首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of suppressors of tryptophan synthase A protein missense mutations in Escherichia coli has led to the establishment of two nonadjacent genetic loci (gly V and gly W) specifying identical nucleotide sequences for a single isoaccepting species of glycine transfer ribonucleic acid (tRNA GLY 3 GGU/C). In one case, suppression of the missense mutation trpA78 was due to a mutation in a structural gene (gly W) for tRNA Gly 3 GGU/C. This mutation resulted in a base change in the anticodon and modification of an A residue adjacent to the 3' side of the anticodon, leading to the production of a tRNA Gly 3 UGU/C species. The resulting glyW51 (SU UGU/C) allele was mapped by interrupted mating and was located at approximately 37 min on the Escherichia coli genetic map. Other suppressor mutations affecting the primary sequence of tRNA Gly GGU/C and giving rise to the Ins and SU+A58 phenotypes were positioned at 86 min (glyV). Several independently arising missense suppressor mutations resulting in the SU+A78 phenotypes were isolated and mapped at these two genetic loci (glyV and glyW). The ratio of appearance of suppressor mutations at glyV and glyW suggests that there are three of four tRNAGly3 GGU/C structural gene copies at the glyV locus to one copy at the glyW locus. Structural genes for tRNA ly isoacceptors are now known at four distinct locations on the Escherichia coli chromosome: glyT (77 MIN), TRNA Gly 2 GGA/G; gly U (55 min), tRNAGly-1 minus; and gly V (86 MIN) AND GLYW (37 min), tRNAGly 3 GGU/C.  相似文献   

2.
In order to isolate the gene for amber suppressor su+2 (SupE) in Escherichia coli, a non-defective su+2-transducing phage lambda was isolated in three steps: first, deletion derivatives of F′su+2 gal (λ) were selected, linking su+2 to the right-hand prophage attachment site, attλPB′; second, these F′-factors were relysogenized by λ and defective transducing phages, λdsu+2, were produced by induction; and third, non-defective λpsu+2 transducing phages were produced by recombination of λdsu+2 isolates with λ. Upon infection by λpsu+2, the production of transferRNAs accepting glutamine and methionine was markedly stimulated. Fingerprint analysis of these tRNAs revealed that they consisted of normal tRNA2Gln, mutant tRNA2Gln and tRNAmMet. The mutant tRNA2Gln carried a singlebase alteration from G to A at the 3′-end of the anticodon. The production of tRNA1Gln was not stimulated by the infection of λpsu+2. We conclude that the wild-type allele of su+2 (SupE) is the structural gene for tRNA2Gln, and the su+2 amber suppressor was derived by a single base mutation, changing the anticodon from CUG to CUA, in one of the multi-copy genes for tRNA2Gln. The fact that λpsu+2 also induces the production of tRNAmMet suggests that this tRNA is encoded in the same chromosomal region of E. coli as is tRNA2Gln.  相似文献   

3.
The number of gene copies for tRNA2Gln in λpsu+2 was determined by genetic and biochemical studies. The transducing phage stimulates the production of the su+2 (amber suppressor) and su°2 glutamine tRNAs and methionine tRNAm. When the su+2 amber suppressor was converted to an ochre suppressor by single-base mutation, the phage stimulated ochre-suppressing tRNA2Gln, instead of the amber-suppressing tRNA2Gln. From the transducing phage carrying the ochre-suppressing allele, strains carrying both ochre and amber suppressors were readily obtainable. These phages stimulated both ochre-suppressing and amber-suppressing tRNA2Gln, but not the non-suppressing form. We conclude that the original transducing phage carries two tRNA2Gln genes, one su+2 and one su°2. The transducing phage carrying two suppressors, ochre and amber, segregates one-gene derivatives that encode only one or the other type of suppressor tRNA. These derivatives apparently arise by unequal recombination involving the two glutamine tRNA genes in the parental phage. This segregation is not accompanied by the loss of the tRNAmMet gene. Based on these results, it is suggested that Escherichia coli normally carries in tandem two identical genes specifying tRNA2Gln at 15 minutes on the bacterial chromosome. su+2 mutants may arise by single-base mutations in the anticodon region of either of these two, leaving the other intact. By double mutations, tRNA2Gln genes could also become ochre suppressors. A tRNAmMet gene is located near, but not between, these two tRNA2Gln genes.  相似文献   

