首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of -aspartate racemase purified from Scapharca broughtonii has been found to depend markedly on some nucleotides. Purine nucleoside monophosphates enhanced the enzyme activity, which was, on the contrary, lowered by purine nucleoside triphosphates and not affected by pyrimidine nucleotides. AMP produced the highest increase of seven-fold in the enzyme activity at 6 mM and a half-maximum increase at approximately 3.8 mM. ATP caused a half-maximum decrease in the activity at approximately 1.4 mM and the remaining activity was lower than 7% at saturating ATP concentrations. AMP and ATP both brought about changes in Vmax and not in Km. Analysis of the effect of AMP and ATP suggests that each of them has its own primary binding site, which is different from the substrate-binding site. In view of these effects of the nucleotides, the roles of the racemase and -aspartate in energy metabolism under anoxic conditions are discussed.  相似文献   

2.
Uncoupling proteins 1 and 3 are regulated differently   总被引:3,自引:0,他引:3  
Hagen T  Zhang CY  Vianna CR  Lowell BB 《Biochemistry》2000,39(19):5845-5851
Using a heterologous yeast expression system, we have previously found a marked discordance between the effects of uncoupling protein (UCP) 1 and UCP3L on basal O(2) consumption in whole yeast versus isolated mitochondria. In whole yeast, UCP3L produces a greater stimulation of basal O(2) consumption, while in isolated mitochondria, UCP1 produces a much greater effect. As shown previously and in this report, UCP3L, in contrast to UCP1, is not inhibited by purine nucleotides. In the present study, we addressed two hypothetical mechanisms that could account for the observed discordance: (i) in whole yeast, purine nucleotides inhibit UCP1 but not UCP3L and (ii) preparations of isolated mitochondria lack an activator of UCP3L that is normally present in vivo. By use of a mutant of UCP1 that lacks purine nucleotide inhibition, it is demonstrated that cytosolic concentrations of purine nucleotides present in yeast effectively inhibit UCP1 activity. This suggests that the lower activity of UCP1 compared to UCP3L in whole yeast is due to purine nucleotide inhibition of UCP1 but not UCP3L. As potential activators of UCP3L we tested free fatty acids in whole yeast and isolated mitochondria. While UCP1 was strongly activated by free fatty acids, no stimulatory effect on UCP3L was observed. In summary, this study indicates that UCP1 and UCP3L differ in their regulation by purine nucleotides and free fatty acids. This different regulation may be related to different physiological functions of the two proteins.  相似文献   

3.
Glutamine synthetase (L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2) from Anabaena cylindrica was inhibited by alanine, glycine, serine and aspartate. The effects of alanine and serine were uncompetitive with respect to glutamate, while those of glycine and asparatate were uncompetitive with respect to glutamate, while those of glycine and aspartate were non-competitive and mixed type respectively. Different pairs of amino acids and their various combinations caused a cumulative inhibition of the enzyme activity. Glutamine synthetase was also inhibited by ADP and AMP and both nucleotides affected the enzyme competitively with respect to ATP and non-competitively for glutamate. Inorganic pyrophosphate, between 2 and 3 mM, produced a very pronounced inhibiton of enzyme activity. The inhibition by PPi was uncompetitive for ATP. Various combinations of the adenine nucleotides, PPi and Pi exerted a cumulative inhibitory effect on the enzyme activity, as did the amino acids, in different combinations with either adenine nucleotides, PPi or Pi. The effects of the adenine nucleotides and the amino acids were more pronounced at higher concentrations of ammonia. Except for serine similar responses of these effectors were obtained with increasing concentrations of Mg2+. It is proposed that changes in the free concentrations of Mg2+ are important in energy-dependent regulation of the enzyme activity in this alga.  相似文献   

