首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The surface of the bloodstream form of the African trypanosome, Trypansoma brucei, is covered with about 10(7) molecules of the variant surface glycoprotein (VSG), a protein tethered to the plasma membrane by a glycosyl-phosphatidylinositol (GPI) membrane anchor. This anchor is cleavable by an endogenous GPI-specific phospholipase C (GPI-PLC). GPI-PLC activity is down regulated when trypanosomes differentiate from the bloodstream form to the procyclic form found in the tsetse fly vector. We have mapped the GPI-PLC locus in the trypanosome genome and have examined the mechanism for this developmental regulation in T. brucei. Southern blot analysis indicates a single-copy gene for GPI-PLC, with two allelic variants distinguishable by two NcoI restriction fragment length polymorphisms. The gene was localized solely to a chromosome in the two-megabase compression region by contour-clamped homogeneous electric field gel electrophoresis. No rearrangement of the GPI-PLC gene occurs during differentiation to procyclic forms, which could potentially silence GPI-PLC gene expression. Enzymological studies give no indication of a diffusible inhibitor of GPI-PLC activity in procyclic forms, and Western immunoblot analysis reveals no detectable GPI-PLC polypeptide in these forms. Therefore, it is highly unlikely that the absence of GPI-PLC activity in procyclic forms is due to posttranslational control. Northern (RNA) blot analysis reveals barely detectable levels of GPI-PLC mRNA in procyclic forms; therefore, regulation of GPI-PLC activity in these forms correlates with the steady-state mRNA level.  相似文献   

3.
The Trypanosoma brucei genome encodes three groups of zinc metalloproteases, each of which contains approximately 30% amino acid identity with the major surface protease (MSP, also called GP63) of Leishmania. One of these proteases, TbMSP-B, is encoded by four nearly identical, tandem genes transcribed in both bloodstream and procyclic trypanosomes. Earlier work showed that RNA interference against TbMSP-B prevents release of a recombinant variant surface glycoprotein (VSG) from procyclic trypanosomes. Here, we used gene deletions to show that TbMSP-B and a phospholipase C (GPI-PLC) act in concert to remove native VSG during differentiation of bloodstream trypanosomes to procyclic form. When the four tandem TbMSP-B genes were deleted from both chromosomal alleles, bloodstream B (-/-) trypanosomes could still differentiate to procyclic form, but VSG was removed more slowly and in a non-truncated form compared to differentiation of wild-type organisms. Similarly, when both alleles of the single-copy GPI-PLC gene were deleted, bloodstream PLC (-/-) cells could still differentiate. However, when all the genes for both TbMSP-B and GPI-PLC were deleted from the diploid genome, the bloodstream B (-/-) PLC (-/-) trypanosomes did not proliferate in the differentiation medium, and 60% of the VSG remained on the cell surface. Inhibitors of cysteine proteases did not affect this result. These findings demonstrate that removal of 60% of the VSG during differentiation from bloodstream to procyclic form is due to the synergistic activities of GPI-PLC and TbMSP-B.  相似文献   

4.
In the mammalian host, the cell surface of Trypanosoma brucei is protected by a variant surface glycoprotein that is anchored in the plasma membrane through covalent attachment of the COOH terminus to a glycosylphosphatidylinositol. The trypanosome also contains a phospholipase C (GPI-PLC) that cleaves this anchor and could thus potentially enable the trypanosome to shed the surface coat of VSG. Indeed, release of the surface VSG can be observed within a few minutes on lysis of trypanosomes in vitro. To investigate whether the ability to cleave the membrane anchor of the VSG is an essential function of the enzyme in vivo, a GPI-PLC null mutant trypanosome has been generated by targeted gene deletion. The mutant trypanosomes are fully viable; they can go through an entire life cycle and maintain a persistent infection in mice. Thus the GPI-PLC is not an essential activity and is not necessary for antigenic variation. However, mice infected with the mutant trypanosomes have a reduced parasitemia and survive longer than those infected with control trypanosomes. This phenotype is partially alleviated when the null mutant is modified to express low levels of GPI-PLC.  相似文献   

5.
6.
Morita K  Han M 《The EMBO journal》2006,25(24):5794-5804
The timing of postembryonic developmental programs in Caenorhabditis elegans is regulated by a set of so-called heterochronic genes, including lin-28 that specifies second larval programs. lin-66 mutations described herein cause delays in vulval and seam cell differentiation, indicating a role for lin-66 in timing regulation. A mutation in daf-12/nuclear receptor or alg-1/argonaute dramatically enhances the retarded phenotypes of the lin-66 mutants, and these phenotypes are suppressed by a lin-28 null allele. We further show that the LIN-28 protein level is upregulated in the lin-66 mutants and that this regulation is mediated by the 3'UTR of lin-28. We have also identified a potential daf-12-response element within lin-28 3'UTR and show that two microRNA (miRNA) (lin-4 and let-7)-binding sites mediate redundant inhibitory activities that are likely lin-66-independent. Quantitative PCR data suggest that the lin-28 mRNA level is affected by lin-14 and miRNA regulation, but not by daf-12 and lin-66 regulation. These results suggest that lin-28 expression is regulated by multiple independent mechanisms including LIN-14-mediated upregulation of mRNA level, miRNAs-mediated RNA degradation, LIN-66-mediated translational inhibition and DAF-12-involved translation promotion.  相似文献   