4.
Normal and Mutant Glycine Transfer RNAs   总被引:21,自引:0,他引:21  
THE glycine-specific tRNAs of E. coli can be grouped into three subspecies which are separated by chromatography on benzoylated DEAE cellulose (BDC): tRNAGly1 (GGG), tRNAGly2 (GGA/G) and tRNAGly3 (GGU/C)1,2. The tRNAGly1 and tRNAGly2 are specified by the genes, glyU and glyT, respectively, which have been located at 55 and 77 minutes on the E. coli chromosome. Suppressors of tryptophan A gene (trpA) missense mutations and partial diploid strains have been used extensively to characterize the glycine tRNA structural genes (Table 1)1–3. A common property of these suppressor mutations is that the altered tRNAGly is no longer aminoacylated at the normal rate by the glycyl tRNA synthetase (GRS). When ordinary loading conditions are used virtually none of the suppressor tRNA species are amino-acylated. These studies have shown that single gene copies are normally present at the glyT and glyU loci.  相似文献   

5.
Escherichia coli DNA and fragmented rRNA were used as a model system to study the effect of RNA fragment size in hybridization-competition experiments. Though no difference in hybridization rates was observed, the relative stabilities of the RNA/DNA hybrids were found to be largely affected by the fragment size of the RNA molecule. Intact rRNA was shown to replace shorter homologous rRNA sequences in their hybrids, the rate of the displacement being dependent on the molecular size of the RNA fragments. Hybridization-competition experiments between molecules of different lengths are expected to be complicated by the displacement reaction. The synthesis of tRNATyr-like sequences transcribed in vitro on φ80psu3+ bacteriophage DNA was measured by hybridization competition assays. Indirect competition with labelled E. coli tRNATyr hybridization revealed that the in vitro-synthesized RNA contained significant amounts of tRNATyr; these sequences could not, however, be detected by the direct competition method in which labelled in vitro-synthesized RNA competes with E. coli tRNATyr for hybridization to φ80psu3+ DNA. These contradictory results can be traced to the differences in size of the competing molecules in the hybridization-competition reaction. Indeed, in vitro-transcribed tRNATyr-like sequences, longer than mature tRNA, were found to displace efficiently E. coli tRNATyr from its hybrids with φ80psu3+ DNA. These findings explain why such sequences could not be detected by direct competition with E. coli tRNATyr.  相似文献   

6.
While translational read-through of stop codons by suppressor tRNAs is common in many bacteria, archaea and eukaryotes, this phenomenon has not yet been observed in the α-proteobacterium Caulobacter crescentus. Based on a previous report that C. crescentus and Escherichia coli tRNAHis have distinctive identity elements, we constructed E. coli tRNAHis CUA, a UAG suppressor tRNA for C. crescentus. By examining the expression of three UAG codon- containing reporter genes (encoding a β-lactamase, the fluorescent mCherry protein, or the C. crescentus xylonate dehydratase), we demonstrated that the E. coli histidyl-tRNA synthetase/tRNAHis CUA pair enables in vivo UAG suppression in C. crescentus. E. coli histidyl-tRNA synthetase (HisRS) or tRNAHis CUA alone did not achieve suppression; this indicates that the E. coli HisRS/tRNAHis CUA pair is orthogonal in C. crescentus. These results illustrate that UAG suppression can be achieved in C. crescentus with an orthogonal aminoacyl-tRNA synthetase/suppressor tRNA pair.  相似文献   

