首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine whether alpha and beta tubulin are glycoproteins, we used a pyridylamino labeling method and a monoclonal antibody, SG3-1, raised against NeuAcalpha2-3Gal structure. Alpha and beta tubulin from both pig brain and HeLa cells were positive for the SG3-1 antibody by immunoblot assay. Sialidase treatment reduced the reactivity of the SG3-1 antibody to alpha and beta tubulin molecules. N-linked oligosaccharide analysis also showed that alpha and beta tubulin are glycosylated. Moreover, immunofluorescence analysis showed that the filamentous structure recognized by the SG3-1 antibody was overlapped with microtubules, especially in the vicinity of the nucleus. These results indicate that alpha and beta tubulin are glycosylated with sialyloligosaccharides.  相似文献   

2.
Incubation of purified rat brain tubulin with cholera toxin and radiolabeled [32P] or [8-3H]NAD results in the labeling of both alpha and beta subunits as revealed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Treatment of these protein bands with snake venom phosphodiesterase resulted in quantitative release of labeled 5'-AMP, respectively labeled with the corresponding isotope. Two-dimensional separation by isoelectric focusing and SDS-PAGE of labeled and native tubulin revealed that labeling occurs at least in four different isotubulins. The isoelectric point of the labeled isotubulins was slightly lower than that of native purified tubulin. This shift in mobility is probably due to additional negative charges involved with the incorporation of ADP-ribosyl residues into the tubulin subunits. SDS-PAGE of peptides derived from [32P]ADP-ribosylated alpha and beta tubulin subunits by Staphylococcus aureus protease cleavage showed a peptide pattern identical with that of native tubulin. Microtubule-associated proteins (MAP1 and MAP2) of high molecular weight were also shown to undergo ADP-ribosylation. Incubation of permeated rat neuroblastoma cells in the presence of [32P]NAD and cholera toxin results in the labeling of only a few cell proteins of which tubulin is one of the major substrates.  相似文献   

3.
Physarum myxamoebae can be reversibly induced to become flagellates. Physarum flagellates contain a new form of tubulin, alpha 3, that is not found in nonflagellated cells. Evidence is presented that suggests that alpha 3 tubulin arises through posttranslational modification of a preexisting alpha tubulin. Pulse-chase experiments showed that labeled alpha 3 tubulin could be detected when flagellates formed after a chase. RNA was isolated from myxamoebae at different times after induction of flagellum formation. When this RNA was translated in vitro, the resulting products contained no alpha 3 tubulin, also consistent with alpha 3 being made by posttranslational modification. Levels of alpha and beta tubulin RNA increased with the proportion of flagellates in the culture. These elevated tubulin RNA levels declined after the number of flagellates in the population achieved plateau values.  相似文献   

4.
A comparative analysis of the distribution of tubulin types in apyrene and eupyrene sperm of Euptoieta hegesia butterflies was carried out, also verifying the presence of tubulin in lacinate appendages of the eupyrene sperm. Ultrathin sections of LR White embedded spermatids and spermatozoa were labeled for alpha, beta, gamma, alpha-acetylated and alpha-tyrosinated tubulins. Apyrene and eupyrene spermatids show the same antibody recognition pattern for tubulins. All tubulin types were detected in axonemal microtubules. Alpha and gamma tubulins were also detected on the cytoplasmic microtubules. However, for beta and tyrosinated tubulins only scattered labeling was detected on cytoplasmic microtubules and acetylated tubulin was not detected. In apyrene and eupyrene spermatozoa only the axoneme labeling was analyzed since cytoplasmic microtubules no longer exist in these cells. Alpha, beta and tyrosinated tubulins were easily detected on the apyrene and eupyrene axoneme; gamma tubulin was strongly marked on eupyrene axonemes but was scattered on the apyrene ones. Acetylated tubulin appeared with scattered labeling on the axoneme of both sperm types. Our results demonstrate significant differences in tubulin distribution in apyrene and eupyrene axonemal and cytoplasmic microtubules. Extracellular structures, especially the lacinate appendages, were not labeled by antibodies for any tubulin.  相似文献   

