首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N. Zhang  J. Zhang  Y. Cheng    K. Howard 《Genetics》1996,143(3):1231-1241
We describe a novel genetic locus, wunen (wun), required for guidance of germ cell migration in early Drosophila development. Loss of wun function does not abolish movement but disrupts the orientation of the motion causing the germ cells to disperse even though their normal target, the somatic gonad, is well formed. We demonstrate that the product of this gene enables a signal to pass from the soma to the germ line and propose that the function of this signal is to selectively stabilize certain cytoplasmic extensions resulting in oriented movement. To characterize this guidance factor, we have mapped wun to within 100 kb of cloned DNA.  相似文献   

2.
3.
In most organisms, primordial germ cells (PGCs) arise far from the region where somatic gonadal precursors (SGPs) are specified. Although PGCs in general originate as a single cluster of cells, the somatic parts of the gonad form on each site of the embryo. Thus, to reach the gonad, PGCs not only migrate from their site of origin but also split into two groups. Taking advantage of high-resolution real-time imaging, we show that in Drosophila melanogaster PGCs are polarized and migrate directionally toward the SGPs, avoiding the midline. Unexpectedly, neither PGC attractants synthesized in the SGPs nor known midline repellents for axon guidance were required to sort PGCs bilaterally. Repellent activity provided by wunen (wun) and wunen-2 (wun-2) expressed in the central nervous system, however, is essential in this migration process and controls PGC survival. Our results suggest that expression of wun/wun-2 repellents along the migratory paths provides faithful control over the sorting of PGCs into two gonads and eliminates PGCs left in the middle of the embryo.  相似文献   

4.
5.
In many animals, primordial germ cells (PGCs) migrate through the embryo towards the future gonad, a process guided by attractive and repulsive cues provided from surrounding somatic cells. In Drosophila, the two related lipid phosphate phosphatases (LPPs), Wunen (Wun) and Wun2, are thought to degrade extracellular substrates and to act redundantly in somatic cells to provide a repulsive environment to steer the migration of PGCs, or pole cells. Wun and Wun2 also affect the viability of pole cells, because overexpression of either one in somatic cells causes pole cell death. However, the means by which they regulate pole cell migration and survival remains elusive. We report that Wun2 has a maternal function required for the survival of pole cells during their migration to the gonad. Maternal wun2 RNA was found to be concentrated in pole cells and pole cell-specific expression of wun2 rescued the pole cell death phenotype of the maternal wun2 mutant, suggesting that wun2 activity in pole cells is required for their survival. Furthermore, we obtained genetic evidence that pole cell survival requires a proper balance of LPP activity in pole cells and somatic cells. We propose that Wun2 in pole cells competes with somatic Wun and Wun2 for a common lipid phosphate substrate, which is required by pole cells to produce their survival signal. In somatic cells, Wun and Wun2 may provide a repulsive environment for pole cell migration by depleting this extracellular substrate.  相似文献   

6.
7.
In many species, the germ cells, precursors of sperm and egg, migrate during embryogenesis. The signals that regulate this migration are thus essential for fertility. In flies, lipid signals have been shown to affect germ cell guidance. In particular, the synthesis of geranylgeranyl pyrophosphate through the 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (Hmgcr) pathway is critical for attracting germ cells to their target tissue. In a genetic analysis of signaling pathways known to affect cell migration of other migratory cells, we failed to find a role for the Hedgehog (Hh) pathway in germ cell migration. However, previous reports had implicated Hh as a germ cell attractant in flies and suggested that Hh signaling is enhanced through the action of the Hmgcr pathway. We therefore repeated several critical experiments and carried out further experiments to test specifically whether Hh is a germ cell attractant in flies. In contrast to previously reported findings and consistent with findings in zebrafish our data do not support the notion that Hh has a direct role in the guidance of migrating germ cells in flies.  相似文献   