7.
THE degree of degeneracy of the genetic code varies for the twenty amino-acids: between one and six different triplets are assigned to a single amino-acid. Four triplets GUU, GUC, GUA, GUG code for the amino-acid valine1,2. Two valine specific tRNAs have been separated by fractionation of mixed E. coli tRNA3; tRNAval1 is specific for GUAG and tRNAval2 corresponds to GUUC (see also ref. 1 for binding properties). Recent studies showed that although both species are recognized by the single activating enzyme present in E. coli, the association constant (Ka) for the minor species, tRNAval2 (?20% of total acceptor), is an order of magnitude higher than the association constant of the major species, tRNAval 41. As a first step to comparing the structures of these two tRNAs, we analysed the base sequences of the major and minor species. We recently published the nucleotide sequence of tRNAval 51; we report here the sequence of two minor subspecies (quite similar to each other) that comprise the tRNAval2 acceptor and we comment on the significance of the sequence homologies in relation to the problems of enzyme recognition and tRNA evolution.  相似文献   

8.
In this work we show that the wild-type (su?7) progenitor of the recessivelethal suppressors of UAG (su+7(UAG)) and of UAA/G (su+7(UAA/G)) is the structural gene for transfer RNATrp, the adaptor for translating the codon UGG. The su+7(UAG) suppressor form of the tRNA has a C for U substitution in the middle base of the anticodon; in the su+7(UAA/G) suppressor tRNA both C residues of the anticodon are replaced by U. Our data establish that the mutational change altering the tRNATrp to a UAG suppressor is accompanied by a loss of tryptophan-accepting specificity and the acquisition of glutamine-acceptor activity.  相似文献   

9.
The su+7 amber suppressor of Escherichia coli is a mutant tRNATrp that translates UAG codons as glutamine. Nevertheless, the purified su+7 tRNA can be charged with either glutamine or tryptophan. Aminoacylation kinetics in vitro suggest that the tRNA should be acylated with equal amounts of glutamine and tryptophan in vivo. The predominance of the glutamine specificity of the suppressor is therefore potentially anomalous. We can find no selective deacylation of tryptophanyl-su+7 tRNA by glutaminyl-tRNA synthetase, tryptophanyl-tRNA synthetase, or any other cellular element. Furthermore, as predicted, nearly equal amounts of glutaminyl and tryptophanyl-su+7 tRNA are actually detected in aminoacyl-tRNA extracted from growing cells. We conclude that the translational apparatus somehow discriminates against tryptophanyl-su+7 tRNA at a step after synthesis of the two aminoacyl-tRNAs.  相似文献   

10.
We have shown that the yeast-Escherichia coli shuttle vector YEp 13 contains, as part of its yeast chromosomal segment, a tRNA3Leu gene. We have also isolated and characterized a variant of YEp13, namely YEp13-a, which is capable of suppressing a variety of yeast amber-suppressible alleles in vivo. YEp13-a differs from YEp13 by a single point mutation, which changes the three-nucleotide, plus-strand sequence corresponding to the tRNA3Leu anticodon from the normal C-A-A to C-T-A. This nucleotide change creates a site for the restriction enzyme XbaI in the suppressor tRNA3Leu gene. We have taken advantage of the correlation between the suppressor mutation and the XbaI site formation, to show that the tRNA3Leu gene on YEp13 corresponds to the genetically characterized yeast chromosomal amber suppressor SUP53. We have also shown that SUP53 is located just centromere-distal to LEU2 on chromosome III. Finally, comparison of the DNA sequence of SUP53 and its flanking regions with the sequences of other cloned yeast tRNA3Leu genes has revealed considerable sequence homology in the immediate 5′-flanking regions of these genes.  相似文献   

11.
The su+7 nonsense suppressor of Escherichia coli is a mutant tRNATrp that can be aminoacylated with either tryptophan or glutamine. We have compared the ternary complexes of glutaminyl and tryptophanyl-su+7 tRNA with elongation factor Tu and GTP. Glutaminyl-su+7 tRNA binds more strongly than tryptophanyl-su+7 tRNA to EF Tu · GTP. The greatest distinction between the two species of the tRNA is seen in their dissociation rates from the complex, which differ by as much as fivefold. The distinction is affected by pH values around neutrality. These results show that EF Tu can distinguish between two aminoacyl-tRNAs which differ only in the aminoacyl group. The implications for the unusual amino acid specificity of su+7 tRNA are discussed.  相似文献   

