首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strain of Listeria monocytogenes isolated from a drain in a food-processing plant was demonstrated, by determination of D values, to be more resistant to the lethal effect of heat at 56 or 59 degrees C following incubation for 45 min in tryptose phosphate broth (TPB) at pH 12.0 than to that of incubation for the same time in TPB at pH 7.3. Cells survived for at least 6 days when they were suspended in TPB at pHs 9.0, 10.0, and 11.0 and stored at 4 or 21 degrees C. Cells of L. monocytogenes incubated at 37 degrees C for 45 min and then stored for 48 or 144 h in TPB at pH 10.0 were more resistant to heat treatment at 56 degrees C than were cells stored in TPB at pH 7.3. The alkaline-stress response in L. monocytogenes may induce resistance to otherwise lethal thermal-processing conditions. Treatment of cells in 0.05 M potassium phosphate buffer (pH 7.00 +/- 0.05) containing 2.0 or 2.4 mg of free chlorine per liter reduced populations by as much as 1.3 log(10) CFU/ml, while treatment with 6.0 mg of free chlorine per liter reduced populations by as much as 4.02 log(10) CFU/ml. Remaining subpopulations of chlorine-treated cells exhibited some injury, and cells treated with chlorine for 10 min were more sensitive to heating at 56 degrees C than cells treated for 5 min. Contamination of foods by L. monocytogenes cells that have survived exposure to processing environments ineffectively cleaned or sanitized with alkaline detergents or disinfectants may have more severe implications than previously recognized. Alkaline-pH-induced cross-protection of L. monocytogenes against heat has the potential to enhance survival in minimally processed as well as in heat-and-serve foods and in foods on holding tables, in food service facilities, and in the home. Cells surviving exposure to chlorine, in contrast, are more sensitive to heat; thus, the effectiveness of thermal processing in achieving desired log(10)-unit reductions is not compromised in these cells.  相似文献   

2.
Fibroblasts take up trehalose during freezing and thawing, which facilitates cryosurvival of the cells. The aim of this study was to investigate if trehalose uptake via fluid‐phase endocytosis prefreeze increases cryosurvival. To determine endocytic trehalose uptake in attached as well as suspended fibroblasts, intracellular trehalose concentrations were determined during incubation at 37°C using an enzymatically based trehalose assay. In addition, freezing‐induced trehalose uptake of extracellularly added trehalose was determined. Cryosurvival rates were determined via trypan blue staining. Intracellular trehalose contents of attached as well as suspended cells were found to increase linearly with time, consistent with fluid‐phase endocytosis. Furthermore, the intracellular trehalose concentration increased with increasing extracellular trehalose concentration (0–100 mM) in a linear fashion. Prefreeze loading of cells with trehalose via fluid‐phase endocytosis only showed increased cryosurvival rates at extracellular trehalose concentrations lower than 50 mM in the cryopreservation medium. To obtain satisfactory cryosurvival rates after endocytic preloading, extracellular trehalose is needed to prevent efflux of trehalose during freezing and thawing and for freezing‐induced trehalose uptake. At trehalose concentrations greater than 100 mM, cryosurvival rates were similar or slightly higher if cells were not loaded with trehalose prefreeze. Cells that were grown in the presence of trehalose showed a tendency to aggregate after harvesting. It is concluded that it is particularly freezing‐induced trehalose uptake that facilitates cryosurvival when trehalose is used as the sole cryoprotectant for cryopreservation of fibroblasts. Preloading with trehalose does not increase cryosurvival rates if trehalose is also added as extracellular protectant. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:229–230, 2017  相似文献   

