共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Atanasov AG Nashev LG Gelman L Legeza B Sack R Portmann R Odermatt A 《Biochimica et biophysica acta》2008,1783(8):1536-1543
Hexose-6-phosphate dehydrogenase (H6PDH) has been shown to stimulate 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-dependent local regeneration of active glucocorticoids. Here, we show that coexpression with H6PDH results in a dramatic shift from 11beta-HSD1 oxidase to reductase activity without affecting the activity of the endoplasmic reticular enzyme 17beta-HSD2. Immunoprecipitation experiments revealed coprecipitation of H6PDH with 11beta-HSD1 but not with the related enzymes 11beta-HSD2 and 17beta-HSD2, suggesting a specific interaction between H6PDH and 11beta-HSD1. The use of the 11beta-HSD1/11beta-HSD2 chimera indicates that the N-terminal 39 residues of 11beta-HSD1 are sufficient for interaction with H6PDH. An important role of the N-terminus was indicated further by the significantly stronger interaction of 11beta-HSD1 mutant Y18-21A with H6PDH compared to wild-type 11beta-HSD1. The protein-protein interaction and the involvement of the N-terminus of 11beta-HSD1 were confirmed by Far-Western blotting. Finally, fluorescence resonance energy transfer (FRET) measurements of HEK-293 cells expressing fluorescently labeled proteins provided evidence for an interaction between 11beta-HSD1 and H6PDH in intact cells. Thus, using three different methods, we provide strong evidence that the functional coupling between 11beta-HSD1 and H6PDH involves a direct physical interaction of the two proteins. 相似文献
3.
Bánhegyi G Benedetti A Fulceri R Senesi S 《The Journal of biological chemistry》2004,279(26):27017-27021
The functional coupling of 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase was investigated in rat liver microsomal vesicles. The activity of both enzymes was latent in intact vesicles, indicating the intraluminal localization of their active sites. Glucose-6-phosphate, a substrate for hexose-6-phosphate dehydrogenase, stimulated the cortisone reductase activity of 11beta-hydroxysteroid dehydrogenase type 1. Inhibition of glucose-6-phosphate uptake by S3483, a specific inhibitor of the microsomal glucose-6-phosphate transporter, decreased this effect. Similarly, cortisone increased the intravesicular accumulation of radioactivity upon the addition of radiolabeled glucose-6-phosphate, indicating the stimulation of hexose-6-phosphate dehydrogenase activity. A correlation was shown between glucose-6-phosphate-dependent cortisone reduction and cortisone-dependent glucose-6-phosphate oxidation. The results demonstrate a close cooperation of the enzymes based on co-localization and the mutual generation of cofactors for each other. 相似文献
4.
S Hundertmark A Dill A Ebert B Zimmermann Y V Kotelevtsev J J Mullins J R Seckl 《Hormones et métabolisme》2002,34(10):545-549
Glucocorticoids (GCs) induce surfactant synthesis in the late foetal lung. Deficient GC action causes respiratory distress syndrome (RDS). 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts inert cortisone (11-dehydrocorticosterone in rodents) into active cortisol (corticosterone), thus amplifying intracellular GC action. Reduction or loss of pulmonary 11beta-HSD1 activity in glycyrrhetinic acid-treated rats substantially impaired foetal lung maturation (Hundertmark et al., Horm Metab Res, this issue). To test these data, we investigated 11beta-HSD1 activity and lung maturity in the late foetal lung using 11beta-HSD1 knockout mice. Control foetal mice showed high 11beta-HSD activity in the late foetal lung and levels of plasma 11-dehydrocorticosterone were high. Lungs from 11beta-HSD1 -/- mice had lower surfactant protein-A (mRNA and protein) levels and significant depletion of lung surfactant according to both light and electron microscopy, and also had reduced amniotic fluid lecithin/sphingomyelin ratios. These results support the previous experiments with glycyrrhetinic acid and emphasize the importance of 11beta-HSD1 in foetal lung maturation. 相似文献
5.