12.
Summary A UGA suppressor derived from a glutamine tRNA gene of Escherichia coli K 12 was isolated and characterized. Phages carrying the suppressor su+2UGA could be obtained only from a hybrid transducing phage, h 80 cI 857psu +2oc, but not from the original transducing phage cI 857psu +2oc. By DNA sequence analysis, it was found that the su +2 UGA suppressor obtained has two mutations; one is in the anticodon (TTATCA), as expected, and the other (CT) is at the 7th position from the 3 end of tRNA 2 Gln . The significance of these mutations and the lethal effect on phage of the increased amounts of UGA suppressor tRNAs are discussed.  相似文献   

13.
We have determined the nucleotide sequences of the glutamine transfer RNAs that are coded by wild-type and psu2+ ochre-suppressor strains of bacteriophage T4. The two transfer RNAs have the same sequence except for their anticodons, where NUG in the wild-type species is mutated to NUA in the psu2+ species (N is a modified residue of U). This mutation is believed to confer suppressor activity on the psu2+ glutamine tRNA. Three mutants derived from psu2+ by loss of suppressor activity have been characterized with respect to their sequence alterations. Each mutant specifies a transfer RNA differing from the psu2+ species by a nucleotide substitution that occupies a base-paired region in the cloverleaf arrangement of the molecule. The mutants synthesize a reduced amount of tRNA that is defective in nucleotide modifications and processing at the 5′ and 3′ termini.  相似文献   

14.
Translation of the UGA triplet in vitro by tryptophan transfer RNA's   总被引:32,自引:0,他引:32  
Tryptophan transfer RNA from the UGA-suppressing strain of Escherichia coli CAJ64 was purified and assayed for suppressor activity in vitro in two ways: by translation of the bacteriophage T4 lysozyme messenger RNA bearing a UGA mutation, and by translation of poly(U-G-A). Purified tRNATrp, and no other fraction, stimulates lysozyme synthesis 30-fold above the level seen when comparable amounts of tryptophan tRNA from the non-suppressing strain, CA244, were added; it also translates poly(U-G-A) as polytryptophan more efficiently than the su tRNA. Tryptophan tRNA from the non-suppressing strain is active in the assays but far less so than CAJ64 tRNATrp, and this is consistent with the leakiness of su strains. Since the nucleotide sequences of these tryptophan tRNA's are known (Hirsh, 1971), it is concluded that tRNA with a CCA anticodon recognizes the UGA triplet and this recognition is improved by a nucleotide change elsewhere in the molecule.  相似文献   

15.
A double mutant A1G82 of the suIII+ tyrosine gene in Escherichia coli was constructed by genetic cross. This mutant is a stronger glutamine-inserting amber suppressor than either of the single mutants A1 or G82.  相似文献   

16.
Physical mapping of the transfer RNA genes on lambda-h80dglytsu+36   总被引:7,自引:0,他引:7  
The three Escherichia coli transfer RNA genes of the DNA of the transducing phage λ80cI857S?t68dglyTsu+36tyrTthrT (abbreviated λh80T), which specify the structures of tRNAGly2(su+36), tRNATyr2 and tRNAThr3, have been mapped by hybridizing ferritin-labeled E. coli tRNA to heteroduplexes of λh80T DNA with the DNA of the parental phage (λh80cI857S?t68) and examining the product in the electron microscope. The DNA of λh80T contains a piece of bacterial DNA of length 0·43 λ unit3 that replaces a piece of phage DNA of length 0·46 λ unit, proceeding left from B · P′ (the junction of bacterial DNA and phage DNA) (i.e. att80). A cluster of three ferritin binding sites, and thus of tRNA genes, is seen at a position of 0·24 λ unit (1·1 × 104 nucleotides) to the left of B· P′. The three tRNA genes of the cluster are separated by the unequal spacings of 260 (±30) and 140 (± 30) nucleotides, proceeding left from B·P′. The specific map positions have been identified by hybridization competition between ferritin-labeled whole E. coli tRNA with unlabeled purified tRNATyr2 and with unlabeled partially purified tRNAGly2. The central gene of the cluster is tRNATyr2. The tRNAGly2gene is probably the one furthest from B·P′. Thus, the gene order and spacings, proceeding left from B·P′, are: tRNAThr3, 260 nucleotides, tRNATry2, 140 nucleotides, tRNAGly2.  相似文献   

