首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An outbreak associated with Streptococcus suis infection in humans emerged in Sichuan province, China in 2005. The outbreak is atypical for the apparent large number of human cases, high fatality rate and geographical spread. To determine whether the bacterium has changed, we compared both human and animal isolates from the Sichuan outbreak with those collected previously within China and in other countries using whole genome PCR scanning (WGPScaning) comparative sequencing of several known virulence factor genes and multilocus sequence typing (MLST) analysis. WGPScanning analysis showed that all primer pairs yielded PCR products of the expected sizes in all four strains tested. The nucleotide sequences of all the detected virulence factor genes are identical in the four strains and MLST results showed that the four isolates studied and reference strain all belonged to the ST1 complex. No new genetic changes were found in the genome structure of the isolates from this Sichuan outbreak. Contributed equally to this work Supported by the National Key Technologies Research and Development Program (Grant No. 2005BA711A09) from the Ministry of Science and Technology of China  相似文献   

3.
Polymerase chain reaction (PCR) based on single primers of arbitrary nucleotide sequence provides a powerful marker system for genome analysis because each primer amplifies multiple products, and cloning, sequencing, and hybridization are not required. We have evaluated this typing system for the mouse by identifying optimal PCR conditions; characterizing effects of GC content, primer length, and multiplexed primers; demonstrating considerable variation among a panel of inbred strains; and establishing linkage for several products. Mg2+, primer, template, and annealing conditions were identified that optimized the number and resolution of amplified products. Primers with 40% GC content failed to amplify products readily, primers with 50% GC content resulted in reasonable amplification, and primers with 60% GC content gave the largest number of well-resolved products. Longer primers did not necessarily amplify more products than shorter primers of the same proportional GC content. Multiplexed primers yielded more products than either primer alone and usually revealed novel variants. A strain survey showed that most strains could be readily distinguished with a modest number of primers. Finally, linkage for seven products was established on five chromosomes. These characteristics establish single primer PCR as a powerful method for mouse genome analysis.  相似文献   

4.
5.
Kang MJ  Yu H  Kim SK  Park SR  Yang I 《PloS one》2011,6(12):e28661
Quantification of trace amounts of DNA is a challenge in analytical applications where the concentration of a target DNA is very low or only limited amounts of samples are available for analysis. PCR-based methods including real-time PCR are highly sensitive and widely used for quantification of low-level DNA samples. However, ordinary PCR methods require at least one copy of a specific gene sequence for amplification and may not work for a sub-genomic amount of DNA. We suggest a real-time whole genome amplification method adopting the degenerate oligonucleotide primed PCR (DOP-PCR) for quantification of sub-genomic amounts of DNA. This approach enabled quantification of sub-picogram amounts of DNA independently of their sequences. When the method was applied to the human placental DNA of which amount was accurately determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES), an accurate and stable quantification capability for DNA samples ranging from 80 fg to 8 ng was obtained. In blind tests of laboratory-prepared DNA samples, measurement accuracies of 7.4%, -2.1%, and -13.9% with analytical precisions around 15% were achieved for 400-pg, 4-pg, and 400-fg DNA samples, respectively. A similar quantification capability was also observed for other DNA species from calf, E. coli, and lambda phage. Therefore, when provided with an appropriate standard DNA, the suggested real-time DOP-PCR method can be used as a universal method for quantification of trace amounts of DNA.  相似文献   

6.
7.
8.
This report presents PRImer Selector (PRISE), a new software package that implements several features that improve and streamline the design of sequence-selective PCR primers. The PRISE design process involves two main steps. In the first step, target and non-target DNA sequences are identified. In the second step, primers are designed to amplify target (but not non-target) sequences. One important feature of PRISE is that it automates the task of placing primer-template mismatches at the 3' end of the primers - a property that is crucial for sequence selectivity. Once a list of candidate primers has been produced, sorting tools in PRISE speed up the selection process by allowing a user to sort the primers by properties such as amplicon length, GC content and sequence selectivity. PRISE can be used to design primers with a range of specificities, targeting individual sequences as well as diverse assemblages of genes. PRISE also allows user-defined primers to be analyzed, enabling their properties to be examined in relation to target and non-target sequences. The utility of PRISE was demonstrated by using it to design sequence-selective PCR primers for an rRNA gene from the fungus Pochonia chlamydosporia.  相似文献   

