首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-beta (TGF-beta) inhibits the proliferation of T-lymphocytes in response to activation with mitogenic lectin. The influence of TGF-beta on elevation of cytosolic Ca2+, induction of proliferation-associated mRNA species, and total cellular RNA content has been studied. The cells seem to exit G0 when activated in the presence of TGF-beta, but they arrest in mid-G1 phase.  相似文献   

2.
The Src family of protein tyrosine kinases have been implicated in the response of cells to several ligands. These include platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and colony stimulating factor type 1 (CSF-1, in macrophages and in fibroblasts engineered to express the receptor). We recently described a microinjection approach which we used to demonstrate that Src family kinases are required for PDGF-induced S phase entry of fibroblasts. We now use this approach to ask whether other ligands also require Src kinases to stimulate cells to replicate DNA. An antibody specific for the carboxy terminus of Src, Fyn, and Yes (anti-cst.1) inhibited Src kinase activity in vitro and caused morphological reversion of Src transformed cells in vivo. Microinjection of this antibody was used to demonstrate that Src kinases were required for both CSF-1 and EGF to drive cells into the S phase. Expression of a kinase-inactive form of Src family kinases also prevented EGF- and CSF-1-stimulated DNA synthesis. However, even though the Src family kinases were necessary for both PDGF- and EGF-induced DNA synthesis in Swiss 3T3 cells, the responses to two other potent growth factors for these cells, lysophosphatidic acid and bombesin, were unaffected by the neutralizing antibodies. Therefore, some but not all growth factors required functional Src family kinases to transmit mitogenic responses.  相似文献   

3.
Transforming growth factor-β (TGF-β) inhibits the proliferation of T-lymphocytes in response to activation with mitogenic lectin. The influence of TGF-β on elevation of cytosolic Ca2+, induction of proliferation-associated mRNA species, and total cellular RNA content has been studied. The cells seem to exit G0 when activated in the presence of TGF-β, but they arrest in mid-G1 phase.  相似文献   

4.
M Bifulco  C Laezza  S M Aloj 《Biochimie》1999,81(4):287-290
The cholesterol lowering drug lovastatin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, blocks DNA synthesis and proliferation of thyrotropin (TSH) primed FRTL-5 rat thyroid cells. The blockade can be completely prevented and/or reversed by mevalonate and largely prevented and/or reversed by farnesol whereas cholesterol and/or other non-sterol mevalonate derivatives such as ubiquinone, dolichol or isopentenyladenosine are ineffective. TSH-dependent augmentation of cyclic-AMP and cAMP dependent differentiated functions, such as iodide uptake, are unaffected by lovastatin. 3H-Thymidine incorporation into DNA is also decreased by alpha-hydroxyfarnesyl-phosphonic acid, an inhibitor of protein farnesylation which mimicks the effect of lovastatin since it also leaves unaffected TSH stimulated iodide uptake. It is suggested that the HMG-CoA reductase inhibitor lovastatin affects cell proliferation mainly through inhibition of protein farnesylation which results in altered function proteins relevant for proliferation control, notably p21ras and/or other small GTPases.  相似文献   

5.
6.
We previously described the construction of an intronless mouse thymidylate synthase (TS) minigene that has the normal 5' and 3' flanking regions of the gene linked to full length TS cDNA. Transfection of the minigene into ts- hamster V79 cells led to low level expression of normal mouse TS mRNA and protein. In the present study we analyzed the effect of introns on the expression of the TS minigene in transient transfection assays. Inclusion of introns 5 and 6 at their normal locations in the coding region led to an 8-9-fold stimulation of the level of TS and TS mRNA. Almost all of introns 5 and 6 could be deleted without diminishing the stimulatory effect. Inclusion of intron 3 also stimulated the expression of the minigene, although to a lesser extent than introns 5 and 6. However, inclusion of intron 4 had no stimulatory effect. Analysis of minigenes that contained various combinations of introns revealed that the stimulatory effects of the introns were not additive.  相似文献   

