首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of oral taurine supplementation on endotoxin-induced cholestasis was investigated in rat liver. At 12h following lipopolysaccharide (LPS) injection (4mg/kg body weight i.p.) bile flow and bromosulfophthalein (BSP) and taurocholate (TC) excretion were determined in the perfused liver and the expression of the canalicular transporters multidrug resistance protein 2 (Mrp2) and bile salt export pump (Bsep) was analyzed. Injection of LPS induced a significant decrease of bile flow ( 2.2+/-0.2 microl/g liver wet weight/min vs 3.3+/-0.1 microl/g liver wet weight in controls), biliary BSP excretion (10.8+/-2.2 nmol/g/min vs 21.0+/-3.8 nmol/g/min), and biliary TC excretion (114+/-23 nmol/g/min vs 228+/-8 nmol/g/min). These effects were due to transporter retrieval from the canalicular membrane and downregulation of Mrp2 and Bsep expression. In taurine-supplemented rats bile flow was 30% higher than that in untreated rats and the expression of Mrp2 and Bsep protein was increased two- to threefold. In taurine-supplemented rats there was no significant reduction of bile flow or of BSP and TC excretion at 12h following LPS injection. This protective effect of taurine was due to higher Mrp2 and Bsep protein levels compared to nonsupplemented LPS-treated rats, whereas relative Mrp2 retrieval from the canalicular membrane induced by LPS was not significantly different. LPS-induced tumor necrosis factor alpha and interleukin-1beta release were lower in taurine-fed rats; however, downregulation of Mrp2 and Bsep expression by LPS was delayed but not prevented. The data show that oral supplementation of taurine induces Mrp2 and Bsep expression and may prevent LPS-induced cholestasis.  相似文献   

3.
4.
Physiological cholestasis linked to immature hepatobiliary transport systems for organic anions occurs in rat and human neonates. In utero, the placenta facilitates vectorial transfer of certain fetal-derived solutes to the maternal circulation for elimination. We compared the ontogenesis of organic anion transporters in the placenta and the fetal liver of the rat to assess their relative abundance throughout gestation and to determine whether the placenta compensates for the late maturation of transporters in the developing liver. The mRNA of members of the organic anion transporting polypeptide (Oatp) superfamily, the multidrug resistance protein (Mrp) family, one organic anion transporter (OAT), and the bile acid carriers Na(+)-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) was quantified by real-time PCR. The most abundant placental transporters were Oatp4a1, whose mRNA increased 10-fold during gestation, and Mrp1. Mrp1 immunolocalized predominantly to epithelial cells of the endoplacental yolk sac, suggesting an excretory role that sequesters fetal-derived solutes in the yolk sac cavity, and faintly to the basal syncytiotrophoblast surface. The mRNA levels of Oatp2b1, Mrp3, and Bsep in the placenta exceeded those in the fetal liver until day 20 of gestation, suggesting that the fetus relies on placental clearance of substrates when expression in the developing liver is low. Mrp3 immunolocalized to the epithelium of the endoplacental yolk sac and less abundantly in the labyrinth zone and endothelium of the maternal arteries. The placental expression of Oatp1a1, Oatp1a4, Oatp1a5, Oatp1b2, Oat, Ntcp, Mrp2, and Mrp6 was low.  相似文献   

5.
Endocytic internalization of the multidrug resistance-associated protein 2 (Mrp2) was previously suggested to be involved in estradiol-17beta-D-glucuronide (E217G)-induced cholestasis. Here we evaluated in the rat whether a similar phenomenon occurs with the bile salt export pump (Bsep) and the ability of DBcAMP to prevent it. E217G (15 micromol/kg i.v.) impaired bile salt (BS) output and induced Bsep internalization, as assessed by confocal microscopy and Western blotting. Neither cholestasis nor Bsep internalization occurred in TR- rats lacking Mrp2. DBcAMP (20 micromol/kg i.v.) partially prevented the decrease in bile flow and BS output and substantially prevented E217G-induced Bsep internalization. In hepatocyte couplets, E217G (50 microM) diminished canalicular accumulation of a fluorescent BS and decreased Bsep-associated fluorescence in the canalicular membrane; DBcAMP (10 microM) fully prevented both effects. In conclusion, our results suggest that changes in Bsep localization are involved in E217G-induced impairment of bile flow and BS transport and that DBcAMP prevents this effect by stimulating insertion of canalicular transporter-containing vesicles. Mrp2 is required for E217G to induce its harmful effect.  相似文献   