6.
Flyrén K Bergquist LO Castro VM Fotsch C Johansson L St Jean DJ Sutin L Williams M 《Bioorganic & medicinal chemistry letters》2007,17(12):3421-3425
A series of piperidine amide inhibitors of human 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) were identified via modifications of the HTS hit compound 1. The synthesis, in vitro biological evaluation, and structure-activity relationship of these compounds are presented. 相似文献
7.
Vicker N Su X Ganeshapillai D Smith A Purohit A Reed MJ Potter BV 《The Journal of steroid biochemistry and molecular biology》2007,104(3-5):123-129
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates glucocorticoid action at the pre-receptor stage by converting cortisone to cortisol. 11β-HSD1 is selectively expressed in many tissues including the liver and adipose tissue where metabolic events are important. Metabolic syndrome relates to a number of metabolic abnormalities and currently has a prevalence of >20% in adult Americans. 11β-HSD1 inhibitors are being investigated by many major pharmaceutical companies for type 2 diabetes and other abnormalities associated with metabolic syndrome. In this area of intense interest a number of structural types of 11β-HSD1 inhibitor have been identified. It is important to have an array of structural types as the physicochemical properties of the compounds will determine tissue distribution, HPA effects, and ultimately clinical utility. Here we report the discovery and synthesis of three structurally different series of novel 11β-HSD1 inhibitors that inhibit human 11β-HSD1 in the low micromolar range. Docking studies with 1–3 into the crystal structure of human 11β-HSD1 reveal how the molecules may interact with the enzyme and cofactor and give further scope for structure based drug design in the optimisation of these series. 相似文献
8.
Hult M Nobel CS Abrahmsen L Nicoll-Griffith DA Jörnvall H Oppermann UC 《Chemico-biological interactions》2001,(1-3):805-814
The human enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD) catalyzes the reversible oxidoreduction of 11beta-OH/11-oxo groups of glucocorticoid hormones. Besides this important endocrinological property, the type 1 isozyme (11beta-HSD1) mediates reductive phase I reactions of several carbonyl group bearing xenobiotics, including drugs, insecticides and carcinogens. The aim of this study was to explore novel substrate specificities of human 11beta-HSD1, using heterologously expressed protein in the yeast system Pichia pastoris. In addition to established phase I xenobiotic substrates, it is now demonstrated that transformed yeast strains catalyze the reduction of ketoprofen to its hydroxy metabolite, and the oxidation of the prodrug DFU-lactol to the pharmacologically active lactone compound. Purified recombinant 11beta-HSD1 mediated oxidative reactions, however, the labile reductive activity component could not be maintained. In conclusion, evidence is provided that human 11beta-HSD1 in vitro is involved in phase I reactions of anti-inflammatory non-steroidal drugs like ketoprofen and DFU-lactol. 相似文献
9.
Sutin L Andersson S Bergquist L Castro VM Danielsson E James S Henriksson M Johansson L Kaiser C Flyrén K Williams M 《Bioorganic & medicinal chemistry letters》2007,17(17):4837-4840
2,5,5-Trisubstituted oxazolones were identified as potent inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). The synthesis, structure-activity relationship and metabolic stability of these compounds are presented. 相似文献
10.
Olson S Aster SD Brown K Carbin L Graham DW Hermanowski-Vosatka A LeGrand CB Mundt SS Robbins MA Schaeffer JM Slossberg LH Szymonifka MJ Thieringer R Wright SD Balkovec JM 《Bioorganic & medicinal chemistry letters》2005,15(19):4359-4362
Adamantyl triazoles were identified as selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). They are active both in in vitro and in in vivo pharmacodynamic models. The synthesis and structure-activity relationships of these inhibitors are presented. 相似文献
11.