4.
Thiourea dioxide was used in chemical modification studies to identify functionally important amino acids in Escherichia coli CTP synthetase. Incubation at pH 8.0 in the absence of substrates led to rapid, time dependent, and irreversible inactivation of the enzyme. The second-order rate constant for inactivation was 0.18 M-1 s-1. Inactivation also occurred in the absence of oxygen and in the presence of catalase, thereby ruling out mixed-function oxidation/reduction as the mode of amino acid modification. Saturating concentrations of the substrates ATP and UTP, and the allosteric activator GTP prevented inactivation by thiourea dioxide, whereas saturating concentrations of glutamine (a substrate) did not. The concentration dependence of nucleotide protection revealed cooperative behavior with respect to individual nucleotides and with respect to various combinations of nucleotides. Mixtures of nucleotides afforded greater protection against inactivation than single nucleotides alone, and a combination of the substrates ATP and UTP provided the most protection. The Hill coefficient for nucleotide protection was approximately 2 for ATP, UTP, and GTP. In the presence of 1:1 ratios of ATP:UTP, ATP:GTP, and UTP:GTP, the Hill coefficient was approximately 4 in each case. Fluorescence and circular dichroism measurements indicated that modification by thiourea dioxide causes detectable changes in the structure of the protein. Modification with [14C]thiourea dioxide demonstrated that complete inactivation correlates with incorporation of 3 mol of [14C]thiourea dioxide per mole of CTP synthetase monomer. The specificity of thiourea dioxide for lysine residues indicates that one or more lysines are most likely involved in CTP synthetase activity. The data further indicate that nucleotide binding prevents access to these functionally important residues.  相似文献   

5.
Hydroxyproline-2-epimerase was treated with 14C-iodoacetate under conditions that produced almost complete inactivation of the enzyme and concomitant incorporation of almost one molar equivalent of iodoacetate. Both processes were prevented by saturating concentrations of substrate. From reaction mixtures in which both incorporation and inactivation were 85 to 90% complete, two radioactive tryptic peptides were isolated by paper chromatography-electrophoresis. The incorporated radioactivity was divided between the peptides in an approximately 2:1 ratio. Analysis of the isolated peptides suggested that they both contained 9 amino acids and had similar composition; one appeared to be a lysine, the second an arginine peptide. Attempts to sequence each peptide failed, apparently because of the conversion of the S-carboxymethylcysteine to S-carboxymethylcysteine sulfone, indicating that the cysteine residue was N-terminal in each peptide.  相似文献   

6.
The release of amino acids from their vacuolar store was studied in situ, i.e. in cells with selectively permeabilized plasma membrane and functionally intact vacuoles. As we previously described [Roos et al., J. Biol. Chem. 272 (1997) 15849-15855], this transport process is regulated by extravacuolar adenylates at their physiological concentrations. We now show, using our test object Penicillium cyclopium, that not only purine but also pyrimidine nucleotides are involved in the control of efflux of vacuolar phenylalanine. At 0.1 mM adenosine or guanosine phosphates inhibit, whereas cytidine or uridine phosphates stimulate the rate of efflux. At 1 mM the same nucleotides have no measurable impact on efflux but abolish the effects of other nucleotides present at 0.1 mM. This argues for at least two interacting binding sites with different nucleotide affinities. The minimum structural requirement for any of the observed effects is a non-cyclic ribonucleoside monophosphate. In intact cells, cytosolic concentrations of ATP (representing purine nucleotides) and CTP (representing pyrimidine nucleotides) are 1-2 mM and 0.05-0.2 mM, respectively. ATP is therefore assumed to dominate transport control and allow optimum efflux (and uptake) rates. Short-time starvation of carbon and nitrogen adjusts CTP and ATP at levels that cause declining efflux rates. During prolonged starvation both nucleotides fall below their transport-controlling concentrations and thus allow increasing rates of efflux from the still maintained vacuolar pool. Hence, efflux control under nutrient limitation includes an interplay of purine and pyrimidine nucleotides which precisely regulates the release of vacuolar amino acids and enables flexible adjustment to either amino acid saving or cell survival.  相似文献   