3.
Exponential phase cells of the yeast, Saccharomyces cerevisiae when treated with a non-lethal concentration of hydrogen peroxide (H2O2; 0.2mM) for 60 min adapted to become resistant to the lethal effects of a higher dose of H2O2 (2mM). From studies using cycloheximide to inhibit protein synthesis it appears that protein synthesis is required for maximal induction of resistance but that some degree of protection from the lethal effects of peroxide can be acquired in the absence of protein synthesis. Treatment of cells with 50 micrograms cycloheximide ml-1 alone lead to them acquiring some protection from peroxide. Cells subjected to heat shock became more resistant to 2mM-H2O2; however, peroxide pretreatment did not confer thermotolerance. L-[35S]Methionine labelling of cells subjected to 0.2 mM-H2O2 stress showed that synthesis of at least ten polypeptides was induced by peroxide treatment. Some of these were also induced in cells subjected to heat shock (23 to 37 degrees C shift) but the synthesis of at least four polypeptides (45, 39.5, 38 and 24 kDa) was unique to peroxide-stressed cells. Resistance to peroxide was also inducible in an isogenic petite and an isogenic strain with a mutation in the HAP1 gene, indicating that the adaptive response does not require functional mitochondria.  相似文献   

4.
1. Myxamoebae initially containing 5.59mg of glycogen/10(8) cells accumulate approx. 25% more cell-wall polysaccharide, 100% more mucopolysaccharide, 200% more glucose and 300% more trehalose during their development than do myxamoebae initially containing less than 0.3mg of glycogen/10(8) cells. 2. These observations restrict the number of possible control mechanisms operating to regulate carbohydrate metabolism during development. 3. Cells accumulating a large amount of trehalose (approx. 400mug/10(8) cells) have the same amount and pattern of changes in specific activity of trehalase and trehalose 6-phosphate synthase as do cells accumulating a smaller amount of trehalose (approx. 100mug/10(8) cells). 4. These two populations of cells do, however, differ markedly in the amount of UDP-glucose and glucose 6-phosphate that they contain. 5. It is concluded that this change in the intracellular pools of the metabolic precursors of trehalose accounts for the increased amount of trehalose synthesized by cells derived from myxamoebae containing an increased glycogen content.  相似文献   

5.
In the present study we sought to determine the source of heat-induced oxidative stress. We investigated the involvement of mitochondrial respiratory electron transport in post-diauxic-phase cells under conditions of lethal heat shock. Petite cells were thermosensitive, had increased nuclear mutation frequencies, and experienced elevated levels of oxidation of an intracellular probe following exposure to a temperature of 50 degrees C. Cells with a deletion in COQ7 leading to a deficiency in coenzyme Q had a much more severe thermosensitivity phenotype for these oxidative endpoints following heat stress compared to that of petite cells. In contrast, deletion of the external NADH dehydrogenases NDE1 and NDE2, which feed electrons from NADH into the electron transport chain, abrogated the levels of heat-induced intracellular fluorescence and nuclear mutation frequency. Mitochondria isolated from COQ7-deficient cells secreted more than 30 times as much H(2)O(2) at 42 as at 30 degrees C, while mitochondria isolated from cells simultaneously deficient in NDE1 and NDE2 secreted no H(2)O(2). We conclude that heat stress causes nuclear mutations via oxidative stress originating from the respiratory electron transport chains of mitochondria.  相似文献   

6.
The adaptive response of the yeast Yarrowia lipolytica to heat shock has been studied. Experiments showed that, after 10 min of incubation at 45 degrees C, the survival rate of Yarrowia lipolytica cells was less than 0.1%. Stationary-phase yeast cells were found to be more thermotolerant than exponential-phase cells. The 60-min preincubation of cells at 37 degrees C or pretreatment with low concentrations of H2O2 (0.5 mM) and menadione (0.05 mM) made them more tolerant to heat and to oxidative stress (120 mM hydrogen peroxide). The pH dependence of yeast thermotolerance has also been studied. The adaptation of yeast cells to heat shock and oxidative stress was found to be associated with a decrease in the intracellular level of cAMP and an increase in the activity of antioxidant enzymes (catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase).  相似文献   