5.
G(s)alpha, G(i)alpha(1), and G(q)alpha subunits bind tubulin with high affinity, whereas transducin (G(t)alpha) does not. The interaction between tubulin and Galpha, which also involves the direct transfer of GTP from tubulin to Galpha (transactivation), is not yet fully understood. This study, using chimeras of G(i)alpha and G(t)alpha, showed that the G(i)alpha (215-295) segment converted G(t)alpha to bind to tubulin and this chimera (chimera 1) could be transactivated by tubulin. Insertion of G(t)alpha (237-270) into chimera 1 to form chimera 2 resulted in a protein that, like G(t)alpha, did not bind tubulin. Thus, it was thought that the G(i)alpha (237-270) domain was essential to modulate the binding of G(i)alpha(1) to tubulin. Surprisingly, when domain (237-270) of G(i)alpha was replaced by G(t)alpha (237-270) to form chimera 3, the chimera bound to tubulin with a similar affinity (K(D) congruent with 120 nm) as wild-type G(i)alpha(1). However, even though chimera 3 displayed normal GTP binding, it was not transactivated by GTP-tubulin. Furthermore, when these chimeras were expressed in COS-1 cells, cellular processes in cells overexpressing G(i)alpha(1) or chimera 1 were more abundant and longer than those in native cells. Galpha was seen throughout the length of the process. Morphology of cells expressing chimera 2 was identical to controls. Consistent with the role of Chimera 3 as a "dominant negative" Galpha, cells transfected with chimera 3 had only few truncated processes. This study demonstrates that although G(i)alpha (237-270) is not obligatory for the binding of G(i)alpha to tubulin, it is crucial for the transactivation of Galpha by tubulin. These results also suggest that the transactivation of Galpha by tubulin may play an important role in modulating microtubule organization and cell morphology.  相似文献   

6.
Tubulin heterogeneity in the trypanosome Crithidia fasciculata.   总被引:11,自引:2,他引:9  
The interphase cell of Crithidia fasciculata has three discrete tubulin populations: the subpellicular microtubules, the axonemal microtubules, and the nonpolymerized cytoplasmic pool protein. These three tubulin populations were independently and selectively purified, yielding, in each case, microtubule protein capable of self-assembly. All three preparations polymerized to form ribbons and sheets rather than the more usual microtubular structures. Analyses of the tubulin by two-dimensional polyacrylamide gel electrophoresis, isoelectric focusing, and peptide mapping indicated that the beta-tubulin complex remained constant regardless of source but that some heterogeneity was present in the alpha subunit. Cytoplasmic pool alpha tubulins (alpha 1/alpha 2) were the only alpha isotypes in the cytoplasm and also formed most of the alpha tubulin species in the pellicular fraction. Flagellar alpha tubulin (alpha 3) was the sole alpha isotype in the flagella; it appeared in small amounts in the pellicular fraction but was completely absent from the cytoplasm. In vitro translation products from polyadenylated RNA from C. fasciculata were also examined by two-dimensional polyacrylamide gel electrophoresis and possessed a protein corresponding to alpha 1/alpha 2 tubulin but lacked any alpha 3 tubulin. The alpha 3 polypeptide arose from a post-translational modification of a precursor polypeptide not identifiable by two-dimensional polyacrylamide gel electrophoresis as alpha 3. Peptide mapping data indicated that cytoplasmic alpha tubulin is the most likely precursor. These results demonstrate alpha-tubulin heterogeneity in this organism and also how close the relationship between flagellar and cytoskeletal tubulins can be among lower eucaryotes.  相似文献   

7.
In the flagellum of mammalian spermatozoa, glutamylated and glycylated tubulin isoforms are detected according to longitudinal gradients and preferentially in axonemal doublets 1-5-6 and 3-8, respectively. This suggested a role for these tubulin isoforms in the regulation of flagellar beating. In the present work, using antibodies directed against various tubulin isoforms and quantitative immunogold analysis, we aimed at investigating whether the particular accessibility of tubulin isoforms in the mammalian sperm flagellum is restricted to this model of axoneme surrounded with periaxonemal structures or is also displayed in naked axonemes. In rodent lung ciliated cells, all studied tubulin isoforms are uniformly distributed in all axonemal microtubules with a unique deficiency of glutamylated tubulin in the transitional region. A similar distribution of tubulin isoforms is observed in cilia of Paramecium, except for a decreasing gradient of glutamylated tubulin labeling in the proximal part of axonemal microtubules. In the sea urchin sperm flagellum, predominant labeling of tyrosinated and detyrosinated tubulin in 1-5-6 and 3-8 doublets, respectively, were observed together with decreasing proximo-distal gradients of glutamylated and polyglycylated tubulin labeling and an increasing gradient of monoglycylated tubulin labeling. In flagella of Chlamydomonas, the glutamylated and glycylated tubulin isoforms are detected at low levels. Our results show a specific composition and organization of tubulin isoforms in different models of cilia and flagella, suggesting various models of functional organization and beating regulation of the axoneme.  相似文献   