Paulmyer-Lacroix O Boullu-Ciocca S Oliver C Dutour A Grino M 《Médecine sciences : M/S》2003,19(4):473-476
Glucocorticoids are implicated as a pathophysiological mediator of obesity and its accompanying metabolic and cardiovascular complications. Obese patients exhibit normal circulating cortisol levels, related to increased glucocorticoid production and degradation. However, it has been demonstrated that local production of active cortisol from inactive cortisone driven by 11 beta-hydroxysteroid dehydrogenase type 1 is exaggerated in adipose tissue of obese subjects. Such local hypercortisolism may be responsible for increased adipocyte differentiation and enhanced secretion of free fatty acids and other substances involved in the metabolic and cardiovascular complications observed in obesity. 相似文献
12.
Aster SD Graham DW Kharbanda D Patel G Ponpipom M Santorelli GM Szymonifka MJ Mundt SS Shah K Springer MS Thieringer R Hermanowski-Vosatka A Wright SD Xiao J Zokian H Balkovec JM 《Bioorganic & medicinal chemistry letters》2008,18(9):2799-2804
3-Aryl-5-phenyl-(1,2,4)-triazoles were identified as selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). They are active in both in vitro and an in vivo mouse pharmacodynamic (PD) model. The synthesis and structure activity relationships are presented. 相似文献
13.
Hermanowski-Vosatka A Gerhold D Mundt SS Loving VA Lu M Chen Y Elbrecht A Wu M Doebber T Kelly L Milot D Guo Q Wang PR Ippolito M Chao YS Wright SD Thieringer R 《Biochemical and biophysical research communications》2000,279(2):330-336
11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) is an enzyme that converts cortisone to the active glucocorticoid, cortisol. Cortisol-cortisone interconversion plays a key role in the regulation of glucose metabolism, since mice deficient in 11betaHSD1 are resistant to diet-induced hyperglycemia. Peroxisome proliferator activator receptors (PPAR) are key regulators of glucose and lipid homeostasis. We observed a striking downregulation of murine hepatic 11betaHSD1 expression and activity after chronic treatment of wild-type mice with PPARalpha agonists, while 11betaHSD1 in the livers of PPARalpha knockout mice, or in mice treated for only 7 h with PPARalpha agonists, was unaltered. Our results are the first to show PPARalpha agonists can affect glucocorticoid metabolism in the liver by altering 11betaHSD1 expression after chronic treatment. Regulation of active glucocorticoid levels in the liver by PPARalpha agonists may in turn affect glucose metabolism, consistent with reports of their antidiabetic effects. 相似文献
14.
Glucocorticoids are involved in the modulation of the release of parturition hormones from the fetal membranes and placenta, where their actions are determined by the prereceptor glucocorticoid metabolizing enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD). Two distinct isozymes of 11beta-HSD have been characterized. In the fetal membranes, 11beta-HSD1 is the predominate isozyme; it converts biologically inert 11-ketone glucocorticoid metabolites into active glucocorticoids. Sequence analysis of the cloned 11beta-HSD1 gene revealed a putative glucocorticoid response element in the promoter region. However, whether glucocorticoids modulate 11beta-HSD1 expression in the fetal membranes is unknown. In this study, 11beta-HSD1 and glucocorticoid receptor (GR) were coexpressed in the chorionic trophoblast. Radiometric conversion assay and Northern blot analysis revealed that both 11beta-HSD1 reductase activity and mRNA levels were increased by dexamethasone (1 microM, 0.1 microM) in the cultured chorionic trophoblast, and the effects were blocked by GR antagonist RU486 (1 microM). Prior induction of 11beta-HSD1 by dexamethasone potentiated the subsequent stimulation of prostaglandin H synthetase 2 expression and secretion of prostaglandin E(2) by cortisone in the chorionic trophoblast. There is colocalization of 11beta-HSD1 and GR in the chorionic trophoblast. By binding to GR, glucocorticoids induce the expression of 11beta-HSD1 by a possible intracrine mechanism, thereby amplifying the actions of glucocorticoids on prostaglandin production in the fetal membranes. This cascade of events initiated by glucocorticoids may play an important role in the positive feed-forward mechanisms of labor. 相似文献
15.