7.
The effects of different adenine and guanine nucleotides on the cyanide-resistant respiration (i.e. alternative oxidase (AcAOX) activity) of mitochondria from the amoeba A. castellanii mitochondria were studied. We found that guanine nucleotides activate AcAOX to a greater degree than adenine nucleotides, and that nucleoside monophosphates were more efficient activators than nucleoside di- or triphosphates. The extent of the nucleotides' influence on AcAOX was dependent on the medium's pH and was more pronounced at pH 6.8, which is optimal for AcAOX activity. In contrast to other purine nucleosides, we demonstrate, for the first time, that ATP has an inhibitory effect on AcAOX activity. Since we also observed the inhibition by ATP in the mitochondria of another protozoon, such as Dictyostelium discoideum, and the yeast, Candida maltosa, it may be a regulatory feature common to all purine nucleotide-modulated non-plant AOXs. The physiological importance of this discovery is discussed. Kinetic data show that the binding of GMP (a positive allosteric effector) and the binding of ATP (a negative allosteric effector) to AcAOX are mutually exclusive. ATP's inhibition of the enzyme can be overcome by sufficiently high concentrations of GMP, and conversely, GMP's stimulation can be overcome by sufficiently high concentrations of ATP. However, an approximately three times lower concentration of GMP compared to ATP gives a half maximal effect on AcAOX activity. This is indicative of a higher binding affinity for the positive effector at the same or, at least overlapping, nucleotide-binding sites on AcAOX. These results suggest that AcAOX activity in A. castellanii mitochondria might be controlled by the relative intracellular concentrations of purine nucleotides.  相似文献   

8.
Human glutamate dehydrogenase (GDH), an enzyme central to the metabolism of glutamate, is known to exist in housekeeping and nerve tissue-specific isoforms encoded by the GLUD1 and GLUD2 genes, respectively. As there is evidence that GDH function in vivo is regulated, and that regulatory mutations of human GDH are associated with metabolic abnormalities, we sought here to characterize further the functional properties of the two human isoenzymes. Each was obtained in recombinant form by expressing the corresponding cDNAs in Sf9 cells and studied with respect to its regulation by endogenous allosteric effectors, such as purine nucleotides and branched chain amino acids. Results showed that L-leucine, at 1.0 mM:, enhanced the activity of the nerve tissue-specific (GLUD2-derived) enzyme by approximately 1,600% and that of the GLUD1-derived GDH by approximately 75%. Concentrations of L-leucine similar to those present in human tissues ( approximately 0.1 mM:) had little effect on either isoenzyme. However, the presence of ADP (10-50 microM:) sensitized the two isoenzymes to L-leucine, permitting substantial enzyme activation at physiologically relevant concentrations of this amino acid. Nonactivated GLUD1 GDH was markedly inhibited by GTP (IC(50) = 0.20 microM:), whereas nonactivated GLUD2 GDH was totally insensitive to this compound (IC(50) > 5,000 microM:). In contrast, GLUD2 GDH activated by ADP and/or L-leucine was amenable to this inhibition, although at substantially higher GTP concentrations than the GLUD1 enzyme. ADP and L-leucine, acting synergistically, modified the cooperativity curves of the two isoenzymes. Kinetic studies revealed significant differences in the K:(m) values obtained for alpha-ketoglutarate and glutamate for the GLUD1- and the GLUD2-derived GDH, with the allosteric activators differentially altering these values. Hence, the activity of the two human GDH is regulated by distinct allosteric mechanisms, and these findings may have implications for the biologic functions of these isoenzymes.  相似文献   

9.
As an alternative method to study the heterotropic mechanism of Escherichia coli aspartate transcarbamoylase, a series of nucleotide analogs were used. These nucleotide analogs have the advantage over site-specific mutagenesis experiments in that interactions between the backbone of the protein and the nucleotide could be evaluated in terms of their importance for function. The ATP analogs purine 5'-triphosphate (PTP), 6-chloropurine 5'-triphosphate (Cl-PTP), 6-mercaptopurine 5'-triphosphate (SH-PTP), 6-methylpurine 5'-triphosphate (Me-PTP), and 1-methyladenosine 5'-triphosphate (Me-ATP) were partially synthesized from their corresponding nucleosides. Kinetic analysis was performed on the wild-type enzyme in the presence of these ATP analogs along with GTP, ITP, and XTP. PTP, Cl-PTP, and SH-PTP each activate the enzyme at subsaturating concentrations of L-aspartate and saturating concentrations of carbamoyl phosphate, but not to the same extent as does ATP. These experiments suggest that the interaction between N6-amino group of ATP and the backbone of the regulatory chain is important for orienting the nucleotide and inducing the displacements of the regulatory chain backbone necessary for initiation of the regulatory response. Me-PTP and Me-ATP also activate the enzyme, but in a more complex fashion, which suggests differential binding at the two sites within each regulatory dimer. The purine nucleotides GTP, ITP, and XTP each inhibit the enzyme but to a lesser extent than CTP. The influence of deoxy and dideoxynucleotides on the activity of the enzyme was also investigated. These experiments suggest that the 2' and 3' ribose hydroxyl groups are not of significant importance for binding and orientation of the nucleotide in the regulatory binding site. 2'-dCTP inhibits the enzyme to the same extent as CTP, indicating that the interactions of the enzyme to the O2-carbonyl of CTP are critical for CTP binding, inhibition, and the ability of the enzyme to discriminate between ATP and CTP. Examination of the electrostatic surface potential of the nucleotides and the regulatory chain suggest that the complimentary electrostatic interactions between the nucleotides and the regulatory chain are important for binding and orientation of the nucleotide necessary to induce the local conformational changes that propagate the heterotropic effect.  相似文献   