8.
A photoactive, radioactive analogue of vinblastine, N-(p-azido[3,5-3H]benzoyl)-N'-(beta-amino-ethyl)vindesine ([ 3H]NABV), was used to localize the Vinca alkaloid binding site(s) on calf brain tubulin after establishing that its in vitro interactions with tubulin were comparable to those of vinblastine. Microtubule assembly was inhibited by 50% with 2 microM NABV or vinblastine. At higher drug concentrations, NABV and vinblastine both induced tubulin aggregation, and both drugs inhibited tubulin-dependent GTP hydrolysis. Vinblastine and NABV inhibited each other's binding to tubulin, but the binding of neither drug was inhibited by colchicine. Two classes of binding sites for NABV and vinblastine were found on calf brain tubulin. High-affinity sites had apparent KD values of 4.2 and 0.54 microM for NABV and vinblastine, respectively, whereas the low-affinity binding sites showed apparent KD values of 26 and 14 microM for NABV and vinblastine, respectively. Mixtures of tubulin and [3H]NABV were irradiated at 302 nm and analyzed for incorporation of radioactivity into protein. Photolabeling of both the alpha- and beta-subunits of tubulin with increasing concentrations of [3H]NABV exhibited a biphasic pattern characteristic of specific and nonspecific reactions. Nonspecific labeling was determined in the presence of excess vinblastine. Saturable specific covalent incorporation into both subunits of tubulin was observed, with an alpha:beta ratio of 3:2 and maximum saturable incorporation of 0.086 and 0.056 mol of [3H]NABV/mol of alpha-tubulin and beta-tubulin, respectively. Such photolabeling of the tubulin subunits will permit precise localization of Vinca alkaloid binding sites, including identification of the amino acid residues involved, an essential requirement for understanding the interactions of these drugs with tubulin.  相似文献   

9.
Direct photoaffinity labeling of tubulin with guanosine 5'-triphosphate   总被引:6,自引:0,他引:6  
J P Nath  G R Eagle  R H Himes 《Biochemistry》1985,24(6):1555-1560
Irradiation of tubulin in the presence of [3H]GTP or [3H]GDP at 254 nm led to the covalent incorporation of nucleotide into the protein. The specific nature of the labeling was shown in the following manner: with tubulin depleted of exchangeable nucleotide, the amount of labeling increased to a plateau value as the [3H]GTP concentration was increased, with saturation being reached at a ratio of approximately 1.5; the same amount of labeling was obtained with GTP/tubulin ratios of 1 and 100; [3H]GMP was not incorporated into the dimer, nor did GMP inhibit the incorporation of [3H]GTP; [3H]ATP was not incorporated; [3H]GTP incorporation did not occur into denatured tubulin or into serum albumin. When [alpha-32P]GTP was used in the irradiation experiments, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the carboxymethylated protein demonstrated that the incorporated label was associated with the beta subunit. The radiation treatment did cause changes in the tubulin molecule resulting in a decrease in assembly competence and in sulfhydryl groups, but these effects were minimized when a large excess of GTP was present during irradiation. Labeling of tubulin in the assembled state was much less than that observed in the free state.  相似文献   

10.
Tubulin, the major structural component of the microtubules, participates actively in mitotic spindle formation and chromosomal organization during cell division. Tubulin is the major target for a variety of anti-mitotic drugs. Some of the drugs, such as Vinca alkaloids and taxol, are routinely used for cancer chemotherapy. It is unfortunate that our knowledge of the binding sites on tubulin of these drugs is limited because of lack of a useful and appropriate tool. The photoaffinity labeling approach is the major technique available at present to detect the binding sites of drugs on tubulin. This method, however, has several limitations. First, only part of the binding site can be identified, namely, the residues which react with the photoaffinity label. Second, there are regions of tubulin which are not at the binding site but are affected by the binding of the drug; these regions can not be detected by the photoaffinity labeling approach. The third, and perhaps most serious, limitation is that the traditional approach can detect areas which have nothing to do with the binding of the ligand but which are within a certain distance of the binding site, that distance being less than the length of the photoreactive moiety attached to the ligand. There has been a great deal of controversy on the localization of the binding site of colchicine on tubulin, with some reports suggesting that the binding site is on alpha and some supporting a binding site on beta. Colchicine also has significant effects on tubulin conformation, but the regions which are affected have not been identified. We have attempted here to address these questions by a novel "footprinting" method by which the drug-binding sites and as well as the domain of tubulin affected by drug-induced conformational changes could be determined. Here, we report for the first time that the interaction of the B-ring of colchicine with the alpha-subunit affects a domain of tubulin which appears to be far from its binding site. This domain includes the cysteine residues at positions 295, 305, 315 and 316 on alpha-tubulin; these residues are located well away from the alpha/beta interface where colchicine appears to bind. This is correlated with the stabilizing effect of colchicine on the tubulin molecule. Furthermore, we also found that the B-ring of colchicine plays a major role in the stability of tubulin while the A and the C-rings have little effect on it. Our results therefore, support a model whereby colchicine binds at the alpha/beta interface of tubulin with the B-ring on the alpha-subunit and the A and the C-rings on the beta-subunit.  相似文献   