8.
In addition to its role in somatic cell development in the testis, our data have revealed a role for Fgf9 in XY germ cell survival. In Fgf9-null mice, germ cells in the XY gonad decline in numbers after 11.5 days post coitum (dpc), while germ cell numbers in XX gonads are unaffected. We present evidence that germ cells resident in the XY gonad become dependent on FGF9 signaling between 10.5 dpc and 11.5 dpc, and that FGF9 directly promotes XY gonocyte survival after 11.5 dpc, independently from Sertoli cell differentiation. Furthermore, XY Fgf9-null gonads undergo true male-to-female sex reversal as they initiate but fail to maintain the male pathway and subsequently express markers of ovarian differentiation (Fst and Bmp2). By 14.5 dpc, these gonads contain germ cells that enter meiosis synchronously with ovarian gonocytes. FGF9 is necessary for 11.5 dpc XY gonocyte survival and is the earliest reported factor with a sex-specific role in regulating germ cell survival.  相似文献   

9.
Primordial germ cells are an embryonic cell line that give rise to gametes in vertebrates. They originate outside the embryo proper and migrate by a well-defined route to the genital ridges. Proteoglycans and glycosaminoglycans have distinctive properties that affect many of the characteristics of the extracellular microenvironment of migratory pathways in a variety of developmental systems. The purpose of this work was to identify the proteoglycans and glycosaminoglycans that are spatially and temporally expressed in the migratory pathway of primordial germ cells. We showed that the expression of proteoglycans and glycosaminoglycans in the primordial germ cells migratory pathway changes according to the different phases of the migratory process. Some molecules such as chondroitin-0-sulfate, decorin, and biglycan are present only in certain phases of the migratory process of primordial germ cells. Heparan sulfate, chondroitin-6-sulfate, versican, perlecan, and syndecan-4, although exhibiting some variation in expression were detected during all phases of the migratory process. Our results indicate that the successive steps of primordial germ cell migration require a coordinated expression of proteoglycans and glycosaminoglycans, that should be present in appropriate levels and in specific areas of the embryo, and that the sequential expression of these extracellular matrix molecules is under a genetic program that appears to be common to a variety of cell types during embryonic development.  相似文献   

10.
Gu Y  Runyan C  Shoemaker A  Surani MA  Wylie C 《PloS one》2011,6(10):e25984
Steel factor, the protein product of the Steel locus in the mouse, is a multifunctional signal for the primordial germ cell population. We have shown previously that its expression accompanies the germ cells during migration to the gonads, forming a "travelling niche" that controls their survival, motility, and proliferation. Here we show that these functions are distributed between the alternatively spliced membrane-bound and soluble forms of Steel factor. The germ cells normally migrate as individuals from E7.5 to E11.5, when they aggregate together in the embryonic gonads. Movie analysis of Steel-dickie mutant embryos, which make only the soluble form, at E7.5, showed that the germ cells fail to migrate normally, and undergo "premature aggregation" in the base of the allantois. Survival and directionality of movement is not affected. Addition of excess soluble Steel factor to Steel-dickie embryos rescued germ cell motility, and addition of Steel factor to germ cells in vitro showed that a fourfold higher dose was required to increase motility, compared to survival. These data show that soluble Steel factor is sufficient for germ cell survival, and suggest that the membrane-bound form provides a higher local concentration of Steel factor that controls the balance between germ cell motility and aggregation. This hypothesis was tested by addition of excess soluble Steel factor to slice cultures of E11.5 embryos, when migration usually ceases, and the germ cells aggregate. This reversed the aggregation process, and caused increased motility of the germ cells. We conclude that the two forms of Steel factor control different aspects of germ cell behavior, and that membrane-bound Steel factor controls germ cell motility within a "motility niche" that moves through the embryo with the germ cells. Escape from this niche causes cessation of motility and death by apoptosis of the ectopic germ cells.  相似文献   