6.
Sinusoidal and apical transporters are responsible for the uptake and biliary elimination of many compounds by hepatocytes. Few in vitro models are however available for analyzing such functions. The expression and bile-acid inducibility of 13 transporters and two nuclear receptors were investigated in the new rat polarized lines, Can 3−1 and Can 10, and in their unpolarized parent, Fao. The relative abundance of mRNA, the protein level, and their localization were examined by real-time quantitative PCR, Western blotting, immunofluorescence, and confocal microscopy. Compared with rat liver, mRNA levels of Fao cells were: negligible for Bsep/Abcb11; lower for the uptake transporters Ntcp and Oatps; similar for SHP, FXR, and Bcrp/Abcg2; and higher (four–fold to 160-fold) for the efflux pumps Mdr1b/Abcb1b, Mdr2/Abcb4, Mrp1/Abcc1, Mrp2/Abcc2, Mrp3/Abcc3, Abcg5, and Abcg8. This profile was mostly maintained (and improved for Bsep) in Can 10. Some transporters were less well expressed in Can 3−1. In both lines, sinusoidal (Ntcp, Mrp3) and canalicular transporters (Mdr-P-glycoproteins detected with C219 antibody, Mrp2) were localized at their correct poles. Bile-acid effects on polarity and mRNA levels of transporters were analyzed after a 6-day treatment with 50 μM taurocholic, chenodeoxycholic (CDCA), or ursodeoxycholic acid (UDCA). No polarization of Fao cells was induced; Can 10 and Can 3−1 polarity was maintained. CDCA and UDCA induced marked enhancement of the volume of Can 10 bile canaliculi. CDCA upregulated Bsep, Mdr2, SHP, Mdr1b, and Oatp2/1a4 in Can 10 (two- to seven-fold) and in Fao cells. Thus, Can 10 constitutes an attractive polarized model for studying vectorial hepatobiliary transport of endogenous and xenobiotic cholephilic compounds. This work was supported by a grant from Egide (PAI Picasso) and the Acción Integrada Hispano-Francesa (HF2003-0089). This research group is part of the Network for Cooperative Research on Membrane Transport Proteins (REIT), co-funded by the Ministerio de Educación y Ciencia, Spain and the European Regional Development Fund (ERDF; grant BFU2005-24983-E/BFI) and belongs to the “Centro de Investigación Biomédica en Red” for Hepatology and Gastroenterology Research (CIBERehd), Instituto de Salud Carlos III, Spain.  相似文献   

7.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and beta-mercaptoethanol, with concentrations of 10 mM inhibiting by approximately 40%. DTT's inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [(3)H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

8.
The major canalicular bile salt export pump (Bsep) of mammalian liver is downregulated by endotoxin. This study reports on the effects of dexamethasone and osmolarity on Bsep mRNA expression in cultured rat hepatocytes and its functional relevance in rat liver. Expression of Bsep mRNA in rat hepatocytes 24 and 48 h after isolation was dependent on the presence of dexamethasone (100 nM) in the culture medium. Bsep was functionally active at the pseudocanalicular membrane in cells cultured for 4 days in medium containing dexamethasone. Hypoosmolarity (205 mosmol/l) led to an induction of Bsep mRNA levels, whereas expression was decreased by hyperosmolarity (405 mosmol/l). Also the decay of Bsep mRNA following dexamethasone withdrawal was osmosensitive. In rat liver, dexamethasone counteracted the lipopolysaccharide (LPS)-induced down-regulation of Bsep mRNA levels after 12 hours and abolished the LPS-induced inhibition of taurocholate excretion. These results indicate that glucocorticoids are strong inducers of Bsep in liver. Furthermore, Bsep mRNA levels are osmosensitively regulated. The data suggest a longterm control of Bsep mRNA by osmolarity in addition to the short-term effects on canalicular bile acid excretion, which were reported recently.  相似文献   

9.
10.

Objective

The endogenous, cholestatic metabolite estradiol 17ß-d-glucuronide (E217G) induces endocytic internalization of the canalicular transporters relevant to bile formation, Bsep and Mrp2. We evaluated here whether MAPKs are involved in this effect.

Design

ERK1/2, JNK1/2, and p38 MAPK activation was assessed by the increase in their phosphorylation status. Hepatocanalicular function was evaluated in isolated rat hepatocyte couplets (IRHCs) by quantifying the apical secretion of fluorescent Bsep and Mrp2 substrates, and in isolated, perfused rat livers (IPRLs), using taurocholate and 2,4-dinitrophenyl-S-glutathione, respectively. Protein kinase participation in E217G-induced secretory failure was assessed by co-administering selective inhibitors. Internalization of Bsep/Mrp2 was assessed by confocal microscopy and image analysis.

