首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D G Latwesen  M Poe  J S Leigh  G H Reed 《Biochemistry》1992,31(21):4946-4950
The number of water molecules bound to Mn2+ in the complex with a variant of Ha ras p21 and GDP has been determined by electron paramagnetic resonance (EPR) measurements in 17O-enriched water. A resolution enhancement method has been used to improve quantitation of the spectral data. These spectroscopic measurements show that Mn2+ has four water ligands in this complex, a result in agreement with the conclusions of a previous paper [Smithers, G. W., Poe, M., Latwesen, D. G., & Reed, G. H. (1990) Arch. Biochem. Biophys. 280, 416-420]. The resolution enhancement method has also been applied in a measurement of the 17O-Mn2+ superhyperfine coupling constant of 17O in the beta-phosphate of the GDP in the ras p21 complex. The intrinsically narrow EPR signals of Mn2+ in the complex with ras p21 and GDP in 2H2O respond to resolution enhancement such that the superhyperfine splitting from the 17O nuclear spin (I = 5/2) becomes visible in the EPR signals. An 17O-Mn2+ superhyperfine coupling constant is obtained from simulation of the resolution-enhanced EPR spectrum.  相似文献   

2.
The coordination sphere of Mn(II) in the complex with GDP and elongation factor Tu from Escherichia coli has been probed by EPR spectroscopy with 17O-labeled ligands. Inhomogeneous broadening in the EPR signals for Mn(II) due to unresolved superhyperfine coupling to the 17O nucleus was used to identify directly bound oxygen ligands. Results with GDP selectively enriched with 17O either in the alpha-phosphate or in the beta-phosphate revealed that GDP was a beta-monodentate ligand for Mn(II) in the complex with the protein. Results with 17O-enriched water showed that two water molecules are coordinated to the Mn(II). The EPR spectrum for the complex is characteristic of octahedral coordination for Mn(II). Hence, three ligands from the protein are required to complete the sextet of ligands.  相似文献   

3.
The biological functions of ras proteins are controlled by the bound guanine nucleotide GDP or GTP. The GTP-bound conformation is biologically active, and is rapidly deactivated to the GDP-bound conformation through interaction with GAP (GTPase Activating Protein). Most transforming mutants of ras proteins have drastically reduced GTP hydrolysis rates even in the presence of GAP. The crystal structures of the GDP complexes of ras proteins at 2.2 A resolution reveal the detailed interaction between the ras proteins and the GDP molecule. All the currently known transforming mutation positions are clustered around the bound guanine nucleotide molecule. The presumed "effector" region and the GAP recognition region are both highly exposed. No significant structural differences were found between the GDP complexes of normal ras protein and the oncogenic mutant with valine at position 12, except the side-chain of the valine residue. However, comparison with GTP-analog complexes of ras proteins suggests that the valine side-chain may inhibit GTP hydrolysis in two possible ways: (1) interacting directly with the gamma-phosphate and altering its orientation or the conformation of protein residues around the phosphates; and/or (2) preventing either the departure of gamma-phosphate on GTP hydrolysis or the entrance of a nucleophilic group to attack the gamma-phosphate. The structural similarity between ras protein and the bacterial elongation factor Tu suggests that their common structural motif might be conserved for other guanine nucleotide binding proteins.  相似文献   

4.
The simian ralA cDNA was inserted in a ptac expression vector, and high amounts of soluble ral protein were expressed in Escherichia coli. The purified p24ral contains 1 mol of bound nucleotide/mol of protein that can be exchanged against external nucleotide. The ral protein exchanges GDP with a t 1/2 of 90 min at 37 degrees C in the presence of Mg2+, and has a low GTPase activity (0.07 min-1 at 37 degrees C). We have also studied its affinity for various guanine nucleotides and analogs. NMR measurements show that the three-dimensional environment around the nucleotide is similar in p21ras and p24ral. In addition to these studies on the wild-type ral protein, we used in vitro mutagenesis to introduce substitutions corresponding to the Val12, Val12 + Thr59, and Leu61 substitutions of p21ras. These mutant ral proteins display altered nucleotide exchange kinetics and GTPase activities, however, the effects of the substitutions are less pronounced than in the ras proteins. p24ralVal12 + Thr59 autophosphorylates on the substituted Thr, as a side reaction of the GTP hydrolysis, but the rate is much lower than those of the Thr59 mutants of p21ras. These results show that ras and ral proteins have similar structures and biochemical properties. Significant differences are found, however, in the contribution of the Mg2+ ion to GDP binding, in the rate of the GTPase reaction and in the sensitivity of these two proteins to substitutions around the phosphate-binding site, suggesting that the various "small G-proteins" of the ras family perform different functions.  相似文献   