7.
Neurospora crassa conidiospore germlings exposed to a heat shock (30-45 C) rapidly accumulated trehalose and degraded glycogen, even in the presence of cycloheximide. This phenomenon was also rapidly reversible upon return of the cells at 30 degrees C. Trehalose accumulation at 45 degrees C demanded an exogenous source of carbon and either glucose or glycerol fulfilled such requirement. Experiments with the cyclic AMP-deficient cr-1 mutant suggested that the effects of temperature shifts on trehalose level were independent of cAMP metabolism. Cells exposed at 45 degrees C under conditions permissive for trehalose accumulation (i.e. in the presence of an assimilable carbon source) also acquired thermotolerance.  相似文献   

8.
Bacillus subtilis induced a set of general stress proteins in response to a salt or heat stress. Cells subjected to a mild heat stress showed a protective response which enabled them to survive otherwise lethal temperatures (e.g. 52 degrees C). In a similar way bacteria were enabled to survive toxic concentrations of NaCl by pretreatment with lower salt concentrations. A mild heat shock induced a cross-protection against lethal salt stress. The pretreatment of cells with low salt, however, was less effective in the induction of thermotolerance than a preceding mild heat stress. Three stress proteins were identified on the basis of their N-terminal amino acid sequences as homologues of GroEL, DnaK and ClpP of Escherichia coli. The role of general and specific stress proteins in the induction of thermotolerance/salt tolerance and cross-protection is discussed.  相似文献   

9.
The tetra-anionic form of ATP (ATP4-) is known to induce monovalent and divalent ion fluxes in cells that express purinergic P2X7 receptors and with sustained application of ATP it has been shown that dyes as large as 831 Da can permeate the cell membrane. The current study explores the kinetics of loading alpha,alpha-trehalose (342 Da) into ATP stimulated J774.A1 cells, which are known to express the purinergic P2X7 receptor. Cells that were incubated at 37 degrees C in a 50 mM phosphate buffer (pH 7.0) containing 225 mM trehalose and 5 mM ATP, were shown to load trehalose linearly over time. Concentrations of approximately 50 mM were reached within 90 min of incubation. Cells incubated in the same solution at 4 degrees C loaded minimally, consistent with the inactivity of the receptor at low temperatures. However, extended incubation at 37 degrees C (>60 min) resulted in zero next-day survival, with adverse effects appearing even with incubation periods as short as 30 min. By using a two-step protocol with a short time period at 37 degrees C to allow pore formation, followed by an extended loading period on ice, cells could be loaded with up to 50 mM trehalose while maintaining good next day recovery (49 +/- 12% by Trypan blue exclusion, 56 +/- 20% by alamarBlue assay). Cells porated by this method and allowed an overnight recovery period exhibited improved dehydration tolerance suggesting a role for ATP poration in the anhydrous preservation of cells.  相似文献   

10.
The effect of the microenvironment in alginate–chitosan–alginate (ACA) microcapsules with liquid core (LCM) and solid core (SCM) on the physiology and stress tolerance of Sacchromyces cerevisiae was studied. The suspended cells were used as control. Cells cultured in liquid core microcapsules showed a nearly twofold increase in the intracellular glycerol content, trehalose content, and the superoxide dismutase (SOD) activity, which are stress tolerance substances, while SCM did not cause the significant physiological variation. In accordance with the physiological modification after being challenged with osmotic stress (NaCl), oxidative stress (H2O2), ethanol stress, and heat shock stress, the cell survival in LCM was increased. However, SCM can only protect the cells from damaging under ethanol stress. Cells released from LCM were more resistant to hyperosmotic stress, oxidative stress, and heat shock stress than cells liberated from SCM. Based on reasonable analysis, a method was established to estimate the effect of microenvironment of LCM and SCM on the protection of cells against stress factors. It was found that the resistance of LCM to hyperosmotic stress, oxidative stress, and heat shock stress mainly depend on the domestication effect of LCM’s microenvironment. The physical barrier of LCM constituted by alginate–chitosan membrane and liquid alginate matrix separated the cells from the damage of oxidative stress and ethanol stress. The significant tolerance against ethanol stress of SCM attributed to the physical barrier consists of solid alginate–calcium matrix and alginate–chitosan membrane.  相似文献   