7.
Growth hormone secretion is controlled by the two hypothalamic hormones, growth hormone releasing factor (GRF) and somatostatin. In addition, the insulin-like growth factors (IGF or somatomedins) which are themselves growth hormone dependent, inhibit growth hormone release in vitro, therefore acting to close the negative feedback loop. The studies reported here examine some of the differences between inhibition of growth hormone secretion by somatostatin and IGF-I in vitro. The major finding is that cycloheximide, a protein synthesis inhibitor, blocks inhibition of GRF-stimulated growth hormone release caused by IGF-I, without changing the inhibition caused by somatostatin. The experiments were done by exposing mixed rat adenohypophysial cells to secretagogues with or without cycloheximide for 24 h in a short term culture. Somatostatin (0.6 nM) totally blocked rat GRF (1 nM) stimulated growth hormone release to values 48% of control (nonstimulated values), while IGF-I (27 nM) only reduced the GRF-stimulated growth hormone release by 27 +/- 3% (N = 5). Cycloheximide (15 micrograms/mL) totally blocked the effect of IGF-I but not somatostatin. A low concentration (0.12 nM) of somatostatin, which only partly inhibited growth hormone release, was also unaffected by cycloheximide. In purified rat somatotrophs, somatostatin (0.1 nM) inhibited GRF-stimulated cAMP levels slightly and reduced growth hormone release while IGF-I (40 nM) had no effect. We suggest that IGF-I inhibits only the secretion of newly synthesized growth hormone, while somatostatin inhibits both stored and newly synthesized growth hormone pools.  相似文献   

8.
WNT pathways are critically involved in the cardiac hypertrophy growth. Porcupine, an acyltransferase that specifically enables secretion of all WNT ligands, became a highly druggable target for inhibiting WNT pathways. Here we test if a novel small-molecule porcupine inhibitor CGX1321, which has entered human clinical trials as an anti-cancer agent, exerts an anti-hypertrophic effect. Transverse aortic constriction (TAC) was performed to induce cardiac hypertrophy on four-month-old male C57 mice. Cardiac function was measured with echocardiography. Histological analysis was performed to detect cardiomyocyte size and molecular expressions. CGX1321 was administrated daily for 4?weeks post TAC injury. As a result, CGX1321 improved cardiac function and animal survival of post-TAC mice. CGX1321 significantly reduced cardiomyocyte hypertrophy, cardiomyocyte apoptosis and fibrosis induced by TAC injury. CGX1321 significantly inhibited TAC induced nuclear translocation of β-catenin and the elevation of Frizzled-2, cyclin-D1 and c-myc expression, indicating its inhibitory effect on canonical WNT pathway. Furthermore, CGX1321 inhibited TAC induced nuclear translocation of nuclear factor of activated T-cells and the elevation of phosphorylated c-Jun expression, suggesting its inhibitory function on non-canonical WNT pathway. We conclude that CGX1321 inhibits both canonical and non-canonical WNT pathways, and attenuates cardiac hypertrophy. Our findings support the porcupine inhibitors as a class of new drugs to be potentially used for treating patients with cardiac hypertrophy.  相似文献   

9.
CheA, a cytoplasmic histidine autokinase, in conjunction with the CheW coupling protein, forms stable ternary complexes with the cytoplasmic signaling domains of transmembrane chemoreceptors. These signaling complexes induce chemotactic movements by stimulating or inhibiting CheA autophosphorylation activity in response to chemoeffector stimuli. To explore the mechanisms of CheA control by chemoreceptor signaling complexes, we examined the ability of various CheA fragments to interfere with receptor coupling control of CheA. CheA[250-654], a fragment carrying the catalytic domain and an adjacent C-terminal segment previously implicated in stimulatory control of CheA activity, interfered with the production of clockwise flagellar rotation and with chemotactic ability in wild-type cells. Epistasis tests indicated that CheA[250-654] blocked clockwise rotation by disrupting stimulatory coupling of CheA to receptors. In vitro coupling assays confirmed that a stoichiometric excess of CheA[250-654] fragments could exclude CheA from stimulatory receptor complexes, most likely by competing for CheW binding. However, CheA[250-654] fragments, even in vast excess, did not block receptor-mediated inhibition of CheA, suggesting that CheA[250-654] lacks an inhibitory contact site present in native CheA. This inhibitory target is most likely in the N-terminal P1 domain, which contains His-48, the site of autophosphorylation. These findings suggest a simple allosteric model of CheA control by ternary signaling complexes in which the receptor signaling domain conformationally regulates the interaction between the substrate and catalytic domains of CheA.  相似文献   