大鼠海马神经元内11β-HSD1和GR的共存及其意义 总被引:4,自引:0,他引:4
本研究旨在探讨糖皮质激素代谢酶-11β-羟基类固醇脱氢酶Ⅰ型(11β-HSD1)和糖皮质激素受体(GR)在大鼠海马神经元内的共同分布及其意义。用免疫细胞化学方法研究显示,海马神经元内不仅存在11β-HSD1免疫反应物质,还存在GR免疫反应物质,而且11β-HSD1与GR共存于同一个海马神经元内,用Western印迹杂交和薄层层析(TLC)方法研究表明,地塞米松(DEX)可以促进11β-HSD1与GR共存于同一个海马神经元内,用Western印迹杂交和薄层层析(TLG)方法研究表明,地塞米松(DEX)可以促进11β-HSD1蛋白表达及其酶的活性,利用11β-HSD1基因启动子区序列构建的以CAT酶为报告基因的pBLCAT6质粒转染PC12细胞,证实DEX能够促进CAT酶的表达。以上糖皮质激素的作用均可为GR受体阻断剂RU38486所阻断,结果提示;糖皮质激素(GC)与GR结合后,可以作用于与其共存的11β-HSD1基因启动子区,使11β-HSD1表达增加,从而使更多的GC代谢产物转化为有活性的GC,此机制可能与保证GC在海马神经元内与亲和力较低的GR结合有关。 相似文献
16.
Klusonová P Kucka M Ergang P Miksík I Bryndová J Pácha J 《The Journal of steroid biochemistry and molecular biology》2008,111(3-5):217-224
11beta-Hydroxysteroid dehydrogenase type 1 (11HSD1) is an enzyme that interconverts active 11-hydroxy glucocorticoids (cortisol, corticosterone) and their inactive 11-oxo derivatives (cortisone, 11-dehydrocorticosterone). Although bidirectional, it is considered to operate in vivo as an 11-reductase that regenerates active glucocorticoids and thus amplifies their local activity in mammals. Here we report the cloning, characterization and tissue distribution of chicken 11HSD1 (ch11HSD1). Its cDNA predicts a protein of 300 amino acids that share 51-56% sequence identity with known mammalian 11HSD1 proteins, while in contrast to most mammals, ch11HSD1 contains only one N-linked glycosylation site. Analysis of the tissue distribution pattern by RT-PCR revealed that ch11HSD1 is expressed in a large variety of tissues, with high expression in the liver, kidney and intestine, and weak in the gonads, brain and heart. 11-Reductase activity has been found in the liver, kidney, intestine and gonads with low or almost zero activity in the brain and heart. These results provide evidence for a role of 11HSD1 as a tissue-specific regulator of glucocorticoid action in non-mammalian vertebrates and may serve as a suitable model for further analysis of 11HSD1 evolution in vertebrates. 相似文献
17.
18.
Elleby B Svensson S Wu X Stefansson K Nilsson J Hallén D Oppermann U Abrahmsén L 《Biochimica et biophysica acta》2004,1700(2):199-207
11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is an intraluminally oriented, endoplasmic reticulum (ER)-bound enzyme catalyzing the interconversion between inactive cortisone and hormonally active cortisol. Heterologous production of 11beta-HSD1, devoid of its N-terminal transmembrane segment, is possible but yields only small amounts of soluble protein. Here we show that the soluble portion of recombinant 11beta-HSD1 produced in E. coli is found mainly as multimeric aggregates in the absence of detergent, and to a large extent associated with the endogenous chaperonin GroEL and other E. coli proteins. By co-overexpressing GroEL/ES and adding an 11beta-HSD1 inhibitor during protein synthesis, we have increased the accumulation of soluble 11beta-HSD1 by more than one order of magnitude. Using monodispersity as a screening criterion, we have also optimized the purification process by evaluating various solubilizing systems for the chromatographic steps, finally obtaining stable monodisperse preparations of both human and guinea pig 11beta-HSD1. By analytical ultracentrifugation, we could demonstrate that 11beta-HSD1 mainly exists as a dimer in the solubilized state. Moreover, active site titration of human 11beta-HSD1 revealed that at least 75% of the protein in a typical preparation represents active enzyme. Equilibrium unfolding experiments indicate that addition of inhibitor and the cofactor NADP(H) can stabilize the conformational stability of this enzyme in an additive manner. The outlined procedure may provide a general method for preparing similar proteins to oligomeric homogeneity and with retained biological activity. 相似文献
19.