11.
When ciliogenesis first occurs in sea urchin embryos, the major building block proteins, tubulin and dynein, exist in substantial pools, but most 9+2 architectural proteins must be synthesized de novo. Pulse-chase labeling with [3H]leucine demonstrates that these proteins are coordinately up-regulated in response to deciliation so that regeneration ensues and the tubulin and dynein pools are replenished. Protein labeling and incorporation into already-assembled cilia is high, indicating constitutive ciliary gene expression and steady-state turnover. To determine whether either the synthesis of tubulin or the size of its available pool is coupled to the synthesis or turnover of the other 9+2 proteins in some feedback manner, fully-ciliated mid- or late-gastrula stage Strongylocentrotus droebachiensis embryos were pulse labeled in the presence of colchicine or taxol at concentrations that block ciliary growth. As a consequence of tubulin autoregulation mediated by increased free tubulin, no labeling of ciliary tubulin occurred in colchicine-treated embryos. However, most other proteins were labeled and incorporated into steady-state cilia at near-control levels in the presence of colchicine or taxol. With taxol, tubulin was labeled as well. An axoneme-associated 78 kDa cognate of the molecular chaperone HSP70 correlated with length during regeneration; neither colchicine nor taxol influenced the association of this protein in steady-state cilia. These data indicate that 1) ciliary protein synthesis and turnover is independent of tubulin synthesis or tubulin pool size; 2) steady-state incorporation of labeled proteins cannot be due to formation or elongation of cilia; 3) substantial tubulin exchange takes place in fully-motile cilia; and 4) chaperone presence and association in steady-state cilia is independent of background ciliogenesis, tubulin synthesis, and tubulin assembly state.  相似文献   

12.
Polyglutamylation, a new posttranslational modification of tubulin identified originally on the acidic alpha variants by Eddé et al. (Eddé, B., Rossier, J., Le Caer, J. P., Desbruyeres, E., Gros, F., and Denoulet, P. (1990) Science 247, 83-85), consists of the successive addition of glutamyl units to the Glu445. To characterize their linkage mode mouse tubulin was posttranslationally labeled with [3H]glutamate. After digestion of [3H]tubulin with thermolysin, up to eight radioactive peaks were separated on an anion exchange column (DEAE). Combined use of Edman degradation sequencing and mass spectrometry analysis of the first 6 one indicated that they all correspond to the same COOH-terminal sequence 440VEGEGEEEGEE450 bearing one to six glutamyl units on the Glu445. The first glutamyl residue is amide-linked to the gamma-carboxyl group of Glu445, but the additional residues can be linked to the gamma- or alpha-carboxyl groups of the preceding one. All possible linkages for the biglutamylated tubulin peptides (gamma 1 alpha 2, gamma 1 gamma 2) and triglutamylated (gamma 1 alpha 2 alpha 3, gamma 1 alpha 2 gamma 3, gamma 1 alpha 2 gamma 2, gamma 1 gamma 2 alpha 3, gamma 1 gamma 2 gamma 3) were synthesized. These different peptides were successfully separated on a C18 5-micron reverse phase column. We found that the bi- and triglutamylated tubulin peptides behave as the gamma 1 alpha 2 and gamma 1 alpha 2 alpha 3 synthetic peptides, respectively. These results indicate that the second and third glutamyl residues of the polyglutamyl side chain are amide-linked to the alpha-carboxyl group of the preceding unit.  相似文献   

