首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A couple of DNA ligation-independent cloning (LIC) methods have been reported to meet various requirements in metabolic engineering and synthetic biology. The principle of LIC is the assembly of multiple overlapping DNA fragments by single-stranded (ss) DNA overlaps annealing. Here we present a method to generate single-stranded DNA overlaps based on Nicking Endonucleases (NEases) for LIC, the method was termed NE-LIC. Factors related to cloning efficiency were optimized in this study. This NE-LIC allows generating 3′-end or 5′-end ss DNA overlaps of various lengths for fragments assembly. We demonstrated that the 10 bp/15 bp overlaps had the highest DNA fragments assembling efficiency, while 5 bp/10 bp overlaps showed the highest efficiency when T4 DNA ligase was added. Its advantage over Sequence and Ligation Independent Cloning (SLIC) and Uracil-Specific Excision Reagent (USER) was obvious. The mechanism can be applied to many other LIC strategies. Finally, the NEases based LIC (NE-LIC) was successfully applied to assemble a pathway of six gene fragments responsible for synthesizing microbial poly-3-hydroxybutyrate (PHB).  相似文献   

3.
《Cell》1986,47(4):v
  相似文献   

4.
Sugar non-specific endonucleases are multifunctional enzymes and are widespread in distribution. Apart from nutrition, they have also been implicated in cellular functions like replication, recombination and repair. Their ability to recognize different DNA structures has also been exploited for the determination of nucleic acid structure. Although more than 30 non-specific endonucleases have been isolated to date, very little information is available regarding their structure-function correlations except that of staphylococcal and Serratia nucleases. However, during the past few years, the primary structure, nature of the active site based on sequence homology, and the probable mechanism of action have been postulated for some of the enzymes. This review describes the purification, characteristics, biological role and applications of sugar non-specific endonucleases.  相似文献   

5.
Russian Journal of Bioorganic Chemistry - Nicking endonucleases (NE) are a special group of the restriction endonucleases family. These unique enzymes catalyze the hydrolysis of only one DNA strand...  相似文献   

6.
Nicking by transesterification: the reaction catalysed by a relaxase   总被引:17,自引:5,他引:12  
DNA relaxases play an essential role in the initiation and termination of conjugative DNA transfer. Purification and characterization of relaxases from several plasmids has revealed the reaction mechanism: relaxases nick duplex DNA in a site- and strand-specific manner by catalysing a transesterification. The product of the reaction is a nicked double-stranded DNA molecule with a sequestered 3'-OH and the relaxase covalently bound to the 5' end of the cleaved strand via a phosphotyrosyl linkage. The relaxase-catalysed transesterification is isoenergetic and reversible; a second transesterification ligates the nicked DNA. However, the covalent nucleoprotein complex is relatively long-lived, a property that is likely to be essential for its role as an intermediate in the process of conjugative DNA transfer. Subsequent unwinding of the nicked DNA intermediate is required to produce the single strand of DNA transferred to the recipient cell. This reaction is catalysed by a DNA helicase, an activity intrinsic to the relaxase protein in some, but not all, plasmid systems. The first relaxase-catalysed transesterification is essential for initiation of conjugative strand transfer, whereas the second is presumably required for termination of the process. The relaxase, in conjunction with several auxiliary proteins, forms the relaxation complex or relaxosome first described nearly 30 years ago as being associated with conjugative and mobilizable plasmids.  相似文献   

7.
The labeling of biomolecules has become standard practice in molecular biosciences. Modifications are used for detection, sorting and isolation of small molecules, complexes and entire cells. We have recently reported a method for introducing internal chemical and structural modifications into kbp-sized DNA target substrates that are frequently used in single-molecule experiments. It makes use of nicking enzymes that create single-stranded DNA gaps, which can be subsequently filled with labeled oligonucleotides. Here we provide a detailed protocol and further expand this method. We show that modifications can be introduced at distant loci within one molecule in a simple one-pot reaction. In addition, we achieve labeling on both strands at a specific locus, as demonstrated by F?rster resonance energy transfer (FRET) experiments. The protocol requires an initial cloning of the target substrate (3-5 d), whereas the labeling itself takes 4-6 h. More elaborate purification and verification of label incorporation requires 2 h for each method.  相似文献   