5.
D T Lodato  G H Reed 《Biochemistry》1987,26(8):2243-2250
The 2 equiv of divalent cation that are required cofactors for pyruvate kinase reside in sites of different affinities for different species of cation [Baek, Y. H., & Nowak, T. (1982) Arch. Biochem. Biophys. 217, 491-497]. The intrinsic selectivity of the protein-based site for Mn(II) and of the nucleotide-based site for Mg(II) has been exploited in electron paramagnetic resonance (EPR) investigations of ligands for Mn(II) at the protein-based site. Oxalate, a structural analogue of the enolate of pyruvate, has been used as a surrogate for the reactive form of pyruvate in complexes with enzyme, Mn(II), Mg(II), and ATP. Addition of Mg(II) to solutions of enzyme, Mn(II), ATP, and oxalate sharpens the EPR signals for the enzyme-bound Mn(II). Superhyperfine coupling between the unpaired electron spin of Mn(II) and the nuclear spin of 17O, specifically incorporated into oxalate, shows that oxalate is bound at the active site as a bidentate chelate with Mn(II). Coordination of the gamma-phosphate of ATP to this same Mn(II) center is revealed by observation of superhyperfine coupling form 17O regiospecifically incorporated into the gamma-phosphate group of ATP. By contrast, 17O in the alpha-phosphate or in the beta-phosphate groups of ATP does not influence the spectrum. Experiments in 17O-enriched water show that there is also a single water ligand bound to the Mn(II). These data indicate that ATP bridges Mn(II) and Mg(II) at the active site. A close spacing of the two divalent cations is also evident from the occurrence of magnetic interactions for complexes in which 2 equiv of Mn(II) are present at the active site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Analysis of titration data of EF-Tu-GDP with Mn(II) where free and bound Mn(II) were determined by proton relaxation rate of water (PRR) yields one tight Mn(II) binding site and a value of 2 muM for the dissociation constant of Mn(II) from the EF-Tu-MnGDP complex, K'A. The dissociation constant of manganese nucleotide from the ternary EF-Tu-MnGDP complex, K2, 0.2 muM, was derived from the known value of Ks, the dissociation constant for the binary EF-Tu-GDP complex, and the titration data of the ternary complex with excess GDP as titrant. The apparent number, n, of rapidly exchanging water ligands coordinated to bound Mn(II) in the ternary complex EF-Tu-MnGDP is estimated from the frequency dependence of the PRR of the complex to be approximately 1. The value of n and the values of PRR enhancements, epsilont = 4.3 for EF-Tu-MnGDP at 21 degrees, 24.3 MHZ and epsilont = 4.1 for the ternary GTP complex, are unusually low for protein-Mn-nucleotide complexes. The antibiotic X5108 which induces GTPase activity in EF-Tu-MgGTP was shown to bind stoichiometrically to EF-Tu-MnGDP and thereby change the PRR enhancement of the complex from 4.3 to 7.4. The characteristic broad lines in the EPR spectra of Mn(II) nucleotides are strikingly narrowed upon binding of Mn(II) nucleotides to EF-Tu. The long electron spin relaxation times inferred from the EPR spectra indicate a limited access of solvent water to the first coordination sphere of Mn(II) in its EF-Tu-nucleotide complexes. The frequency dependence of the PRR indicates that the electron spin relaxation time, T1e, is the dominant process modulating the Mn(II)-H2O interaction of the EF-Tu-MnGDP complex and consequently determines the correlation time. The value of T1e, estimated from the PRR experiments to be 2.5 ns at 21 degrees, is consistent with the lower limit of T1e obtained from the line widths of the EPR spectrum of the complex. Upon binding of a stoichiometric quantity of the antibiotic X5108, the EPR spectrum of EF-Tu-MnGDP is severely broadened indicating greater access of solvent water to the manganese coordination sphere, i.e. an opening of the nucleotide binding site as already suggested by the increased PRR enhancement.  相似文献   