11.
The response to moderate salt stress of a Scytonema species isolated from a soil crust in the arid region of central Australia was studied. An increase in intracellular trehalose and sucrose concentrations was detected by NMR and HPLC analysis following salt stress, maximal amounts being produced by exposure to 150 mM NaCl after 48 h. When the organism was subsequently returned to normal growth conditions, the cellular concentrations of these solutes decreased. The biosynthesis of trehalose and sucrose was studied and found, in both cases, to involve both sugar phosphate synthase and phosphatase enzymes. The combined synthase activities and the individual phosphatase activities in cell extracts were increased by salt stress. Trehalose phosphorylase was the only catabolic enzyme detected for trehalose; neither trehalase nor phosphotrehalase activities could be detected. This is the first report of trehalose phosphorylase activity in cyanobacteria. Both trehalose and sucrose phosphorylase activities increased in salt-stressed cells, whereas the activity of invertase did not change.  相似文献   

12.
Anhydrobiotic engineering aims to confer a high degree of desiccation tolerance on otherwise sensitive living organisms and cells by adopting the strategies of anhydrobiosis. Nonreducing disaccharides such as trehalose and sucrose are thought to play a pivotal role in resistance to desiccation stress in many microorganisms, invertebrates, and plants, and in vitro trehalose is known to confer stability on dried biomolecules and biomembranes. We have therefore tested the hypothesis that intracellular trehalose (or a similar molecule) may be not only necessary for anhydrobiosis but also sufficient. High concentrations of trehalose were produced in bacteria by osmotic preconditioning, and in mammalian cells by genetic engineering, but in neither system was desiccation tolerance similar to that seen in anhydrobiotic organisms, suggesting that trehalose alone is not sufficient for anhydrobiosis. In Escherichia coli such desiccation tolerance was achievable, but only when bacteria were dried in the presence of both extracellular trehalose and intracellular trehalose. In mouse L cells, improved osmotolerance was observed with up to 100 mM intracellular trehalose, but desiccation was invariably lethal even with extracellular trehalose present. We conclude that anhydrobiotic engineering of at least some microorganisms is achievable with present technology, but that further advances are needed for similar desiccation tolerance of mammalian cells.  相似文献   

13.
The levels of glycogen, free trehalose, and lipid-bound trehalose were compared in Mycobacterium smegmatis grown under various conditions of nitrogen limitation. In a mineral salts medium supplemented with yeast extract and containing fructose as the carbon source, the accumulation of glycogen increased dramatically as the NH(4)Cl content of the medium was lowered. However, levels of free trehalose remained relatively constant. Cells were grown in low nitrogen medium and were then shifted to medium containing high nitrogen. Under these conditions, there was a rapid accumulation of glycogen in low nitrogen, and this glycogen was rapidly depleted when cells were placed in high nitrogen medium. Again the concentration of free trehalose remained fairly constant. However, when cells were grown in low nitrogen medium with [(14)C]fructose and then transferred to high nitrogen medium with unlabeled fructose, the specific radioactivity (counts per minute per micromole) of the free trehalose fell immediately, indicating that it was being synthesized and turned over continually. On the other hand, the specific radioactivity of the glycogen and bound trehalose declined much more slowly, suggesting that these two compounds were not turning over as rapidly or were being synthesized at a much slower rate. Experiments on the incorporation of [(14)C]fructose into glycogen and trehalose indicated that cells in high nitrogen medium synthesized much less glycogen than those in low nitrogen. However, synthesis of both free trehalose and bound trehalose was the same in both cases. The specific enzymatic activities of the glycogen synthetase and the trehalose phosphate synthetase varied somewhat from one growth condition to another, but there was no correlation between enzymatic activity and the amount of glycogen or trehalose, suggesting that changes in glycogen levels were not due to increased synthetic capacity. The glycogen synthetase was purified about 35-fold and its properties were examined. This enzyme was specific for adenosine diphosphate glucose as the glucosyl donor.  相似文献   