8.
The sitespecific restriction endonucleases were found in four strains among the twelve strains of anaerobic bacteria of generum Bifidobacterium. Two of the restriction endonucleases studied, BadI from B. adolescentis LVA1 and BbfI from B. bifidum LVA3, are isoshizomers of XhoI and recognize the nucleotide sequence CTCGAG. The restriction endonucleases Bbf7411I from B. bifidum 7411 and Bla7920I from B. lactentis 7920 recognize and hydrolize the nucleotide sequence TCCGGA having the specifity analogous to the one of restriction endonuclease CauB3I. Like CauB3I, these restriction endonucleases are unable to hydrolyize DNA if the adenine residues in the recognition site are methylated.  相似文献   

9.
Homing endonucleases are a class of site-specific DNA endonucleases encoded by open reading frames within introns and inteins. They initiate the mobility of their host element by recognizing intronless or inteinless alleles of their host gene and making a double-strand break. The homing endonucleases are notable for their long target sites and a tolerance for sequence polymorphisms in their substrates. The methods used to study homing endonucleases are similar to those used to study protein-DNA interactions in general. However, some variations and specialized techniques are useful in characterizing homing endonucleases and these methods are discussed.  相似文献   

10.
11.
Azospirillum brasilense, A. amazonense, and A. lipoferum strains were screened for restriction endonucleases using phage lambda DNA. The extract of A. brasilense 29711 cleaved lambda DNA into specific fragments. It was concluded that this strain possesses a class II restriction endonuclease which was named AbrI. AbrI has a single recognition site on lambda DNA at position of approx. 33 500 bp. AbrI was characterized as an isoschizomer of XhoI, which cuts lambda DNA at 33 498 bp and cleaves double-stranded DNA at the sequence 5'-C TCGAG-3'. From other Azospirilla strains only A. amazonense QRZ42 extracts (AamI activity) cleaved DNA into specific fragments under certain conditions.  相似文献   

12.
Two strains ofStreptomyces aureofaciens were found to contain restriction endodeoxynucleases;S. aureofaciens IKA 18/4 contains Sau I which splits X DNA into three fragments,S. aureofaciens IKA 22201 contains Sau Ii which splits λ DNA into more than 15 fragments.  相似文献   

13.
Endonucleases are key effectors of mRNA degradation, particularly for mRNAs whose turnover rates are regulated by extracellular stimuli. The rapid clearance of mRNA degradation products in vivo and the need to selectively identify mRNA endonucleases in the presence of many other cellular ribonucleases make the study of these enzymes particularly challenging. We have successfully purified and cloned one such enzyme, termed polysomal RNase 1, or PMR-1. Presented here are protocols either developed in our laboratory or adapted from the work of others that we have used successfully in characterizing PMR-1. We first describe methods to determine whether a particular mRNA is degraded in vivo through an endonuclease-initiated mechanism, and then present approaches for developing an in vitro mRNA degradation system. Next we describe experiments one should perform to optimize reaction conditions, determine cofactor requirements for an endonuclease, map in vitro cleavage sites, and characterize endonucleolytic cleavage products. Finally we describe kinetic parameters one should evaluate in characterizing the enzymology of mRNA endonucleases, with particular concern focused on the relative selectivity of these enzymes for cleavage at preferred sites within target mRNAs.  相似文献   

14.
15.
16.
17.
18.
New site-specific endonucleases LplI and AagI have been isolated from the Lactobacillus plantarum and Achromobacter agile cells, respectively. The enzymes' purification stages included treatment of cell-free extracts with polyethylenimine, fractionation in two-phase system by Albertsson's method, chromatography on blue Sepharose and DEAE-cellulose. The results of cleavage of a 5'-32P-labelled oligodeoxynucleotide duplex by restriction endonucleases LplI and AagI indicate that these enzymes recognize and cut the sequence AT decreases CGAT, being therefore true isoschizomers of the ClaI restriction endonuclease from Caryophanon latum. The L. plantarum strain has 400 fold endonuclease productivity as compared with the ClaI producent and is perspective for preparative isolation of LplI.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号