10.
Guanosine 3':5'-monophosphate phosphodiesterases, which appear to be under allosteric control, have been partially purified from rat liver supernatant and particulate fractions. The preferred substrate for both phosphodiesterases was cGMP (Km values: cGMP less than cIMP less than cAMP). At subsaturating concentrations of substrate, the phosphodiesterases were stimulated by purine cyclic nucleotides. The order of effectiveness for activation of cyclic nucleotide hydrolysis was cGMP greater than cIMP greater than cAMP greater than cXMP. Using cAMP derivatives as activators of cIMP hydrolysis, modifications in the ribose, cyclic phosphate, and purine moieties were shown to alter the ability of the cyclic nucleotide to activate the supernatant enzyme. cGMP, at concentrations that stimulated cyclic nucleotide hydrolysis, enhanced chymotryptic inactivation of the supernatant phosphodiesterase. At similar concentrations, cAMP was not effective. It appears that on interaction with appropriate cyclic nucleotides, this phosphodiesterase undergoes conformational changes that are associated with increased catalytic activity and enhanced susceptibility to proteolytic attack. Divalent cation may not be required for the nucleotide-phosphodiesterase interaction and resultant change in conformation.  相似文献   

11.
Gupta VK  Singh R 《Plant physiology》1988,87(3):741-744
NADP+-isocitrate dehydrogenase (threo-DS-isocitrate: NADP+ oxidoreductase [decarboxylating]; EC 1.1.1.42) (IDH) from pod walls of chickpea (Cicer arietinum L.) was purified 192-fold using ammonium sulfate fractionation, ion exchange chromatography on DEAE-Sephadex A-50, and gel filtration through Sephadex G-200. The purified enzyme, having a molecular weight of about 126,000, exhibited a broad pH optima from 8.0 to 8.6. It was quite stable at 4°C and had an absolute requirement for a divalent cation, either Mg2+ or Mn2+, for its activity. Typical hyperbolic kinetics was obtained with increasing concentrations of NADP+, dl-isocitrate, Mn2+, and Mg2+. Their Km values were 15, 110, 15, and 192 micromolar, respectively. The enzyme activity was inhibited by sulfhydryl reagents. Various amino acids, amides, organic acids, nucleotides, each at a concentration of 5 millimolar, had no effect on the activity of the enzyme. The activity was not influenced by adenylate energy charge but decreased linearly with increasing ratio of NADPH to NADP+. Initial velocity studies indicated kinetic mechanism to be sequential. NADPH inhibited the forward reaction competitively with respect to NADP+ at fixed saturating concentration of isocitrate, whereas 2-oxoglutarate inhibited the enzyme noncompetitively at saturating concentrations of both NADP+ and isocitrate, indicating the reaction mechanism to be random sequential. Results suggest that the activity of NADP+-IDH in situ is likely to be controlled by intracellular NADPH to NADP+ ratio as well as by the concentration of various substrates and products.  相似文献   

12.
Anacystis nidulans (Synechococcus) had a minimal doubling time of 5 hrs at 30 degrees C at saturating light intensity and carbon dioxide concentration. Half maximal growth rates in saturating CO2 occured at a light intensity of 0.54 mW per cm2, and there was an apparent threshold intensity of 0.13 mW per cm2 below which no growth occurred. Growth rate in saturating light was dependent on the concentration of CO2+H2CO3 in the medium, rather than on total dissolved CO2; half maximal rates were estimated at 0.1 mM CO2+H2CO3. Under saturating conditions of light and CO2, 14CO2 was fixed primarily into 3-PGA, and subsequently moved into sugar phosphates and amino acids. Incorporation into aspartate was relatively slow. CO2 fixation was strictly light-dependent. The changes in adenylate and pyridine nucleotide pools were followed in light/dark and dark/light transitions. Whereas adenylates relaxed slowly over 15-20 min to the concentrations characteristic of illuminated cells following the abrupt changes induced by darkening, the sharp drop in intracellular NADPH showed little dark recovery although rapid restoration occurred on reillumination. Other pyridine nucleotides showed no changes during these transitions. The nucleotide specificity and Km of partially purfied GAP dehydrogenase suggest a role for this enzyme in the regulation of CO2 fixation.  相似文献   