14.
The role of trehalose in dehydration resistance of Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Abstract High levels of intracellular trehalose in stationary-phase cells of Saccharomyces cerevisiae or cells incubated in the absence of a nitrogen source were found to increase the resistance of the cells to dehydration. Exponential-phase cells showed negligible dehydration resistance. When stationary-phase cells were inoculated into fresh medium, trehalose was rapidly broken down, and this was correlated with a rapid loss of dehydration resistance. It appeared that a minimum internal concentration of 120 mM trehalose was required before there was a significant increase in dehydration resistance. Exogenous trehalose increased the dehydration resistance of S. cerevisiae : this effect was most marked for stationary-phase cells, where almost 100% survival was obtained at trehalose concentrations of 500 mM and above while maximum survival for exponential cells was less than 10%, even at 1000 mM external trehalose.  相似文献   

15.
The effect of alkyloxybenzenes (AHBs) belonging to the class of alkylresorcinols differing in the degree of hydrophobicity--C7-AHB and more hydrophobic Cl12-AHB--on the resistance of Saccharomyces cerevisiae cells to heat shock and oxidative stress of lethal intensity was studied. Depending on structure and concentration, AHB added 2 h before exposure to stress had either an antistress or stress-potentiating effect on yeast cells in the mid-logarithmic growth phase. C7-AHB at concentrations 0.25-0.5 g/l caused a two- to fivefold increase in the resistance of yeast cells to hydrogen peroxide (30-150 mM), whereas Cl2-AHB reduced it at all concentrations. C7-AHB and Cl2-AHB had a similar effect on yeast subjected to heat shock (45 degrees C, 30 min). It was found that the degree of the protective effect of C7-AHB and potentiating effect of Cl2-AHB depended on the nature of the stressor, being more pronounced in heat shock. The environmental significance of the antistress and stress-potentiating effects of microbial AHBs is discussed.  相似文献   

16.
When Tetrahymena cells are exposed to physical or chemical stress they may die. The effect of a given stress depends on the culture medium, the temperature, and the manipulation of the cells. Cells in broth-medium or buffer solution are more resistant than cells in chemically defined medium (CDM). A type of physical stress is caused by the hydrodynamic properties at the constriction of the pipette tip. This type of stress may be reduced/abolished by use of tips with maximal area and smoothness at the constrictions, underwater delivery of cell suspensions combined with gentle mixing, by use of reduced temperatures, by avoidance of medium-air interfaces or by addition of surfactants. By adjustment of these parameters it is possible to clone single cells of different species of Tetrahymena in CDM. In the presence of surfactants, cells can be cloned even under harsh manipulation. In absence of surfactants, cells can be cloned at 15 degrees C using mild manipulations. Tetrahymena cells are independent of unspecific growth factors and they do not exert autocrine growth control. Pluronic does not bind to the cells with significant affinity. Chemical stress cannot be counteracted by surfactants. Pre-stress (heat) protects the cells from subsequent lethal heat stress.  相似文献   