11.
In mouse embryos, germ cells arise during gastrulation and migrate to the early gonad. First, they emerge from the primitive streak into the region of the endoderm that forms the hindgut. Later in development, a second phase of migration takes place in which they migrate out of the gut to the genital ridges. There, they co-assemble with somatic cells to form the gonad. In vitro studies in the mouse, and genetic studies in other organisms, suggest that at least part of this process is in response to secreted signals from other tissues. Recent genetic evidence in zebrafish has shown that the interaction between stromal cell-derived factor 1 (SDF1) and its G-protein-coupled receptor CXCR4, already known to control many types of normal and pathological cell migrations, is also required for the normal migration of primordial germ cells. We show that in the mouse, germ cell migration and survival requires the SDF1/CXCR4 interaction. First, migrating germ cells express CXCR4, whilst the body wall mesenchyme and genital ridges express the ligand SDF1. Second, the addition of exogenous SDF1 to living embryo cultures causes aberrant germ cell migration from the gut. Third, germ cells in embryos carrying targeted mutations in CXCR4 do not colonize the gonad normally. However, at earlier stages in the hindgut, germ cells are unaffected in CXCR4(-/-) embryos. Germ cell counts at different stages suggest that SDF1/CXCR4 interaction also mediates germ cell survival. These results show that the SDF1/CXCR4 interaction is specifically required for the colonization of the gonads by primordial germ cells, but not for earlier stages in germ cell migration. This demonstrates a high degree of evolutionary conservation of part of the mechanism, but also an area of evolutionary divergence.  相似文献   

12.
Fibroblast growth factor (FGF) signaling is thought to play a role in germ cell behavior. FGF2 has been reported to be a mitogen for primordial germ cells in vitro, whilst combinations of FGF2, steel factor and LIF cause cultured germ cells to transform into permanent lines of pluripotent cells resembling ES cells. However, the actual function of FGF signaling on the migrating germ cells in vivo is unknown. We show, by RT-PCR analysis of cDNA from purified E10.5 germ cells, that germ cells express two FGF receptors: Fgfr1-IIIc and Fgfr2-IIIb. Second, we show that FGF-mediated activation of the MAP kinase pathway occurs in germ cells during their migration, and thus they are potentially direct targets of FGF signaling. Third, we use cultured embryo slices in simple gain-of-function experiments, using FGF ligands, to show that FGF2, a ligand for FGFR1-IIIc, affects motility, whereas FGF7, a ligand for FGFR2-IIIb, affects germ cell numbers. Loss of function, using a specific inhibitor of FGF signaling, causes increased apoptosis and inhibition of cell shape change in the migrating germ cells. Lastly, we confirm in vivo the effects seen in slice cultures in vitro, by examining germ cell positions and numbers in embryos carrying a loss-of-function allele of FGFR2-IIIb. In FGFR2-IIIb(-/-) embryos, germ cell migration is unaffected, but the numbers of germ cells are significantly reduced. These data show that a major role of FGF signaling through FGFR2-IIIb is to control germ cell numbers. The data do not discriminate between direct and indirect effects of FGF signaling on germ cells, and both may be involved.  相似文献   

13.
Phosphatidic acid phosphatases (PAPs) catalyze the conversion of phosphatidic acid to diacylglycerol and inorganic phosphate and have been postulated to function both in lipid biosynthesis and in cellular signal transduction. In Drosophila melanogaster, the Type 2 phosphatidic acid phosphatase protein encoded by the wunen gene, negatively regulates primordial germ cell migration. We recently described the cloning and characterization of the mouse Ppap2c gene, which encodes the Type 2 phosphatidic acid phosphatase Pap2c (Zhang et al., Genomics 63:142-144). To analyze the in vivo role of the Ppap2c gene we constructed a null mutation by gene targeting. Ppap2c(-/-) homozygous mutant mice were viable, fertile, and exhibited no obvious phenotypic defects. These data demonstrate that the Ppap2c gene is not essential for embryonic development or fertility in mice.  相似文献   

14.
Germ cells are essential for the maintenance of a species, and in most organisms a specific germ cell lineage is established early during embryogenesis. In flies, worms and frogs a morphologically distinct germ plasm assembles in the egg and signals present in this cytoplasm are necessary for the establishment of the germ cell fate. Although the molecular nature of the germ cell signal remains unknown, genes involved in the process of germ cell determination, proliferation and survival have recently been identified.  相似文献   

