and DRK are induced, and such mutants are thus able to phosphorylate the d-ribulose by using the DRK of the ribitol pathway. Derivatives of an l-fucose isomerase-constitutive mutant were plated on d-arabinose, ribitol, and xylitol to select and identify mutations in the ribitol pathway. Using the transducing phage PW52, we were able to demonstrate genetic linkage of the loci involved. Three-point crosses, using constitutive mutants as donors and RDH(-), DRK(-) double mutants as recipients and selecting for DRK(+) transductants on d-arabinose, resulted in DRK(+)RDH(+)-constitutive, DRK(+)RDH(+)-inducible, and DRK(+)RDH(-)-inducible transductants but no detectable DRK(+)RDH(-) constitutive transductants, data consistent with the order rbtC-rbtD-rbtK, where rbtC is a control site and rbtD and rbtK correspond to the sites for the sites for the enzymes RDH and DRK, respectively.  相似文献   

16.
We studied the physiology of cells of Klebsiella aerogenes containing the structural gene for glutamine synthetase (glnA) of Escherichia coli on an episome. The E. coli glutamine synthetase functioned in cells of K. aerogenes in a manner similar to that of the K. aerogenes enzyme: it allowed the level of histidase to increase and that of glutamate dehydrogenase to decrease during nitrogen-limited growth. The phenotype of mutations in the glnA site was restored to normal by the introduction of the episomal glnA+ gene. These results are consistent with the hypothesis that glutamine synthetase regulates the function of its own structural gene.  相似文献   

17.
The plaque-forming VT2-encoding lambdoid bacteriophage varphi297 was isolated from a Belgian clinical Escherichia coli O157:H7 isolate. PCR walking, starting from the int gene of phage varphi297, demonstrated that the varphi297 prophage integrated in the yecE gene of a lysogenic E. coli K12 strain. This integration site, in E. coli K12 and in the original clinical O157:H7 isolate, was confirmed by PCR using primers flanking this site. The excisionase protein of phage varphi297 is identical to the excisionase of VT1-encoding phage VT1-Sakai, while the integrases, which are 82% identical, show significant sequence divergence in the central and C-terminal region. This can explain the different integration sites of both prophages. The activity of the integrase was proven by its ability to mediate the integration of a suicide plasmid, carrying the attachment site of varphi297, at the appropriate position in the E. coli chromosome.  相似文献   

18.
We screened mini-Mu plasmid libraries from Enterobacter aerogenes IFO 12010 for plasmids that complement Escherichia coli phn mutants that cannot use phosphonates (Pn) as the sole source of phosphorus (P). We isolated two kinds of plasmids that, unexpectedly, encode genes for different metabolic pathways. One kind complements E. coli mutants with both Pn transport and Pn catalysis genes deleted; these plasmids allow degradation of the 2-carbon-substituted Pn alpha-aminoethylphosphonate but not of unsubstituted alkyl Pn. This substrate specificity is characteristic of a phosphonatase pathway, which is absent in E. coli. The other kind complements E. coli mutants with Pn catalysis genes deleted but not those with both transport and catalysis genes deleted; these plasmids allow degradation of both substituted and unsubstituted Pn. Such a broad substrate specificity is characteristic of a carbon-phosphorus (C-P) lyase pathway, which is common in gram-negative bacteria, including E. coli. Further proof that the two kinds of plasmids encode genes for different pathways was demonstrated by the lack of DNA homology between the plasmids. In particular, the phosphonatase clone from E. aerogenes failed to hybridize to the E. coli phnCDEFGHIJKLMNOP gene cluster for Pn uptake and degradation, while the E. aerogenes C-P lyase clone hybridized strongly to the E. coli phnGHIJKLM genes encoding C-P lyase but not to the E. coli phnCDE genes encoding Pn transport. Specific hybridization by the E. aerogenes C-P lyase plasmid to the E. coli phnF, phnN, phnO, and phnP genes was not determined. Furthermore, we showed that one or more genes encoding the apparent E. aerogenes phosphonatase pathway, like the E. coli phnC-to-phnP gene cluster, is under phosphate regulon control in E. coli. This highlights the importance of Pn in bacterial P assimilation in nature.  相似文献   

19.
20.
Plasmid-based cloning and expression of genes in Escherichia coli can have several problems: plasmid destabilization; toxicity of gene products; inability to achieve complete repression of gene expression; non-physiological overexpression of the cloned gene; titration of regulatory proteins; and the requirement for antibiotic selection. We describe a simple system for cloning and expression of genes in single copy in the E. coli chromosome, using a non-antibiotic selection for transgene insertion. The transgene is inserted into a vector containing homology to the chromosomal region flanking the attachment site for phage lambda. This vector is then linearized and introduced into a recombination-proficient E. coli strain carrying a temperature-sensitive lambda prophage. Selection for replacement of the prophage with the transgene is performed at high temperature. Once in the chromosome, transgenes can be moved into other lysogenic E. coli strains using standard phage-mediated transduction techniques, selecting against a resident prophage. Additional vector constructs provide an arabinose-inducible promoter (P(BAD)), P(BAD) plus a translation-initiation sequence, and optional chloramphenicol-, tetracycline-, or kanamycin-resistance cassettes. These Transgenic E. coli Vectors (TGV) allow drug-free, single-copy expression of genes from the E. coli chromosome, and are useful for genetic studies of gene function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号