7.
8.
9.
Selenoprotein mRNAs are particular in several aspects. They contain a specific secondary structure in their 3'UTR, called Secis (selenocysteine inserting sequence), which is indispensable for selenocysteine incorporation, and they are degraded under selenium-limiting conditions according to their ranking in the hierarchy of selenoproteins. In the familiy of selenium-dependent glutathione peroxidases (GPx) the ranking is GI-GPx > or = PHGPx > cGPx = pGPx. This phenomenon was studied by mutually combining the coding regions of GI-GPx, PHGPx and cGPx with their 3'UTRs. HepG2 cells were stably transfected with the resulting constructs. Expression of glutathione peroxidases was estimated by activity measurement and Western blotting, the selenium-dependent mRNA stability by real-time PCR. Whereas 3'UTRs from stable PHGPx and GI-GPx could be exchanged without loss of stability, they were not able to stabilize cGPx mRNA. cGPx 3'UTR rendered GI-GPx and PHGPx mRNA unstable. Thus, cGPx mRNA contains selenium-responsive instability elements in both the translated and the untranslated region, which cannot be compensated by one of the stable homologs. Stabilizing efficiency of an individual GPx 3'UTR did not correlate with the efficiency of selenocysteine incorporation. PHGPx 3'UTR was equally effective as cGPx 3'UTR in enhancing GPx activity in all constructs, while GI-GPx 3'UTR showed a markedly lower efficacy. We conclude that different mRNA sequences and/or RNA-binding proteins might regulate mRNA stability and translation of selenoprotein mRNA.  相似文献   

10.
Dysfunction of hepatocyte nuclear factor 4α (HNF4α) has been linked to maturity onset diabetes of the young (MODY1), diabetes type II and possibly to renal cell carcinoma (RCC). Whereas diabetes causing mutations are well known, there are no HNF4A mutations found in RCC. Since so far analyses have been constricted to the promoter and open reading frame of HNF4A, we performed a systematic analysis of the human HNF4A 3'UTR. We identified a short (1724 nt) and long (3180 nt) 3'UTR that are much longer than the open reading frame and conferred a repressive effect in luciferase reporter assays in HEK293 and INS-1 cells. By dissecting the 3'UTR into several pieces, we located two distinct elements of about 400 nt conferring a highly repressive effect. These negative elements A and B are counteracted by a balancer element of 39 nt located within the 5' end of the HNF4A 3'UTR. Dicer knock-down experiments implied that the HNF4A 3'UTR is regulated by miRNAs. More detailed analysis showed that miR-34a and miR-21 both overexpressed in RCC cooperate in downregulation of the HNF4A mRNA. One of the identified miR-34a binding sites is destroyed by SNP rs11574744. The identification of several regulatory elements within the HNF4A 3'UTR justifies the analysis of the 3'UTR sequence to explore the dysfunction of HNF4α in diabetes and RCC.  相似文献   

11.
In Trypanosoma brucei, glycosylphosphatidylinositol phospholipase C (GPI-PLC) is a virulence factor that releases variant surface glycoprotein (VSG) from dying cells. In live cells, GPI-PLC is localised to the plasma membrane where it is concentrated on the flagellar membrane, so activity or access must be tightly regulated as very little VSG is shed. Little is known about regulation except that acylation within a short internal motif containing three cysteines is necessary for GPI-PLC to access VSG in dying cells. Here, GPI-PLC mutants have been analysed both for subcellular localisation and for the ability to release VSG from dying cells. Two sequence determinants necessary for concentration on the flagellar membrane were identified. First, all three cysteines are required for full concentration on the flagellar membrane. Mutants with two cysteines localise predominantly to the plasma membrane but lose some of their flagellar concentration, while mutants with one cysteine are mainly localised to membranes between the nucleus and flagellar pocket. Second, a proline residue close to the C-terminus, and distant from the acylated cysteines, is necessary for concentration on the flagellar membrane. The localisation of GPI-PLC to the plasma but not flagellar membrane is necessary for access to the VSG in dying cells. Cellular structures necessary for concentration on the flagellar membrane were identified by depletion of components. Disruption of the flagellar pocket collar caused loss of concentration whereas detachment of the flagellum from the cell body after disruption of the flagellar attachment zone did not. Thus, targeting to the flagellar membrane requires: a titratable level of acylation, a motif including a proline, and a functional flagellar pocket. These results provide an insight into how the segregation of flagellar membrane proteins from those present in the flagellar pocket and cell body membranes is achieved.  相似文献   