17.
In the yeast, Saccharomyces cerevisiae, the disaccharide trehalose is a stress-related metabolite that accumulates upon exposure of cells to heat shock or a variety of non-heat inducers of the stress response. Here, we describe the influence of mutations in individual heat-shock-protein genes on trehalose metabolism. A strain mutated in three proteins of the SSA subfamily of 70-kDa heat-shock proteins (hsp70) overproduced trehalose during heat shock at 37 degrees C or 40 degrees C and showed abnormally slow degradation of trehalose upon temperature decrease from 40 degrees C to 27 degrees C. The mutant cells were unimpaired in the induction of thermotolerance; however, the decay of thermotolerance during recovery at 27 degrees C was abnormally slow. Since both a high content of trehalose and induced thermotolerance are associated with the heat-stressed state of cells, the abnormally slow decline of trehalose levels and thermotolerance in the mutant cells indicated a defect in recovery from the heat-stressed state. A similar albeit minor defect, as judged from measurements of trehalose degradation during recovery, was detected in a delta hsp104 mutant, but not in a strain deleted in the polyubiquitin gene, UB14. In all our experiments, trehalose levels were closely correlated with thermotolerance, suggesting a thermoprotective function of trehalose. In contrast, heat-shock proteins, in particular hsp70, appear to be involved in recovery from the heat-stressed state rather than in the acquisition of thermotolerance. Cells partially depleted of hsp70 displayed an abnormally low activity of neutral trehalase when shifted to 27 degrees C after heat shock at 40 degrees C. Trehalase activity is known to be under positive control by cAMP-dependent protein kinases, suggesting that hsp70 directly or indirectly stimulate these protein-kinase activities. Alternatively, hsp70 may physically interact with neutral trehalase, thereby protecting the enzyme from thermal denaturation.  相似文献   

18.
Sugars such as glucose, maltose, and trehalose, which are metabolized by Dictyostelium discoideum and which enhance vegetative growth, inhibit the development of the slime mold at concentrations which stimulate growth maximally. They block the acquisition of aggregation competence as well as aggregation. The same sugars also inhibit the degradation of preformed glycogen ribonucleic acid, and protein, which is characteristic of development and which occurs when the amoebas are starved by incubation in dilute phosphate buffer.  相似文献   

19.
The response of a yeast unsaturated fatty acid auxotroph, defective in delta 9-desaturase activity, to heat and ethanol stresses was examined. The most heat- and ethanol-tolerant cells had membranes enriched with oleic acid (C18:1), followed in order by cells enriched with linoleic (C18:2) and linolenic (C18:3) acids. Cells subjected to a heat shock (25-37 degrees C for 30 min) accumulated trehalose and synthesized typical heat shock proteins. Although there were no obvious differences in protein profiles attributable to lipid supplementation of the mutant, relative protein synthesis as determined by densitometric analysis of autoradiograms suggested that hsp expression was different. However, there was no consistent relationship between the synthesis of heat shock proteins and the acquisition of thermotolerance in the lipid supplemented auxotroph or related wild type. Furthermore, trehalose accumulation was also not closely related to stress tolerance. On the other hand, the data presented indicated a more consistent role for membrane lipid composition in stress tolerance than trehalose, heat shock proteins, or ergosterol. We suggest that the sensitivity of C18:3-enriched cells to heat and ethanol may be attributable to membrane damage associated with increases in membrane fluidity and oxygen-derived free radical attack of membrane lipids.  相似文献   

20.
Accumulation of trehalose in yeasts has been suggested to be an important mechanism of tolerance against adverse stress conditions, particularly in thermal stress. However, under thermal stress, it is not clear if the mechanism of protection is related to its antioxidant role. In this study, a newly isolated wine yeast Saccharomyces cerevisia was used to examine the protective effect of trehalose against oxidation during thermal stress treatment. Cells were treated either with a mild heat treatment at 37°C (which leads to trehalose accumulation) or with a 50 mM trehalose solution and then exposed to a high temperature of 53°C. According to our results, mild heat treatment at 37°C and trehalose addition which promote accumulation of trehalose significantly increased cell survival upon exposure to thermal stress at 53°C which seems to be correlated with decrease in reactive oxygen species levels and lipid peroxidation. Trehalose could protect yeast from oxidative injuries under thermal stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号