Results

E217G activated all kinds of MAPKs. The PI3K inhibitor wortmannin prevented ERK1/2 activation, whereas the cPKC inhibitor Gö6976 prevented p38 activation, suggesting that ERK1/2 and p38 are downstream of PI3K and cPKC, respectively. The p38 inhibitor SB203580 and the ERK1/2 inhibitor PD98059, but not the JNK1/2 inhibitor SP600125, partially prevented E217G-induced changes in transporter activity and localization in IRHCs. p38 and ERK1/2 co-inhibition resulted in additive protection, suggesting complementary involvement of these MAPKs. In IPRLs, E217G induced endocytosis of canalicular transporters and a rapid and sustained decrease in bile flow and biliary excretion of Bsep/Mrp2 substrates. p38 inhibition prevented this initial decay, and the internalization of Bsep/Mrp2. Contrarily, ERK1/2 inhibition accelerated the recovery of biliary secretion and the canalicular reinsertion of Bsep/Mrp2.

Conclusions

cPKC/p38 MAPK and PI3K/ERK1/2 signalling pathways participate complementarily in E217G-induced cholestasis, through internalization and sustained intracellular retention of canalicular transporters, respectively.  相似文献   

11.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and β-mercaptoethanol, with concentrations of 10 mM inhibiting by ∼40%. DTT’s inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [3H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

12.
13.
14.
15.
16.
Inverse acinar regulation of Mrp2 and 3 represents an adaptive response to hepatocellular cholestatic injury. We studied whether obstructive cholestasis (bile duct ligation) and LPS treatment affect the zonal expression of Bsep (Abcb11), Mrp4 (Abcc4), Ntcp (Slc10a1), and Oatp isoforms (Slco1a1, Slco1a4, and slco1b2) in rat liver, as analyzed by semiquantitative immunofluorescence. Contribution of TNF-alpha and IL-1beta to transporter zonation in obstructive cholestasis was studied by cytokine inactivation. In normal liver Bsep, Mrp4, Ntcp, and Oatp1a1 were homogeneously distributed in the acinus, whereas Oatp1a4 and Oatp1b2 expression increased from zone 1 to 3. Glutamine synthetase-positive pericentral hepatocytes exhibited markedly lower Oatp1a4 expression than the remaining zone 3 hepatocytes. In cholestatic liver Bsep and Ntcp immunofluorescence in periportal hepatocytes significantly decreased to 66 +/- 4% (P < 0.01) and 67 +/- 7% (P < 0.05), whereas it was not altered in pericentral hepatocytes. Oatp1a4 was significantly induced in hepatocytes with a primarily low expression, i.e., in periportal hepatocytes and in glutamine synthetase-positive pericentral hepatocytes. Likewise, Oatp1b2 was upregulated in periportal hepatocytes. Mrp4 zonal induction was homogeneous. Inactivation of TNF-alpha and IL-1beta prevented periportal downregulation of Bsep. Recruitment of neutrophils and polymorphonuclear cells mainly occurred in the periportal zone. Likewise, IL-1beta induction was largely found periportally. No significant transporter zonation was seen following LPS treatment. In conclusion, zonal downregulation of Bsep in obstructive cholestasis is associated with portal inflammation and is mediated by TNF-alpha and IL-1beta. Periportal downregulation of Ntcp and induction of Oatp1a4 and Oatp1b2 may represent adaptive mechanisms to reduce cholestatic injury in hepatocytes with profound downregulation of Bsep and Mrp2.  相似文献   

17.
Small hepatocytes (SHs) are hepatic progenitor cells with hepatic characteristics. They can proliferate to form colonies in culture and change their morphology from flat to rising/piled-up with bile canaliculi (BC), which results in maturation. In this study, we examined whether SHs could express hepatic transporters with polarity, whether the transporters could transport organic anion substrates into BC, and whether the secreted substances could be recovered from BC. Immunocytochemistry and RT-PCR were carried out. [(3)H]-labeled estrogen derivatives were used to measure the functions of the transporters in SHs isolated from normal and multidrug resistance-associated protein (Mrp) 2-deficient rats. The results showed that organic anion-transporting proteins (Oatps) 1 and 2, Na(+)-dependent taurocholate co-transporting polypeptide (Ntcp), Mrp2, and bile-salt export pump (Bsep) were well expressed in rising/piled-up cells and that their expression was correlated to that of hepatocyte nuclear factor 4alpha. Although small SHs expressed not Oatps and Mrp2 but Mrp3, rising/piled-up SHs expressed Oatp1 and 2 and Mrp2 proteins in the sinusoidal and BC membranes, respectively. On the other hand, breast cancer resistant protein (Bcrp) and Mrp3 expression decreased as SHs matured. The substrate transported via Oatps and Mrp2 was secreted into BC and it accumulated in both BC and cyst-like structures. The secreted substrate could be efficiently recovered from BC reconstructed by SHs derived from a normal rat, but not from an Mrp2-deficient rat. In conclusion, SHs can reconstitute hepatic organoids expressing functional organic anion transporters in culture. This culture system may be useful to analyze the metabolism and excretion mechanisms of drugs.  相似文献   