13.
A bacterium, Ochrobactrum anthropi, produced a large amount of a nucleosidase when cultivated with purine nucleosides. The nucleosidase was purified to homogeneity. The enzyme has a molecular weight of about 170,000 and consists of four identical subunits. It specifically catalyzes the irreversible N-riboside hydrolysis of purine nucleosides, the K(m) values being 11.8 to 56.3 microM. The optimal activity temperature and pH were 50 degrees C and pH 4.5 to 6.5, respectively. Pyrimidine nucleosides, purine and pyrimidine nucleotides, NAD, NADP, and nicotinamide mononucleotide are not hydrolyzed by the enzyme. The purine nucleoside hydrolyzing activity of the enzyme was inhibited (mixed inhibition) by pyrimidine nucleosides, with K(i) and K(i)' values of 0.455 to 11.2 microM. Metal ion chelators inhibited activity, and the addition of Zn(2+) or Co(2+) restored activity. A 1.5-kb DNA fragment, which contains the open reading frame encoding the nucleosidase, was cloned, sequenced, and expressed in Escherichia coli. The deduced 363-amino-acid sequence including a 22-residue leader peptide is in agreement with the enzyme molecular mass and the amino acid sequences of NH(2)-terminal and internal peptides, and the enzyme is homologous to known nucleosidases from protozoan parasites. The amino acid residues forming the catalytic site and involved in binding with metal ions are well conserved in these nucleosidases.  相似文献   

14.
The cytosol and mitochondrial isozymes of bovine brain malic enzyme were studied with respect to their sensitivity towards a series of dicarboxylic acids and sulfhydryl reagents. While no effects were obtained with the dicarboxylic acids in the case of the cytosol enzyme, the activity of the mitochondrial variant was increased considerably when either succinate, 2-mercaptosuccinate, or l-aspartate were tested at low concentrations of l-malate. The activation was associated with a clear decrease in the Hill coefficient for l-malate, and this has been taken as an indication of the presence of an allosteric site on the mitochondrial enzyme. The presence of l-malate or a dicarboxylate anion analog is required at this site in order to achieve optimal velocity. The activators were also effective in increasing the reductive carboxylation of pyruvate by the mitochondrial enzyme and had no effect on the cytosol variant. The two isozymes also showed a clear differential sensitivity to 5,5′-dithiobis(2-nitrobenzoic acid) and Hg2+, since the mitochondrial malic enzyme was inhibited by concentrations of these reagents far below those required in order to achieve an effect on the activity of the malic enzyme found in the cytosol.  相似文献   

15.
By means of spectrophotometric method there was determined the activity of three enzymes of biosynthesis of purine nucleotides: amino imidazole ribonucleotide-carboxylase (AIR-carboxylase, EC 4.1.1.21), an enzyme of biosynthesis of purine nucleotides de novo in plerocercoids of Schistocephalus pungitii and Digramma interrupta; inosine monophosphate-dehydrogenase (IMPh-dehydrogenase, EC 1.2.1.14), an enzyme of salvage path, and adenylosuccinate lyase (EC 4.3.2.2), an enzyme taking part both in biosynthesis de novo and salvage in plerocercoids of Schistocephalus pungitii. The activity of AIR-carboxylase was not determined. Specific activities of adenylosuccinate lyase and IMPh-dehydrogenase amount to (1.3 +/- 0.3) x 10(-3) and (1.2 +/- 0.4) x 10(-3) mumole/min.mg protein, respectively. The activity of the three enzymes was determined in the liver of ten-spined stickleback, a host of S. pungitii plerocercoids. The question of metabolic dependence of Ligulidae plerocercoids on hosts to provide for purine bases is discussed.  相似文献   