10.
Fibroblast cell lines were developed from skin biopsies of eight species of wild-trapped rodents, one species of bat, and a group of genetically heterogeneous laboratory mice. Each cell line was tested in vitro for their resistance to six varieties of lethal stress, as well as for resistance to the nonlethal metabolic effects of the mitochondrial inhibitor rotenone and of culture at very low glucose levels. Standard linear regression of species-specific lifespan against each species mean stress resistance showed that longevity was associated with resistance to death induced by cadmium and hydrogen peroxide, as well as with resistance to rotenone inhibition. A multilevel regression method supported these associations, and suggested a similar association for resistance to heat stress. Regressions for resistance to cadmium, peroxide, heat, and rotenone remained significant after various statistical adjustments for body weight. In contrast, cells from longer-lived species did not show significantly greater resistance to ultraviolet light, paraquat, or the DNA alkylating agent methylmethanesulfonate. There was a strong correlation between species longevity and resistance to the metabolic effects of low-glucose medium among the rodent cell lines, but this test did not distinguish mice and rats from the much longer-lived little brown bat. These results are consistent with the idea that evolution of long-lived species may require development of cellular resistance to several forms of lethal injury, and provide justification for evaluation of similar properties in a much wider range of mammals and bird species.  相似文献   

11.
12.
The role of calcium as a regulator of light adaptation in rod photoreceptors was examined by manipulation of the intracellular Ca2+ concentration through the use of the calcium ionophore A23187 and external Ca2+ buffers. These studies utilized suspensions of isolated and purified frog rod outer segments that retain their mitochondria-rich inner segments (OS-IS). Three criteria of the dark- and light-adapted flash response were characterized as a function of the Ca2+ concentration: (a) the time to peak, (b) the rate of recovery, and (c) the response amplitude or sensitivity. For all Ca2+ concentrations examined, the time to peak of the flash response was accelerated in the presence of background illumination, suggesting that mechanisms controlling this aspect of adaptation are independent of the Ca2+ concentration. The recovery kinetics of the flash response appeared to depend on the Ca2+ concentration. In 1 mM Ca2+-Ringer's and 300 nM Ca2+-Ringer's + A23187, background illumination enhanced the recovery rate of the response; however, in 10 and 100 nM Ca2+-Ringer's + A23187, the recovery rates were the same for dark- and light-adapted responses. This result implies that a critical level of Ca2+ may be necessary for background illumination to accelerate the recovery of the flash response. The sensitivity of the flash response in darkness (SDF) was dependent on the Ca2+ concentration. In 1 mM Ca2+-Ringer's SDF was 0.481 pA per bleached rhodopsin (Rh*); a background of four Rh*/s decreased SDF by half (Io). At 300 nM Ca2+ + A23187, SDF was reduced to 0.0307 pA/Rh* and Io increased to 60 Rh*/s. At 100 nM Ca2+ + A23187, SDF was reduced further to 0.0025 pA/Rh* and Io increased to 220 Rh*/s. In 10 nM Ca2+ + A23187, SDF was lowered to 0.00045 pA/Rh* and Io raised to 760 RhI/s. Using these values of SDF and Io for each respective Ca2+ concentration, the dependence of the flash sensitivity on background intensity could be described by the Weber-Fechner relation. Under low Ca2+ conditions + A23187, bright background illumination could desensitize the flash response. These results are consistent with the idea that the concentration of Ca2+ may set the absolute magnitude of response sensitivity in darkness, and that there exist mechanisms capable of adapting the photoresponse in the absence of significant changes in cytoplasmic Ca2+ concentration.  相似文献   