13.
Phosphoproteins of the stathmin family interact with the alphabeta tubulin heterodimer (tubulin) and hence interfere with microtubule dynamics. The structure of the complex of GDP-tubulin with the stathmin-like domain of the neural protein RB3 reveals a head-to-tail assembly of two tubulins with a 91-residue RB3 alpha helix in which each copy of an internal duplicated sequence interacts with a different tubulin. As a result of the relative orientations adopted by tubulins and by their alpha and beta subunits, the tubulin:RB3 complex forms a curved structure. The RB3 helix thus most likely prevents incorporation of tubulin into microtubules by holding it in an assembly with a curvature very similar to that of the depolymerization products of microtubules.  相似文献   

14.
Connexin 43 (Cx43) is a predominant gap junction (GJ) protein expressed by alveolar epithelial cells (AEC) in primary cell culture. Cx43 trafficking, assembly, and turnover are regulated by multiple mechanisms, including those mediated by integrins, by extracellular matrix, and by the cytoskeleton. Immunocytochemical double labeling demonstrates association of microtubules with internalization of Cx43-positive GJ plaques. Antibodies against the alpha 5-integrin subunit block cell-matrix interactions without effect on tubulin expression, whereas inhibition of MAP kinase kinase by PD-98059 reduces tubulin expression, based on both Western blot and immunostaining. To examine direct association of microtubules (MT) with GJ plaques, we treated day 3 AEC for 0.5-24 h with colchicine, an inhibitor of tubulin polymerization. After 60 min, MTs were disassembled, whereas Western blot analysis showed no change in tubulin expression. In parallel, colchicine initiated redistribution of immunopositive Cx43 from the membrane to the cytosol. These observations support the premise that direct association of the cytoskeleton with gap junctions plays a significant role in regulation of Cx43 expression and distribution through integrin-mediated signal transduction pathways.  相似文献   

15.
Localization of the ATP binding site on alpha-tubulin   总被引:2,自引:0,他引:2  
The binding site for ATP to tubulin was established by use of the photoaffinity label [gamma-32P]N3ATP. Photolysis of the analog in the presence of tubulin resulted in covalent modification of the protein as revealed by autoradiography of electropherograms. Scanning the autoradiograms showed that the ATP analog was bound mainly to the alpha subunit of the tubulin dimer; the alpha subunit was two to three times more radioactive than was the beta subunit. The location of a particular site on the alpha subunit was further defined by peptide maps. The alpha and beta subunits from affinity-labeled tubulin were separated and digested with Staphylococcus protease. Radioactivity was found predominantly in one peptide band from the alpha subunit. The location of the [gamma-32P]N3ATP binding site on the alpha subunit distinguishes it from the previously known exchangeable GTP binding site which is on the beta subunit. Moreover, excess GTP did not compete with [gamma-32P]N3ATP binding. The ATP binding site is distinct from the nonexchangeable GTP binding site. The GTP content of tubulin was the same after dialysis in 0.5 mM ATP as it was following dialysis against ATP-free buffer. Proof that the binding site for [gamma-32P]N3ATP is the same as that for ATP was obtained by competition experiments. In the presence of ATP, photolysis of the affinity analog did not label the alpha subunit preferentially.  相似文献   

16.
Tubulin degradation in isolated Zinnia mesophyll cells in culturewas investigated by pulse-chase labeling with [35S]-methionineand two-dimensional electrophoresis. Tubulin degradation changesdynamically during culture. Almost no tubulin degradation occursin the cells on the first day in culture. Treatment of thesecells with colchicine activates the degradation of tubulin,but not of proteins other than tubulin. In the presence of colchicine,the and ß-subunits of tubulin are degraded togetherand the half life of each subunit is approximately 6 h. After2 d in culture, there is active degradation of tubulin evenin the absence of colchicine. Colchicine did not inhibit new synthesis of tubulin in Zinniacells. This is very different from the results reported in culturedmammalian cells, whereby unpolymerized tubulin elevated by colchicine-treatmentdepresses its own synthesis. These and previous results dealing with changes in the leveland synthesis of tubulin in cultured Zinnia cells (Fukuda 1987),are discussed in relation to the regulation of tubulin metabolismin cultured Zinnia cells. 1Present address: Biological Institute, Faculty of Science,Tohoku University, Aoba-yama, Sendai, 980 Japan. (Received September 5, 1988; Accepted December 20, 1988)  相似文献   