17.
《Mutation Research Letters》1990,243(2):145-149
The striking mutational specificity of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) exhibited in the lacI gene in Escherichia coli allows comment on the phenotypic consequences of mutation at specific sequences that are not recovered after MNNG mutagenesis. We predict that the I+ phenotype is maintained when such silent positions are substituted by amino acids whose codons are generated by the MNNG-directed G:C → A:T transition. We chose the mutationally silent Gly200 codon (an MNNG hotspot motif sequence) to test this prediction. Through MNNG mutagenesis we have generated, identified and isolated a G:C → A:T transition at position 627 (5′-GG-C3′) under non-selective conditions which creates the Gly200→Asp substitution. The I+ phenotype is retained for this altered repressor.  相似文献   

18.
19.
The genes encoding pea and potato mitochondrial tRNAGly and pea mitochondrial tRNASer(GCU) were analyzed with particular respect to their expression. Secondary-structure models deduced from the identical potato and pea tRNAGly gene sequences revealed A7:C66 mismatches in the seventh base pair at the base of the acceptor stems of both tRNAs. Sequence analyses of tRNAGly cDNA clones showed that these mispairings are not corrected by C66 to U66 conversions, as observed in plant mitochondrial tRNAPhe. Likewise, a U6:C67 mismatch identified in the acceptor stem of the pea tRNASer(GCU) is not altered by RNA editing to a mismatched U:U pair, which is created by RNA editing in Oenothera mitochondrial tRNACys. In vitro processing reactions with the respective tRNAGly and tRNASer(GCU) precursors show that such conversions are not necessary for 5′ and 3′ end maturation of these tRNAs. These results demonstrate that not all C:A (A:C) or U:C (C:U) mismatches in double-stranded regions of tRNAs are altered by RNA editing. An RNA editing event in plant mitochondrial tRNAs is thus not generally indicated by the presence of a mismatch but may depend on additional parameters.  相似文献   

20.
tRNAs are highly modified, each with a unique set of modifications. Several reports suggest that tRNAs are hypomodified or, in some cases, hypermodified under different growth conditions and in certain cancers. We previously demonstrated that yeast strains depleted of tRNAHis guanylyltransferase accumulate uncharged tRNAHis lacking the G−1 residue and subsequently accumulate additional 5-methylcytidine (m5C) at residues C48 and C50 of tRNAHis, due to the activity of the m5C-methyltransferase Trm4. We show here that the increase in tRNAHis m5C levels does not require loss of Thg1, loss of G−1 of tRNAHis, or cell death but is associated with growth arrest following different stress conditions. We find substantially increased tRNAHis m5C levels after temperature-sensitive strains are grown at nonpermissive temperature, and after wild-type strains are grown to stationary phase, starved for required amino acids, or treated with rapamycin. We observe more modest accumulations of m5C in tRNAHis after starvation for glucose and after starvation for uracil. In virtually all cases examined, the additional m5C on tRNAHis occurs while cells are fully viable, and the increase is neither due to the GCN4 pathway, nor to increased Trm4 levels. Moreover, the increased m5C appears specific to tRNAHis, as tRNAVal(AAC) and tRNAGly(GCC) have much reduced additional m5C during these growth arrest conditions, although they also have C48 and C50 and are capable of having increased m5C levels. Thus, tRNAHis m5C levels are unusually responsive to yeast growth conditions, although the significance of this additional m5C remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号