7.
Changes in the coordination of Mn2+ to nucleotide, water and protein at the active site of elongation factor Tu (EF-Tu) have been studied by electron paramagnetic resonance (EPR) spectroscopy. From the time dependence of the Mn2+ spectrum after addition of GTP to EF-Tu X Mn, it was apparent that three complexes with different EPR linewidths could be detected. Using additional information from the kinetics of 32Pi production and release from EF-Tu X Mn X [gamma-32P]GTP these were identified as EF-Tu X Mn X GTP (linewidth 4.2 mT), EF-Tu X Mn X GDP X Pi (1.20 mT) and EF-Tu X Mn X GDP (1.29 mT). The linewidth for EF-Tu X Mn was 1.51 mT. The rate constant for GTP cleavage on EF-Tu was 0.01 min-1 at 24 C, for Pi release from the EF-Tu X GDP X Pi complex 0.0033 min-1. The corresponding rate constants in the presence of Mg2+ were 0.003 min-1 and 0.0065 min-1. The rate constant for reversal of the cleavage step was found to be much smaller than that for the rate of Pi release (and consequently much smaller than in the forward direction), as shown by 31P-NMR experiments on the incorporation of 18O into Pi from GTP hydrolyzed in the presence of H2 18O. EPR experiments using specifically 17O-labelled GTPs demonstrated an interaction of Mn2+ with the beta-phosphate in both the EF-Tu X GDP X Pi and EF-Tu X GDP complexes. Inorganic phosphate in the EF-Tu X GDP X Pi complex was found not to interact with the metal ion. From EPR experiments in H2 17O, it was concluded that the most probable number of water molecules in the different complexes was 4 (EF-Tu X Mn), 5 (EF-Tu X Mn X GDP X Pi) and 3 (EF-Tu X Mn X GDP), with 2, 0 and 2 metal-protein interactions respectively.  相似文献   

8.
Mutation of Pro82 into Thr, a residue situated in the second element (D80CPG83) of the consensus sequence proposed to interact with GTP/GDP in GTP-binding proteins was introduced via site-directed mutagenesis in the isolated guanine nucleotide-binding domain (G domain) of elongation factor Tu. G domainPT82 displays virtually no GTPase activity. As a major change, the apparent inhibition of the GTPase reaction is associated with the appearance of autophosphorylating activity, as in ras product p21 in the case of mutation Ala59----Thr, corresponding to 82 in elongation factor Tu. Dependence of this reaction on mono- and divalent cation concentration and on pH is essentially the same as for the GTPase of wild-type G domain. The autokinase reaction follows an apparent first order rate, suggesting an intermolecular mechanism. Analysis of amino acid and peptide composition of the 32P-labeled G domainPT82, as well as Edman degradation of the tryptic peptide containing the covalently bound 32P, shows that Thr82 is the phosphorylated residue. Taken together, these results point out that Thr82 is in close proximity to the gamma-phosphate of GTP, as in the case of Thr59 in p21. These results are in agreement with the observations derived from x-ray diffraction analysis that the tertiary structure of the GTP-binding domain of elongation factor Tu and that of p21 are similar.  相似文献   