16.
Normal human lymphoblasts starved for each of several essential, but not essential, amino acids had decreased DNA and RNA synthesis but no change in free intracellular purine nucleotides. The rates of purine nucleotide synthesis via the de novo and salvage pathways were measured by incorporating [14C]formate and [14C]hypoxanthine labels, respectively, into lymphoblasts starved for an amino acid or treated with a protein synthesis inhibitor. After 3 h of starvation, purine synthesis via the de novo pathway decreased 90% and via the salvage pathway decreased 60%. Cycloheximide and puromycin each reduced de novo synthesis by 96% and salvage synthesis by 72%. The decrease in purine synthesis de novo after removal of the amino acid was of first order kinetics and was fully and rapidly reversed by reconstitution with the amino acid. The synthesis of alpha-N-formylglycinamide ribonucleotide declined 97% after amino acid starvation; the synthesis of purines from 5-aminoimidazole-4-carboxamide riboside decreased 41%. The synthesis of guanylates decreased more than the synthesis of adenylates during amino acid starvation.  相似文献   

17.
Uncoupling proteins (UCPs) are composed of three repeated domains of approximately 100 amino acids each. We have used chimeras of UCP1 and UCP2, and electron paramagnetic resonance (EPR), to investigate domain specific properties of these UCPs. Questions include: are the effects of nucleotide binding on proton transport solely mediated by amino acids in the third C-terminal domain, and are the amino acids in the first two domains involved in retinoic or fatty acid activation? We first confirmed that our reconstitution system produced UCP1 that exhibited known properties, such as activation by fatty acids and inhibition of proton transport by purine nucleotides. Our results confirm the observations reported for recombinant yeast that retinoic acid, but not fatty acids known to activate UCP1, activates proton transport by UCP2 and that this activation is insensitive to nucleotide inhibition. We constructed chimeras in which the last domains of UCP1 or UCP2 were switched and tested for activation by fatty acids or retinoic acid and inhibition by nucleotides. U1U2 is composed of mUCP1 (amino acids 1-198) and hUCP2 (amino acids 211-309). Fatty acids activated proton transport of U1U2 and GTP mediated inhibition. In the other chimeric construct U2U1, hUCP2 (amino acids 1-210) and mUCP1 (amino acids 199-307), retinoic acid still acted as an activator, but no inhibition was observed with GTP. Using EPR, a method well suited to the analysis of the structure of membrane proteins such as UCPs, we confirmed that UCP2 binds nucleotides. The EPR data show large structural changes in UCP1 and UCP2 on exposure to ATP, implying that a putative nucleotide-binding site is present on UCP2. EPR analysis also demonstrated changes in conformation of UCP1/UCP2 chimeras following exposure to purine nucleotides. These data demonstrate that a nucleotide-binding site is present in the C-terminal domain of UCP2. This domain was able to inhibit proton transport only when fused to the N-terminal part of UCP1 (chimera U1U2). Thus, residues involved in nucleotide inhibition of proton transport are located in the two first carrier motifs of UCP1. While these results are consistent with previously reported effects of the C-terminal domain on nucleotide binding, they also demonstrate that interactions with the N-terminal domains are necessary to inhibit proton transport. Finally, the results suggest that proteins such as UCP2 may transport protons even though they are not responsible for basal or cold-induced thermogenesis.  相似文献   