9.
Genetic characterization of field isolates and clinical specimens of filarial nematodes is often limited by a shortage of DNA; therefore, we evaluated a multiple displacement amplification (MDA) based whole genome amplification method. The quality of amplified DNA was examined by conventional PCR, real-time PCR, and DNA hybridization. MDA of 5.0 ng of adult Brugia malayi DNA and one-fifteenth of the DNA isolated from a single microfilaria resulted in 6.3 and 4.2 μg of amplified DNA, respectively. Amplified DNA was equivalent to native genomic DNA for hybridization to B. malayi BAC library clones or to an oligonucleotide microarray with approximately 18,000 filarial DNA sequences. MDA is useful for whole genome amplification of filarial DNA from very small amounts of starting material. This technology will permit detailed studies of genetic diversity that were not previously feasible.  相似文献   

10.
Single cell genomics is a powerful and increasingly popular tool for studying the genetic make-up of uncultured microbes. A key challenge for successful single cell sequencing and analysis is the removal of exogenous DNA from whole genome amplification reagents. We found that UV irradiation of the multiple displacement amplification (MDA) reagents, including the Phi29 polymerase and random hexamer primers, effectively eliminates the amplification of contaminating DNA. The methodology is quick, simple, and highly effective, thus significantly improving whole genome amplification from single cells.  相似文献   

11.
While DNA of good quality and sufficient amount can be obtained easily from whole blood, buccal swabs, surgical specimens, or cell lines, these DNA-rich sources are not always available. This is particularly the case in studies for which biological specimens were collected when genotyping assays were not widely available. In those studies, serum or plasma is often the only source of DNA. Newly developed whole genome amplification (WGA) methods, based on phi29 polymerase, may play a significant role in recovering DNA in such instances. We tested a total of 528 plasma samples kept in storage at -40 degrees C for approximately 10 years for 8 single nucleotide polymorphisms (SNPs) using the 5' exonuclease (TaqMan) assay. These specimens yielded undetectable levels of DNA following extraction with an affinity column but produced an average 52.7 microg (standard deviation of 31.2 microg) of DNA when column-extracted DNA was used as a template for WGA. This increased the genotyping success rate from 54% to 93%. There were only 3 disagreements out of 364 paired genotyping results for pre- and post-WGA DNAs, indicating an error rate of 0.82%. These results are encouraging for expanding the use of poor DNA resources in genotyping studies.  相似文献   

12.
High-throughput sequencing is increasingly being used in combination with bisulfite (BS) assays to study DNA methylation at nucleotide resolution. Although several programmes provide genome-wide alignment of BS-treated reads, the resulting information is not readily interpretable and often requires further bioinformatic steps for meaningful analysis. Current post-alignment BS-sequencing programmes are generally focused on the gene-specific level, a restrictive feature when analysis in the non-coding regions, such as enhancers and intergenic microRNAs, is required. Here, we present Genome Bisulfite Sequencing Analyser (GBSA—http://ctrad-csi.nus.edu.sg/gbsa), a free open-source software capable of analysing whole-genome bisulfite sequencing data with either a gene-centric or gene-independent focus. Through analysis of the largest published data sets to date, we demonstrate GBSA’s features in providing sequencing quality assessment, methylation scoring, functional data management and visualization of genomic methylation at nucleotide resolution. Additionally, we show that GBSA’s output can be easily integrated with other high-throughput sequencing data, such as RNA-Seq or ChIP-seq, to elucidate the role of methylated intergenic regions in gene regulation. In essence, GBSA allows an investigator to explore not only known loci but also all the genomic regions, for which methylation studies could lead to the discovery of new regulatory mechanisms.  相似文献   