13.
It was shown earlier that a variety of vertebrate cells could grow indefinitely in sugar-free medium supplemented with either uridine or cytidine at greater than or equal to 1 mM. In contrast, most purine nucleosides do not support sugar-free growth for one of the following reasons. The generation of ribose-1-P from nucleoside phosphorylase activity is necessary to provide all essential functions of sugar metabolism. Some nucleosides, e.g. xanthosine, did not support growth because they are poor substrates for this enzyme. De novo pyrimidine synthesis was inhibited greater than 80% by adenosine or high concentrations of inosine, e.g. 10 mM, which prevented growth on these nucleosides; in contrast, pyrimidine synthesis was inhibited only marginally on 1 mM inosine or guanosine, but normal growth was only seen on 1 mM inosine, not on guanosine. The inhibition of de novo adenine nucleotide synthesis prevented growth on guanosine, since guanine nucleotides could not be converted to adenine nucleotides. Guanine nucleotides were necessary for this inhibition of purine synthesis, since a mutant blocked in their synthesis grew normally on guanosine. De novo purine synthesis was severely inhibited by adenosine, inosine, or guanosine, but in contrast to guanosine, adenosine and inosine could provide all purine requirements by direct nucleotide conversions.  相似文献   

14.
To understand the effects of v-myb expression on mammalian hematopoietic cell differentiation, we have constructed a retroviral vector which can efficiently express v-myb gene product in mammalian cells. Infection of interleukin-3-dependent murine progenitor cell line 32D Cl3, which undergoes terminal differentiation to mature granulocytes in the presence of granulocyte colony-stimulating factor (GCSF), with this recombinant retrovirus does not abrogate its requirement of interleukin-3 for growth. However, expression of v-myb in these cells blocks their ability to differentiate in response to GCSF. Instead, the v-myb-infected cells proliferate indefinitely in the presence of GCSF. 32D Cl3 cells infected with empty vector carrying only the neomycin resistance gene responded to the addition of GCSF in a manner identical to that of the uninfected cells and underwent terminal differentiation into granulocytes. These results suggest that oncogenic forms of myb gene bring about transformation by blocking the differentiation signal derived by cytokines while promoting the proliferative signal transduction pathways.  相似文献   

15.
The protein-tyrosine phosphatase Shp2 is required for normal activation of the ERK mitogen-activated protein kinase in multiple receptor tyrosine kinase signaling pathways. In fibroblasts, Shp2 undergoes phosphorylation at two C-terminal tyrosyl residues in response to some (fibroblast growth factor and platelet-derived growth factor (PDGF)) but not all (epidermal growth factor and insulin-like growth factor) growth factors. Whereas the catalytic activity of Shp2 is required for all Shp2 actions, the effect of tyrosyl phosphorylation on Shp2 function has been controversial. To clarify the role of Shp2 tyrosyl phosphorylation, we infected Shp2-mutant fibroblasts with retroviruses expressing wild type Shp2 or mutants of either (Y542F or Y580F) or both (Y542F,Y580F) C-terminal tyrosines. Compared with wild type cells, ERK activation was decreased in Y542F- or Y580F-infected cells in response to fibroblast growth factor and PDGF but not the epidermal growth factor. Mutation of both phosphorylation sites resulted in a further decrease in growth factor-evoked ERK activation, although not to the level of the vector control. Immunoblot analyses confirm that Tyr-542 and Tyr-580 are the major sites of Shp2 tyrosyl phosphorylation and that Tyr-542 is the major Grb2 binding site. However, studies with antibodies specific for individual Shp2 phosphorylation sites reveal unexpected complexity in the mechanism of Shp2 tyrosyl phosphorylation by different receptor tyrosine kinases. Moreover, because Y580F mutants retain nearly wild type Grb2-binding ability, yet exhibit defective PDGF-evoked ERK activation, our results show that the association of Grb2 with Shp2 is not sufficient for promoting full ERK activation in response to these growth factors, thereby arguing strongly against the "Grb2-adapter" model of Shp2 action.  相似文献   