18.
Bovine cardiac myosin ATPase activity was rapidly inactivated by the purine disulfide analog of ATP,6,6'-dithiobis(inosinyl imidodiphosphate). Kinetic investigations showed that this analog acted as a site-specific reagent at 0 degrees with a Ki of 130 muM and a half-life of 8.2 min at saturating inhibitor concentrations. Concentrations (50 to 500 muM) of ATP, adenyl-5'-yl imidodiphosphate (AMP-PNP), or ADP that saturated the active site caused an enhancement in the rate of inactivation, indicating the purine disulfide analog was not reacting at the active site. Under these conditions saturation kinetic data were still observed with Ki values remaining unchanged (120 muM) but with the half-life of inactivation decreasing to 6.0 min (ATP) and 4.6 min (AMP-PNP) at saturating inhibitor concentrations. At concentrations greater than 0.5 mM ATP, AMP-PNP, or ADP there was a decrease in the rate of inactivation, implying protection by these nucleotides. However, saturation kinetics of inactivation could no longer be demonstrated, implying a change in the mechanism of inactivation. A comparison of the inactivation of the Mg2+, Ca2+, and EDTA-ATPase activities of cardiac myosin after modification by the purine disulfide analog showed that the Mg2+- and Ca2+ATPase activities plateaued at approximately 60% and 40%, respectively, while the EDTA-ATPase activity continued to decrease to below 10%. This evidence supports the suggestion that the purine disulfide analog was not reacting at the active site. Equilibrium dialysis experiments were used to measure the binding of [8-3H]AMP-PNP to native cardiac myosin, the thiopurine nucleotide-modified myosin, and the derivative formed by displacing the thiopurine nucleotide by cyanide (thiocyanato-myosin). Native myosin bound a total of 2.1 mol of AMP-PNP with a binding constant of 6.0 X 10(6) M-1. There was a 15 to 40% decrease in the number of AMP-PNP binding sites in the enzyme derivatives, but the active sites appeared not to be blocked since the association constants remained essentially unchanged (KA=3.9 X 10(6) M-1 for thiopurine nucleotide-myosin and 12.0 X 10(6) M-1 for thiocyanato-myosin). The kinetic studies and the binding experiments indicate that the purine disulfide analog reacts at a specific site other than the active site but do not offer support to earlier suggestions from skeletal myosin studies that this site is a possible ATP control site.  相似文献   

19.
A bacterium, Ochrobactrum anthropi, produced a large amount of a nucleosidase when cultivated with purine nucleosides. The nucleosidase was purified to homogeneity. The enzyme has a molecular weight of about 170,000 and consists of four identical subunits. It specifically catalyzes the irreversible N-riboside hydrolysis of purine nucleosides, the Km values being 11.8 to 56.3 μM. The optimal activity temperature and pH were 50°C and pH 4.5 to 6.5, respectively. Pyrimidine nucleosides, purine and pyrimidine nucleotides, NAD, NADP, and nicotinamide mononucleotide are not hydrolyzed by the enzyme. The purine nucleoside hydrolyzing activity of the enzyme was inhibited (mixed inhibition) by pyrimidine nucleosides, with Ki and Ki′ values of 0.455 to 11.2 μM. Metal ion chelators inhibited activity, and the addition of Zn2+ or Co2+ restored activity. A 1.5-kb DNA fragment, which contains the open reading frame encoding the nucleosidase, was cloned, sequenced, and expressed in Escherichia coli. The deduced 363-amino-acid sequence including a 22-residue leader peptide is in agreement with the enzyme molecular mass and the amino acid sequences of NH2-terminal and internal peptides, and the enzyme is homologous to known nucleosidases from protozoan parasites. The amino acid residues forming the catalytic site and involved in binding with metal ions are well conserved in these nucleosidases.  相似文献   

20.
The effects of adenine nucleotides and glutamate on glutamate decarboxylase were studied in a dialyzed, high-speed supernatant of rat brain. When incubated with 10 μm -pyridoxal-P the enzyme was strongly inhibited by ATP, ADP and their Mg2+ complexes at concentrations which were well below tissue levels. The enzyme was not significantly inhibited by 15 mm -AMP or by 100 μM-3′-5’cyclic AMP or 3′-5’cyclic GMP. Inhibition by the nucleotides cannot be described in conventional steady-state kinetic terms. Addition of ATP in the presence of pyridoxal-P resulted in a slow, progressive decrease in the reaction rate which was similar to the inactivation observed when the enzyme was incubated in the absence of pyridoxal-P. The progressive inactivation in the presence of ATP was minimal at concentrations of glutamate which were well below Km and became much more pronounced at higher glutamate concentrations. Addition of suprasaturating amounts of pyridoxal-P late in the incubation when the enzyme was almost completely inactivated resulted in an immediate and complete reactivation of the enzyme. Inhibition by ATP could be prevented by addition of saturating amounts of pyridoxal-P at the start of the reaction and was also relieved by addition of potassium phosphate buffer. The results suggest that inhibition by the nucleotides involves the prior formation of the inactive apoenzyme which results from the glutamate-promoted dissociation of pyridoxal-P. In the absence of the nucleotides, the enzyme is normally reactivated by the added pyridoxal-P. The nucleotides act to block this reassociation of pyridoxal-P with the apoenzyme thereby producing a progressive inactivation of the enzyme. The implications of these results for the regulation of GABA synthesis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号