12.
13.
14.
15.
16.
17.
The authors employed a novel approach to identify therapeutics effective in Alzheimer disease (AD). The 5'untranslated region (5'UTR) of the mRNA of AD amyloid precursor protein (APP) is a significant regulator of the levels of the APP holoprotein and amyloid beta (Abeta) peptide in the central nervous system. The authors generated stable neuroblastoma SH-SY5Y transfectants that express luciferase under the translational control of the 146-nucleotide APP mRNA 5'UTR and green fluorescent protein (GFP) driven by a viral internal ribosomal entry site. Using a high-throughput screen (HTS), they screened for the effect of 110,000 compounds obtained from the library of the Laboratory for Drug Discovery on Neurodegeneration (LDDN) on the APP mRNA 5'UTR-controlled translation of the luciferase reporter. This screening yielded several nontoxic specific inhibitors of APP mRNA 5'UTR-driven luciferase that had no effect on the GFP expression in the stable SH-SY5Y transfectants. Moreover, these compounds either did not inhibit or inhibited to a much lower extent the expression of the luciferase reporter regulated by a prion protein (PrP) mRNA 5'UTR, used as an alternative mRNA structure to counterscreen APP mRNA 5'UTR in stably transfected SH-SY5Y cell lines. The hits obtained from this robust, specific, and highly quantitative HTS will be characterized to identify agents that may be developed into useful future therapeutic agents to limit APP translation and Abeta production for AD.  相似文献   

18.
19.
The expression of CD154 (CD40 ligand) by activated T lymphocytes plays a central role in humoral and cellular immunity. The fundamental importance of this protein in mounting an immune response has made it an attractive target for immunomodulation. Several studies have demonstrated that CD154 expression is regulated at the level of mRNA turnover in a manner distinct from other cytokine genes. We have purified, sequenced, and characterized the two major proteins that bind the CD154 3' untranslated region (3'UTR) as members of the polypyrimidine tract binding protein (PTB) family. One of these proteins is a previously unreported alternatively spliced PTB isoform, which we call PTB-T. These proteins interact with a polypyrimidine-rich region within the CD154 3'UTR that lacks any known cis-acting instability elements. The polypyrimidine-rich region of the CD154 3'UTR was both necessary and sufficient to mediate changes in reporter gene expression and mRNA accumulation, indicating the presence of a novel cis-acting instability element. The presence of a cis-acting instability element in the polypyrimidine-rich region was confirmed using a tetracycline-responsive reporter gene approach. The function of this cis-acting element appears to be dependent on the relative cytoplasmic levels of PTB and PTB-T. Cotransfection of vectors encoding PTB-T consistently decreased the CD154 3'UTR-dependent luciferase expression. In contrast, transfection of plasmids encoding PTB tended to increase CD154 3'UTR-dependent luciferase expression. Thus, the CD154 3'UTR contains a novel cis-acting element whose function is determined by the binding of PTB and PTB-T. These data identify a specific pathway that regulates CD154 expression that can potentially be selectively targeted for the treatment of autoimmune disease and allograft rejection.  相似文献   

20.
African trypanosomes (Trypanosoma brucei) are digenetic parasites whose lifecycle alternates between the mammalian bloodstream and the midgut of the tsetse fly vector. In mammals, proliferating long slender parasites transform into non-diving short stumpy forms, which differentiate into procyclic forms when ingested by the tsetse fly. A hallmark of differentiation is the replacement of the bloodstream stage surface coat composed of variant surface glycoprotein (VSG) with a new coat composed of procylin. An undefined endoprotease and endogenous glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) have been implicated in releasing the old VSG coat. However, GPI hydrolysis has been considered unimportant because (i) GPI-PLC null mutants are fully viable and (ii) cytosolic GPI-PLC is localized away from cell surface VSG. Utilizing an in vitro differentiation assay with pleomorphic strains we have investigated these modes of VSG release. Shedding is initially by GPI hydrolysis, which ultimately accounts for a substantial portion of total release. Surface biotinylation assays indicate that GPI-PLC does gain access to extracellular VSG, suggesting that this mode is primed in the starting short stumpy population. Proteolytic release is up-regulated during differentiation and is stereoselectively inhibited by peptidomimetic collagenase inhibitors, implicating a zinc metalloprotease. This protease may be related to TbMSP-B, a trypanosomal homologue of Leishmania major surface protease (MSP) described in the accompanying paper (LaCount, D. J., Gruszynski, A. E., Grandgenett, P. M., Bangs, J. D., and Donelson, J. E. (2003) J. Biol. Chem. 278, 24658-24664). Overall, our results demonstrate that surface coat remodeling during differentiation has multiple mechanisms and that GPI-PLC plays a more significant role in VSG release than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号