16.
We have used an interleukin-2 (IL-2) promoter-CAT fusion gene to study activation of IL-2 gene expression by IL-1, phytohemagglutinin (PHA), phorbol myristate acetate (PMA), and calcium ionophore in the murine thymoma line EL4 and the human lymphoma line Jurkat. The two cell lines respond differently to combinations of these stimuli. IL-1 in combination with suboptimal concentration of PMA induced chloramphenicol acetyltransferase (CAT) activity in EL4. In Jurkat cells, IL-1 failed to synergize with PMA or PHA. Cotransfection with the IL-2/CAT gene and a construct capable of expressing murine T-cell type IL-1 receptors converted Jurkat cells to IL-1 responsiveness. IL-1 in combination with PHA but not with PMA resulted in induction of CAT activity in these cells. Induction of IL-2/CAT activity by all stimuli in both cell lines was blocked by the presence of EGTA in the culture medium. EGTA did not inhibit IL-1/PMA activation of an SV40 early promoter-CAT fusion gene in either EL4 or Jurkat cells; therefore, calcium was not required for IL-1 or PMA signal transduction. Jurkat cells were shown to differ from EL4 in their requirement for calcium mobilization. Two different calcium-dependent pathways of gene activation were distinguished, both of which were blocked by the immunosuppressive drug cyclosporin A.  相似文献   

17.
Bovine viral diarrhoea virus (BVDV) contributes significantly to health-related economic losses in the beef and dairy industry. Antibodies of maternal origin can be protective against BVDV infection, however, calves with low titres of maternal antibody or that do not receive colostrum may be at risk for acute BVDV infection. Interference by high titres of maternal antibodies prevents the development of an antibody response following vaccination with either a killed or attenuated BVDV vaccine. However, the T cell mediated immune response to BVDV may be generated in the absence of a detectable serum neutralizing antibody response. Two trials were conducted to evaluate the potential to elicit T cell mediated immune responses to BVDV in calves with circulating maternal antibody to BVDV. In the first trial, calves with high levels of circulating maternal antibody to BVDV 1 and BVDV 2 were experimentally infected with BVDV 2 (strain 1373) at two to five weeks of age. The T-cell mediated immune responses of the experimentally infected calves and non-infected calves were monitored monthly until circulating maternal antibody was no longer detectable in either treatment group. Calves experimentally infected with BVDV developed BVDV specific CD4(+), CD8(+), and delta T cell responses while high levels of maternal antibody were circulating. A second challenge with BVDV 2 (strain 1373) was performed in the experimentally infected and control calves once maternal antibody could no longer be detected. Previous exposure to BVDV in the presence of maternal antibody protected calves from clinical signs of acute BVDV infection compared to the control calves. In the second trial, three groups of calves with circulating maternal antibody to BVDV were given either a modified live vaccine (MLV) containing BVDV 1 and BVDV 2, a killed vaccine containing BVDV 1 and BVDV 2, or no vaccine, at seven weeks of age. Serum neutralizing antibody levels and antigen specific T cell responses were monitored for 14 weeks following vaccination. Calves vaccinated with MLV BVDV developed BVDV 1 and BVDV 2 specific CD4(+)T cell responses, and BVDV 2 specific gammadelta T cell responses, in the presence of maternal antibody. Vaccination with killed BVDV did not result in the generation of measurable antigen specific T cell immune responses. In this trial, a second vaccination was performed at 14 weeks to determine whether an anamnestic antibody response could be generated when calves were vaccinated in the presence of maternal antibody. Calves vaccinated with either a MLV or killed BVDV vaccine while they had maternal antibody developed an anamnestic antibody response to BVDV 2 upon subsequent vaccination. The results of these trials indicate that vaccinating young calves against BVD while maternal antibody is present may generate BVDV specific memory T and B cells. The data also demonstrated that seronegative calves with memory T and B cells specific for BVDV may be immune to challenge with virulent BVDV.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号