9.
Ligands in the first coordination sphere of Mn(II) in the complex of MnADP with myosin subfragment 1 from rabbit skeletal muscle have been investigated. EPR spectroscopy was used to detect superhyperfine coupling between unpaired electrons of the metal ion and the nuclei of oxygen atoms specifically labeled with oxygen 17. The results show that ADP is a beta-monodentate ligand for Mn(II) and that there are probably two water oxygens directly bound to Mn(II). The inhibitory complex of vanadate with subfragment 1 . MnADP was also investigated. Vanadate-dependent changes in the EPR spectra for enzyme-bound Mn(II) indicate that the coordination sphere of MN(II) changes upon binding of vanadate. ADP remains a beta-monodenate ligand in the complex and experiments with 17O-labeled water indicate that two oxygen atoms originally in water are ligands in the complex. However, the oxygens of vanadate equilibrate with those of water during sample preparation so that one of these ligands may be a vanadate oxygen. Three additional ligands, probably from the protein, are required to complete the sextet of ligands to Mn(II) in both complexes studied.  相似文献   

10.
G H Reed  T S Leyh 《Biochemistry》1980,19(24):5472-5480
The complete coordination scheme for Mn(II) in transition-state-analogue complexes with creatine kinase has been determined by electron paramagnetic resonance (EPR) spectroscopy. Perturbations in the EPR spectra for Mn(II) due to superhyperfine coupling to 17O of selectively labeled ligands have been used to identify oxygen ligands in the first coordination sphere of the metal ion. The results show that in the complex of enzyme-MnADP-formate-creatine, Mn(II) is bound to oxygen ligands from both the alpha- and beta-phosphate groups of ADP, to an oxygen from the carboxylate group of formate, and to three water molecules. In the complex with thiocyanate replacing formate as the stabilizing anion, previous infrared experiments [Reed, G. H., Barlow, C. H., & Burns, R. A., Jr. (1978) J. Biol. Chem. 253, 4153-4158] indicated that the nitrogen from thiocyanate was bound to the Mn(II). The magnitudes of the 17O superphyperfine coupling constants from the O- ligands of the ADP phosphate groups and from the formate carboxylate are approximately equal and are larger than that for the water ligands. The symmetry of the zero-field-splitting tensor for Mn(II) indicates that the oxygens from the alpha- and beta-phosphate groups of ADP and the ligand donor atom from the anion occupy mutually cis positions in the octahedral coordination geometry. Water proton relaxation time measurements show that the three water molecules which are bound to Mn(II) are not in free exchange with the bulk solvent. Hence, an enclosed structure at the active site is indicated. The results suggest that for creatine kinase the activating metal ion is bound to all three phosphate groups in the transition state of the reaction.  相似文献   

11.
Amino acid sequence homology between the GTPase Activating Protein (GAP) and the GTP-binding regulatory protein, Gs alpha, suggests that a specific region of GAP primary structure (residues 891-898) may be involved in its stimulation of p21ras GTP hydrolytic activity (McCormick, F. [1989] Nature 340, 678-679). A peptide, designated p891, corresponding to GAP residues 891-906 (M891RTRVVSGFVFLRLIC906) was synthesized and tested for its ability to inhibit GAP-stimulated p21ras GTPase activity. At a concentration of 25 microM, p891 inhibited GAP activity approximately 50%. Unexpectedly, p891 also stimulated GTP binding to p21N-ras independent of GAP. This stimulation correlated with an enhancement of p21N-ras.GDP dissociation; an approximate 15-fold increase in the presence of 10 microM p891. In contrast, dissociation of the p21N-ras.GTP gamma S complex was unaffected by 10 microM p891. The p21N-ras.GDP complex was unresponsive to 100 microM mastoparan, a peptide toxin shown previously to accelerate GDP dissociation from the guanine nucleotide regulatory proteins, Gi and Go. p21H-ras, as well as the two p21H-ras effector mutants, Ala-38, and Ala-35, Leu-36, also exhibited increased rates of GDP dissociation in the presence of p891. Also tested were three ras-related GTP-binding proteins; rap, G25K and rac. The rap.-GDP complex was unaffected by 10 microM p891. Dissociation of the G25K- and rac.GDP complexes were enhanced slightly; approximately 1.3- and 1.8-fold over control, respectively. Thus, the inhibitory effect of p891 on GAP stimulation of p21ras suggests that amino acids within the region 891-906 of GAP may be essential for interaction with p21ras. In addition, p891 independently affects the nucleotide exchange properties of p21ras.  相似文献   