OBJECTIVE: We present the 1st case of prepubertal hyperandrogenism because of a defect in the conversion of cortisone (E) to cortisol (F) by hepatic 11beta-hydroxysteroid dehydrogenase type 1. METHODS AND RESULTS: Clinical and anthropometric data were obtained. Serum androgens and gonadotropins with luteinizing hormone releasing hormone stimulation test, dexamethasone suppression test, and corticotropin-releasing hormone stimulation test were evaluated. Adrenal imaging and urinary steroid profiling by gas chromatography/mass spectrometry were employed. A 6.9-year-old boy presented with precocious pubarche, height (+2.6 SD), accelerated bone age (11.5 years), and Tanner stage 2 pubic hair and genitalia. Serum androgen levels were elevated and dexamethasone suppressible. Serum F was normal, but the E concentration was increased. Central precocious puberty and congenital adrenal hyperplasia were excluded. The excretion of androgen metabolites was moderately increased, but a highly increased tetrahydrocortisone (THE) and a diminished tetrahydrocortisol (THF + allo-THF) excretion was found with a [THF + allo-THF/ THE] ratio of 0.032 (normal controls 1.05 +/- 0.17). The corticotropin-releasing hormone stimulation test showed an exaggerated adrenocorticotropic hormone response, suggesting a relative deficiency of F. Two months of hydrocortisone treatment (17.5 mg daily) failed to suppress androgens adequately. Treatment with dexamethasone (0.375 mg/daily) resulted in androgen suppression. CONCLUSIONS: In the case of precocious pubarche and accelerated growth, the diagnosis of 11beta-hydroxysteroid dehydrogenase type 1 deficiency ('apparent cortisone reductase deficiency') should be considered. The diagnosis is based on determinations of urinary steroid metabolites. 相似文献
20.
Atanasov AG Tam S Röcken JM Baker ME Odermatt A 《Biochemical and biophysical research communications》2003,308(2):257-262
Dithiocarbamates (DTCs), important therapeutic and industrial chemicals released in high quantities into the environment, exhibit complex chemical and biological activities. Here, we demonstrate an effect of DTCs on glucocorticoid action due to inhibition of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) type 2, converting cortisol to cortisone in the kidney, but not 11 beta-HSD1, catalyzing the reverse reaction in liver and adipose tissue. Thus, DTCs may locally increase active glucocorticoid concentrations. Preincubation with the DTC thiram abolished 11 beta-HSD2 activity, suggesting irreversible enzyme inhibition. The sulfhydryl protecting reagent dithiothreitol blocked thiram-induced inhibition and NAD+ partially protected 11 beta-HSD2 activity, indicating that DTCs act at the cofactor-binding site. A 3D-model of 11 beta-HSD2 identified Cys90 in the NAD(+)-binding site as a likely target of DTCs, which was supported by a 99% reduced activity of mutant Cys90 to serine. The interference of DTCs with glucocorticoid-mediated responses suggests a cautious approach in the use of DTCs in therapeutic applications and in exposure to sources of DTCs such as cosmetics and agricultural products by pregnant women and others. 相似文献