15.
Despite significant progress in identifying the guidance pathways that control cell migration, how a cell starts to move within an intact organism, acquires motility, and loses contact with its neighbors is poorly understood. We show that activation of the G protein–coupled receptor (GPCR) trapped in endoderm 1 (Tre1) directs the redistribution of the G protein Gβ as well as adherens junction proteins and Rho guanosine triphosphatase from the cell periphery to the lagging tail of germ cells at the onset of Drosophila melanogaster germ cell migration. Subsequently, Tre1 activity triggers germ cell dispersal and orients them toward the midgut for directed transepithelial migration. A transition toward invasive migration is also a prerequisite for metastasis formation, which often correlates with down-regulation of adhesion proteins. We show that uniform down-regulation of E-cadherin causes germ cell dispersal but is not sufficient for transepithelial migration in the absence of Tre1. Our findings therefore suggest a new mechanism for GPCR function that links cell polarity, modulation of cell adhesion, and invasion.  相似文献   

16.
In the mouse embryo, significant numbers of primordial germ cells (PGCs) fail to migrate correctly to the genital ridges early in organogenesis. These usually die in ectopic locations. In humans, 50% of pediatric germ line tumors arise outside the gonads, and these are thought to arise from PGCs that fail to die in ectopic locations. We show that the pro-apoptotic gene Bax, previously shown to be required for germ cell death during later stages of their differentiation in the gonads, is also expressed during germ cell migration, and is required for the normal death of germ cells left in ectopic locations during and after germ cell migration. In addition, we show that Bax is downstream of the known cell survival signaling interaction mediated by the Steel factor/Kit ligand/receptor interaction. Together, these observations identify the major mechanism that removes ectopic germ cells from the embryo at early stages.  相似文献   

17.
In this work, we describe a single piggyBac transposon system containing both a tet-activator and a doxycycline-inducible expression cassette. We demonstrate that a gene product can be conditionally expressed from the integrated transposon and a second gene can be simultaneously targeted by a short hairpin RNA contained within the transposon, both in vivo and in mammalian and avian cell lines. We applied this system to stably modify chicken primordial germ cell (PGC) lines in vitro and induce a reporter gene at specific developmental stages after injection of the transposon-modified germ cells into chicken embryos. We used this vector to express a constitutively-active AKT molecule during PGC migration to the forming gonad. We found that PGC migration was retarded and cells could not colonise the forming gonad. Correct levels of AKT activation are thus essential for germ cell migration during early embryonic development.  相似文献   

18.
Recent studies demonstrate that the normal progression of the germ cell lineage during gonadogenesis involves a delicate balance of primordial germ cell survival and death factors generated by surrounding somatic cells. This balance operates in a different fashion in females and males. The fine tuning primordial germ cell specification in the wall of the yolk sac, migration through the hindgut and dorsal mesentery, and colonization in the urogenital ridges involves the temporal and spatial activation of the following signaling pathways: Primordial germ cell specification involves bone morphogenetic proteins 2, 4 and 8b, and their migration is facilitated by the c-kit receptor-ligand duet. When colonization occurs: (1) neuregulin-beta ligand is expressed and binds to an ErbB2-ErbB3 receptor tyrosine kinase heterodimer on primordial germ cells; (2) Vasa, an ortholog of the Drosophila gene vasa, member of an ATP-dependent RNA helicase of the DEAD (Asp-Glu-Ala-Asp)-box family protein is also expressed by primordial germ cells; (3) Bcl-x (cell survival factor) and Bax (cell death factor) join forces to modulate the first burst of primordial germ cell apoptosis; (4) Cadherins, integrins, and disintegrins bring together primordial germ cells and somatic cells to organize testis and ovary. Information on other inducers of primordial cell survival, such as TER (teratoma) factor, is beginning to emerge.  相似文献   

19.
20.
Studies of cell migration in Drosophila are yielding insights into the complex interactions migrating cells have with each other and with the cells in their environment. Intriguing links between factors that promote cell migration and those that control cell survival have been reported recently. For example, migrating germ cells compete with the surrounding somatic tissue for the substrate of the lipid phosphate phosphatases encoded by the genes Wunen and Wunen2. Germ cells take up the dephosphorylated lipid and require it for their survival. In addition, the secreted growth factors called PVFs, previously thought to guide the migrations of hemocytes in the embryo, were found to function instead predominantly as survival factors. And in border cells, DIAP1 and Dronc, two proteins known mainly for their ability to regulate cell death, were found to control cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号