12.
Measurements of the relaxation rate of water protons (PRR) have been used to study the interaction of yeast phosphoglycerate kinase with the manganous complexes of a number of nucleotides. The results indicate that phosphoglycerate kinase belongs to the same class of enzymes as creatine kinase, adenylate kinase, formyltetrahydrofolate synthetase, and arginine kinase, with maximal binding of metal ion to tne enzyme in the presence of the nucleotide substrate. However, an analysis of titration curves for a number of nucleoside diphosphates (ADP, IDP, GDP) showed that there is a substantial synergism in binding of the metal ion and nucleotide to the enzyme in the ternary complex. The metal-substrate binds to the enzyme approximately two orders of magnitude more tightly than the free nucleotide; Other evidence for an atypical binding scheme for Mn(II)-nucleoside diphosphates was obtained by electron paramagnetic resonance (EPR) studies; the EPR spectrum for the bound Mn(II) in the enzyme-MnADP complex differed substantially from those obtained for other kinases. An identical EPR spectrum is observed with the MnADP complex with the rabbit muscle enzyme as with the yeast enzyme. In contrast, the dissociation constant for the enzyme-MnATP complex is approximately fourfold lower than that for enzyme-ATP, and there are no substantial changes in the electron paramagnetic resonance spectrum of MnATP2- when the complex is bound to phosphoglycerate kinase. A small but significant change in the PRR of water is observed on addition of 3-phosphoglycerate (but not 2-phosphoglycerate) to the MnADP-enzyme complex. However, addition of 3-phosphoglycerate to enzyme-MnADP did not influence the EPR spectrum of the enzyme-bound Mn(II).  相似文献   

13.
An Ala-to-Thr substitution at position 59 activates the transforming properties of the p21ras protein without impairment of GTPase activity, a biochemical alteration associated with other activating mutations. To investigate the basis for the transforming properties of the Thr-59 mutant, we characterized guanine nucleotide release. This reaction exhibited a slow rate and stringent temperature requirements. To further dissect the release reaction, we used monoclonal antibodies directed against different epitopes of the p21 molecule. One monoclonal specifically interfered with nucleotide release, while others which recognized different regions of the molecule blocked nucleotide binding. Mutants with the Thr-59 substitution exhibited a three- to ninefold-higher rate of GDP and GTP release than normal p21 or mutants with other activating lesions. This alteration in the Thr-59 mutant would have the effect of increasing its rate of nucleotide exchange. In an intracellular environment with a high GTP/GDP ratio, this would favor the association of GTP with the Thr-59 mutant. Consistent with knowledge of known G-regulatory proteins, these findings support a model in which the p21-GTP complex is the biologically active form of the p21 protein.  相似文献   