18.
It is hypothesized that during cholestasis, the liver, kidney, and intestine alter gene expression to prevent BA accumulation; enhance urinary excretion of BA; and decrease BA absorption, respectively. To test this hypothesis, mice were subjected to either sham or bile-duct ligation (BDL) surgery and liver, kidney, duodenum, ileum, and serum samples were collected at 1, 3, 7, and 14 days after surgery. Serum total BA concentrations were 1-5 mumol/l in sham-operated mice and were elevated at 1, 3, 7, and 14 days after BDL, respectively. BDL decreased liver Ntcp, Oatp1a1, 1a5, and 1b2 mRNA expression and increased Bsep, Oatp1a4, and Mrp1-5 mRNA levels. In kidney, BDL decreased Oatp1a1 and increased Mrp1-5 mRNA levels. In intestine, BDL increased Mrp3 and Ibat mRNA levels in ileum. BDL increased Mrp1, 3, 4, and 5 protein expression in mouse liver. These data indicate that the compensatory regulation of transporters in liver, kidney, and intestine is unable to fully compensate for the loss of hepatic BA excretion because serum BA concentration remained elevated after 14 days of BDL. Additionally, hepatic and renal Oatp and Mrp genes are regulated similarly during extrahepatic cholestasis, and may suggest that transporter expression is regulated not to remove bile constituents from the body, but instead to remove bile constituents from tissues.  相似文献   

19.
Cholestasis develops during inflammation and is characterized as occurring under oxidative stress. We have described the internalization of multidrug resistance-associated protein 2 (Mrp2), a biliary transporter involved in bile-salt-independent bile flow, under ethacrynic acid or lipopolysaccharide (LPS)-induced acute oxidative stress in rat liver. However, it remains unclear whether canalicular Mrp2 internalization is observed in human liver under conditions of acute oxidative stress. In this study, we examined the effect of dimerumic acid (DMA), an antioxidant and found in traditional Chinese medicine, on endotoxin-induced Mrp2 internalization in rat and human liver slices. At 1.5 h following LPS treatment (100 μg/mL), canalicular Mrp2 localization was disrupted without changing the expression of Mrp2 protein or the integrity of filamentous actin in the rat and human liver slices. Pretreatment with DMA (10 μM) counteracted LPS-induced subcellular distribution of Mrp2. Our data clearly indicated that LPS-induced short-term rapid retrieval of Mrp2 from the canalicular surface resulted from LPS-induced oxidative stress in rat and human liver slices.  相似文献   

20.
It is hypothesized that during cholestasis, the liver, kidney, and intestine alter gene expression to prevent BA accumulation; enhance urinary excretion of BA; and decrease BA absorption, respectively. To test this hypothesis, mice were subjected to either sham or bile-duct ligation (BDL) surgery and liver, kidney, duodenum, ileum, and serum samples were collected at 1, 3, 7, and 14 days after surgery. Serum total BA concentrations were 1-5 μmol/l in sham-operated mice and were elevated at 1, 3, 7, and 14 days after BDL, respectively. BDL decreased liver Ntcp, Oatp1a1, 1a5, and 1b2 mRNA expression and increased Bsep, Oatp1a4, and Mrp1-5 mRNA levels. In kidney, BDL decreased Oatp1a1 and increased Mrp1-5 mRNA levels. In intestine, BDL increased Mrp3 and Ibat mRNA levels in ileum. BDL increased Mrp1, 3, 4, and 5 protein expression in mouse liver. These data indicate that the compensatory regulation of transporters in liver, kidney, and intestine is unable to fully compensate for the loss of hepatic BA excretion because serum BA concentration remained elevated after 14 days of BDL. Additionally, hepatic and renal Oatp and Mrp genes are regulated similarly during extrahepatic cholestasis, and may suggest that transporter expression is regulated not to remove bile constituents from the body, but instead to remove bile constituents from tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号