13.
14.
The polymerase chain reaction (PCR) is a versatile method to amplify specific DNA with oligonucleotide primers. By designing degenerate PCR primers based on amino acid sequences that are highly conserved among all known gene family members, new members of a multigene family can be identified. The inherent weakness of this approach is that the degenerate primers will amplify previously identified, in addition to new, family members. To specifically address this problem, we synthesized a specific RNA for each known family member so that it hybridized to one strand of the template, adjacent to the 3′-end of the primer, allowing the degenerate primer to bind yet preventing extension by DNA polymerase. To test our strategy, we used known members of the soluble, nitric oxide-sensitive guanylyl cyclase family as our templates and degenerate primers that discriminate this family from other guanylyl cyclases. We demonstrate that amplification of known members of this family is effectively and specifically inhibited by the corresponding RNAs, alone or in combination. This robust method can be adapted to any application where multiple PCR products are amplified, as long as the sequence of the desired and the undesired PCR product(s) is sufficiently distinct between the primers.  相似文献   

15.
《Biochemical education》1999,27(3):166-168
Computer-aided learning software designed to illustrate the structure and replication of DNA, and the principles and applications of DNA sequencing and PCR is described. Tailoring the software to individual needs enhances its effective use over a wide range of higher education levels by students with disparate backgrounds. The computer-based library provides ample support for study in an independent mode.  相似文献   

16.
17.
Luhe AL  Tan L  Wu J  Zhao H 《Biotechnology letters》2011,33(5):1007-1011
Saccharomyces cerevisiae was transformed for higher ethanol tolerance by error-prone whole genome amplification. The resulting PCR products were transformed back to the parental strain for homologous recombination to create a library of mutants with the perturbed genomic networks. A few rounds of transformation led to the isolation of mutants that grew in 9% (v/v) ethanol and 100 g glucose l−1 compared to untransformed yeast which grew only at 6% (v/v) ethanol and 100 g glucose l−1.  相似文献   

18.
An outbreak associated with Streptococcus suis infection in humans emerged in Sichuan province, China in 2005. The outbreak is atypical for the apparent large number of human cases, high fatality rate and geographical spread. To determine whether the bacterium has changed, we compared both human and animal isolates from the Sichuan outbreak with those collected previously within China and in other countries using whole genome PCR scanning (WGPScaning) comparative sequencing of several known virulence factor genes and multilocus sequence typing (MLST) analysis. WGPScanning analysis showed that all primer pairs yielded PCR products of the expected sizes in all four strains tested. The nucleotide sequences of all the detected virulence factor genes are identical in the four strains and MLST results showed that the four isolates studied and reference strain all belonged to the ST1 complex. No new genetic changes were found in the genome structure of the isolates from this Sichuan outbreak.  相似文献   

19.
Applied Microbiology and Biotechnology - Planktonic protists, including both autotroph and heterotroph, have been recognized as a major contributor to primary production and consumers of bacteria,...  相似文献   

20.
Genome-scale design of PCR primers and long oligomers for DNA microarrays   总被引:2,自引:0,他引:2  
During the last years, the demand for custom-made cDNA chips/arrays as well as whole genome chips is increasing rapidly. The efficient selection of gene-specific primers/oligomers is of the utmost importance for the successful production of such chips. We developed GenomePRIDE, a highly flexible and scalable software for designing primers/oligomers for large-scale projects. The program is able to generate either long oligomers (40–70 bases), or PCR primers for the amplification of gene-specific DNA fragments of user-defined length. Additionally, primers can be designed in-frame in order to facilitate large-scale cloning into expression vectors. Furthermore, GenomePRIDE can be adapted to specific applications such as the generation of genomic amplicon arrays or the design of fragments specific for alternative splice isoforms. We tested the performance of GenomePRIDE on the entire genomes of Listeria monocytogenes (1584 gene-specific PCRs, 48 long oligomers) as well as of eukaryotes such as Schizosaccharomyces pombe (5006 gene-specific PCRs), and Drosophila melanogaster (21 306 gene-specific PCRs). With its computing speed of 1000 primer pairs per hour and a PCR amplification success of 99%, GenomePRIDE represents an extremely cost- and time-effective program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号