14.
Coordination of Mn(II) to the phosphate groups of the substrates and products in the central complexes of the creatine kinase reaction mixture has been investigated by electron paramagnetic resonance (EPR) spectroscopy with regiospecifically 17O-labeled substrates. The EPR pattern for the equilibrium mixture is a superposition of spectra for the two central complexes, and this pattern differs from those observed for the ternary enzyme-Mn(II)-nucleotide complexes and from that for the dead-end complex enzyme-Mn(II)ADP-creatine. In order to identify those signals that are associated with each of the central complexes of the equilibrium mixture, spectra were obtained for a complex of enzyme, Mn(II)ATP, and a nonreactive analogue of creatine, 1-(carboxymethyl)-2-iminoimidazolidin-4-one, which is a newly synthesized competitive inhibitor. This inhibitor permits an unobstructed view of the EPR spectrum for Mn(II)ATP in the closed conformation of the active site. The EPR spectrum for this nonreactive complex with Mn(II)ATP matches one subset of signals in the spectrum for the equilibrium mixture, i.e., those due to the enzyme-Mn(II)-ATP-creatine complex. Chemical quenching of the samples followed by chromatographic assays for both ATP and ADP indicates that the enzyme-Mn(II)ADP-phosphocreatine and the enzyme-Mn(II)ATP-creatine complexes are present in a ratio of approximately 0.7 to 1. A similar value for the equilibrium constant for enzyme-bound substrates is obtained directly from the EPR spectrum for the equilibrium mixture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The mechanism of the hydrolysis reaction of guanosine triphosphate (GTP) by the protein complex Ras-GAP (p21(ras) - p120(GAP)) has been modeled by the quantum mechanical-molecular mechanical (QM/MM) and ab initio quantum calculations. Initial geometry configurations have been prompted by atomic coordinates of a structural analog (PDBID:1WQ1). It is shown that the minimum energy reaction path is consistent with an assumption of two-step chemical transformations. At the first stage, a unified motion of Arg789 of GAP, Gln61, Thr35 of Ras, and the lytic water molecule results in a substantial spatial separation of the gamma-phosphate group of GTP from the rest of the molecule (GDP). This phase of hydrolysis process proceeds through the low-barrier transition state TS1. At the second stage, Gln61 abstracts and releases protons within the subsystem including Gln61, the lytic water molecule and the gamma-phosphate group of GTP through the corresponding transition state TS2. Direct quantum calculations show that, in this particular environment, the reaction GTP + H(2)O --> GDP + H(2)PO(4) (-) can proceed with reasonable activation barriers of less than 15 kcal/mol at every stage. This conclusion leads to a better understanding of the anticatalytic effect of cancer-causing mutations of Ras, which has been debated in recent years.  相似文献   

16.
The effect of bound nucleotide on the conformation of cell division protein FtsZ from Methanococcus jannaschii has been investigated using molecular dynamics and site-directed mutagenesis. The molecular dynamics indicate that the gamma-phosphate of GTP induces a conformational perturbation in loop T3 (Gly88-Gly99 segment), in a position structurally equivalent to switch II of Ha-ras-p21. In the simulated GTP-bound state, loop T3 is pulled by the gamma-phosphate into a more compact conformation than with GDP, related to that observed in the homologous proteins alpha- and beta-tubulin. The existence of a nucleotide-induced structural change in loop T3 has been confirmed by mutating Thr92 into Trp (T92W-W319Y FtsZ). This tryptophan (12 A away from gamma-phosphate) shows large differences in fluorescence emission, depending on which nucleotide is bound to FtsZ monomers. Loop T3 is located at a side of the contact interface between two FtsZ monomers in the current model of FtsZ filament. Such a structural change may bend the GDP filament upon hydrolysis by pushing against helix H8 of next monomer, thus, generating force on the membrane during cell division. A related curvature mechanism may operate in tubulin activation.  相似文献   

17.
Conformational properties of the active site of formyltetrahydrofolate synthetase from Clostridium cylindrosorum have been examined by EPR spectroscopy and by solvent proton relaxation rate (PPR) studies of manganous complexes with the enzyme. Ternary enzyme-Mn-nucleotide complexes give EPR spectra which are very similar to those for the binary Mn-nucleotide complexes. However, upon addition of tetrahydrofolate to form the quaternary complexes, enzyme-MnADP-tetrahydrofolate and enzyme MnATP-tetrahydrofolate the EPR line shapes are changed substantially. Spectra for the quaternary complexes exhibit narrow line widths, and the splitting patterns are characteristic of a slightly asymmetric electronic environment for the bound Mn(II). Addition of formate to the ADP quatenary complex induces a further significant narrowing of the EPR line widths, although in the absence of tetrahydrofolate, formate does not influence the EPR spectrum for the enzyme-MnADP species. Both Pi and nitrate cause changes in the EPR patterns for the higher complexes of the enzyme which involve both ADP and tetrahydololate. However, the Pi effect is not influenced by the presence of formate whereas the characteristic effect of nitrate is potentiated only when formate is present. EPR sectra for the thernary complex with the beta, gamma-methylene analog of ATP App(CH2)p differ significantly from spectra for the binary App(CH)p complex is not influenced by further additions of tetrahydrofolate and of tetrahydorfolate and formate. The failure of spectra for the App(CH)p complex to respond to additions of the other substrates for the reaction is in marked contrast to the behavior found for the natural nucleotide substrates and is tentatively attributed to the lack of a protein-mediated interaction between the nucleotide and tetrahydrofolate binding sites in the analog complex. The frequency dependence of solvent PRR in the presence of the various complexes allows an estimate of the correlation times for electron-nuclear dipolar interaction and thereby the extent of hydration of the bound Mn(II) among the various complexes..  相似文献   