17.
Summary. No systematic approach to detect expression of differentiation-related elements was published so far. The undifferentiated N1E-115 neuroblastoma cell line was switched into a neuronal phenotype by DMSO treatment and used for proteomic experiments. We used two-dimensional gel electrophoresis followed by unambiguous mass spectrometrical identification of proteins to generate a map of cytoskeleton proteins (CPs), i.e., to search for differentiation-related structures. Alpha-actin, actin-like protein 6A, gamma-tubulin complex component 2, tubulin alpha 3/alpha 7, CLIP associating protein 2, B4 integrin interactor homolog were detectable in the undifferentiated cell line exclusively and neuron-specific CPs drebrin and presynaptic density protein 95, actin-related protein 2/3, alpha and beta-centractin, PDZ-domain actin binding protein, actinin alpha 1, profilin II, ezrin, coactosin-like protein, transgelin 2, myosin light polypeptide 6, tubulin alpha 2, 6 and 7, beta tubulin (94% similar with tubulin beta-2), tubulin beta 3, tubulin tyrosine ligase-like protein 1, lamin B1 and keratin 20 were observed in the differentiated cell line only. We herein identified differentiation-related expressional patterns thus providing new evidence for the role of CPs in the process of neuronal differentiation.  相似文献   

18.
采用透射电镜技术和免疫荧光标记技术对水蕨精子发生的超微结构以及中心体蛋白和微管蛋白在精子发生过程中的动态表达进行了观察。研究发现:(1)生毛体分化早期周围有放射状微管分布,这与线粒体向生毛体的聚集有关。(2)免疫荧光观察表明,中心体蛋白仅定位于生毛体、基体和鞭毛带上,自生毛体至基体阶段呈现明亮的荧光标记,在核塑形、鞭毛形成至精子成熟阶段,中心体蛋白荧光标记随着鞭毛的发生而逐渐减弱,至游动精子阶段中心体蛋白荧光标记信号几乎消失。(3)微管蛋白早期荧光标记与中心体蛋白标记形相同,在生毛体、鞭毛带、基体等运动细胞器上呈现明亮荧光标记,但微管蛋白随着鞭毛的发生其荧光标记越来越强。从二者的时空表达特征可以推断,中心体蛋白主要是运动细胞器的组织者,而非这些运动细胞器的结构成分,其功能是参与或负责中心粒、基体和鞭毛的发生。  相似文献   

19.
PC12 pheochromocytoma cells incorporate [(3)H]palmitic acid into tubulin in a time- and cell-density-dependent manner. The plasma membrane-enriched fraction contains most of the radioactivity of the membrane pellet. While palmitoylated tubulin is found in both the cytoplasm and particulate fraction, the bulk of [(3)H]palmitic acid bound to tubulin is present in the crude membrane pellet and the tubulin extracted from the plasma membrane is more heavily palmitoylated than that extracted from endoplasmic reticulum. Detergent-extracted tubulin from plasma membrane is, to a large extent, polymerization competent; a substantial fraction, increasing as a function of labeling time, is not hydroxylamine-labile. The requirement for detergent extraction, the accompanying changes in tubulin properties and the present findings of preferential incorporation of labeled tubulin into plasma membranes, make it clear that direct incorporation of tubulin into the plasma membrane can occur.  相似文献   

20.
Of the 20 cysteines of rat brain tubulin, some react rapidly with sulfhydryl reagents, and some react slowly. The fast reacting cysteines cannot be distinguished with [14C]iodoacetamide, N-[(14)C]ethylmaleimide, or IAEDANS ([5-((((2-iodoacetyl)amino)ethyl)amino) naphthalene-1-sulfonic acid]), since modification to mole ratios 1 cysteine/dimer always leads to labeling of 6-7 cysteine residues. These have been identified as Cys-305alpha, Cys-315alpha, Cys-316alpha, Cys-347alpha, Cys-376alpha, Cys-241beta, and Cys-356beta by mass spectroscopy and sequencing. This lack of specificity can be ascribed to reagents that are too reactive; only with the relatively inactive chloroacetamide could we identify Cys-347alpha as the most reactive cysteine of tubulin. Using the 3.5-A electron diffraction structure, it could be shown that the reactive cysteines were within 6.5 A of positively charged arginines and lysines or the positive edges of aromatic rings, presumably promoting dissociation of the thiol to the thiolate anion. By the same reasoning the inactivity of a number of less reactive cysteines could be ascribed to inhibition of modification by negatively charged local environments, even with some surface-exposed cysteines. We conclude that the local electrostatic environment of cysteine is an important, although not necessarily the only, determinant of its reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号