18.
J M Moore  G H Reed 《Biochemistry》1985,24(20):5328-5333
The structure of the MnIIADP complex at the active site of 3-phosphoglycerate kinase from yeast has been investigated by electron paramagnetic resonance (EPR) spectroscopy. Inhomogeneous broadening in the EPR signals for Mn(II) resulting from unresolved superhyperfine coupling to 17O regiospecifically incorporated into ADP shows that Mn(II) is coordinated to the alpha- and beta-phosphate groups of ADP at the active site of the enzyme. The EPR pattern for the enzyme-MnIIADP complex is characteristic of a predominantly axially symmetric zero-field splitting tensor. The symmetry and magnitude of the zero-field splitting interaction suggest that there is an additional negatively charged oxygen ligand in the coordination sphere of Mn(II). EPR measurements for solutions of the enzyme-MnIIADP complex in 17O-enriched water indicate that there are also two or three water molecules in the coordination sphere of the metal ion. EPR data for complexes with the two epimers of [alpha-17O]ADP have been used to determine the stereochemical configuration of the MnIIADP complex at the active site. EPR spectra for Mn(II) in the enzymic complex with (Rp)-[alpha-17O]ADP show an inhomogeneous broadening due to superhyperfine coupling with 17O whereas spectra for (Sp)-[alpha-17O]ADP complexes are indistinguishable from those for matched samples with unlabeled ADP. These results show that 3-phosphoglycerate kinase selectivity binds the alpha configuration of the alpha, beta chelate of MnIIADP. Addition of 3-phosphoglycerate to form the dead-end complex (enzyme-MnIIADP-3-phosphoglycerate) does not alter the EPR spectrum, but addition of vanadate to this complex causes marked changes in the spectral parameters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Three-dimensional models of the GDP and GTP forms of the guanine nucleotide domain of Escherichia coli elongation factor Tu have been derived from the atomic coordinates of the trypsin-modified form of EF-Tu-GDP and by comparison with the ras p21 structures. The significance of the differences in the guanine nucleotide binding sites of EF-Tu and ras p21 are discussed. Crystallization of the EF-Tu-GMPPNP complex is reported.  相似文献   

20.
The stereochemical configurations of the Mn(II) complexes with the resolved epimers of adenosine 5'-O-(1-thiodiphosphate) (ADP alpha S), bound at the active site of creatine kinase, have been determined in order to assess the relative strengths of enzymic stereoselectivity versus Lewis acid/base preferences in metal-ligand binding. Electron paramagnetic resonance (EPR) data have been obtained for Mn(II) in anion-stabilized, dead-end (transition-state analogue) complexes, in ternary enzyme-MnIIADP alpha S complexes, and in the central complexes of the equilibrium mixture. The modes of coordination of Mn(II) at P alpha in the nitrate-stabilized, dead-end complexes with each epimer of ADP alpha S were ascertained by EPR measurements with (Rp)-[alpha-17O]ADP alpha S and (Sp)-[alpha-17O]ADP alpha S. The EPR spectrum for the complex with (Rp)-[alpha-17O]ADP alpha S showed inhomogeneous broadening due to unresolved superhyperfine coupling from coordinated 17O at P alpha. By contrast, the EPR spectrum for Mn(II) in complex with (Sp)-[alpha-17O]ADP alpha S is indistinguishable from that obtained for a matched sample with unlabeled (Sp)-ADP alpha S. A reduction in the magnitude of the 55Mn hyperfine coupling constant in the spectrum for the complex containing (Sp)-ADP alpha S is indicative of Mn(II)-thio coordination at P alpha.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号