首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chondrocyte cell death can contribute to cartilage degeneration in articular diseases, such as osteoarthritis (OA). Sulforaphane (SFN), a natural compound derived from cruciferous aliment, is well known as an anti-carcinogen, but according to recent evidence it also shows cytoprotective effects on a variety of non-tumoral cells. Therefore we have tested the ability of SFN to protect chondrocytes from cell death in vitro. Treatment of growing monolayer cultures of human C-28/I2 chondrocytes with SFN in the low micro-molecular range for a few days, reduced cell growth without affecting cell survival or inducing apoptosis. However it decreased cell death in C-28/I2 chondrocytes exposed to stimuli previously reported to promptly trigger apoptosis, that is, the cytokine tumor necrosis factor-α (TNF) plus cycloheximide (CHX) or the polyamine analogue N(1),N(11)-diethylnorspermine (DENSPM) plus CHX. In particular pre-treatment with SFN reduced effector and initiator caspase activities and the associated activation of JNK kinases. SFN exerted a cytoprotective action even versus H(2)O(2) , which differently from the previous stimuli induced cell death without producing an evident caspase activation. SFN pre-treatment also prevented caspase activation in three-dimensional micromass cultures of OA chondrocytes stimulated with growth-related oncogene α (GROα), a pro-apoptotic chemokine. The suppression of caspase activation in micromasses appeared to be related to the inhibition of p38 MAPK phosphorylation. In conclusion, the present work shows that low micro-molecular SFN concentrations exert pro-survival and anti-apoptotic actions and influence signaling pathways in a variety of experimental conditions employing chondrocyte cell lines and OA chondrocytes treated with a range of death stimuli.  相似文献   

2.
Parathyroid hormone (PTH) and its related peptide regulate endochondral ossification by inhibiting chondrocyte differentiation toward hypertrophy. However, the intracellular pathway for transducing PTH/PTH-related peptide signals in chondrocytes remains unclear. Here, we show that this pathway is mediated by mitogen-activated protein kinase (MAPK) p38. Incubation of hypertrophic chondrocytes with PTH (1-34) induces an inhibition of p38 kinase activity in a time- and dose-dependent manner. Inhibition of protein kinase C prevents PTH-induced p38 MAPK inhibition, whereas inhibition of protein kinase A has no effect. Thus, protein kinase C, but not protein kinase A, is required for the inhibition of p38 MAPK by PTH. Treatment of hypertrophic chondrocytes by PTH or by p38 MAPK inhibitor SB203580 up-regulates Bcl-2, suggesting that Bcl-2 lies downstream of p38 MAPK in the PTH signaling pathway. Inhibition of p38 MAPK in hypertrophic chondrocytes by either PTH, SB303580, or both together leads to a decrease of hypertrophic marker type X collagen mRNA and an increase of the expression of prehypertrophic marker cartilage matrix protein. Therefore, inhibition of p38 converts a hypertrophic cell phenotype to a prehypertrophic one, thereby preventing precocious chondrocyte hypertrophy. Taken together, these data suggest a major role for p38 MAPK in transmitting PTH signals to regulate chondrocyte differentiation.  相似文献   

3.
Inhibitors of p38 mitogen-activated protein kinase (MAPK) diminish inflammatory arthritis in experimental animals. This may be effected by diminishing the production of inflammatory mediators, but this kinase is also part of the IL-1 signal pathway in articular chondrocytes. We determined the effect of p38 MAPK inhibition on proliferative and synthetic responses of lapine chondrocytes, cartilage, and synovial fibroblasts under basal and IL-1-activated conditions.Basal and growth factor-stimulated proliferation and proteoglycan synthesis were determined in primary cultures of rabbit articular chondrocytes, first-passage synovial fibroblasts, and cartilage organ cultures. Studies were performed with or without p38 MAPK inhibitors, in IL-1-activated and control cultures. Media nitric oxide and prostaglandin E2 were assayed.p38 MAPK inhibitors blunt chondrocyte and cartilage proteoglycan synthesis in response to transforming growth factor beta; responses to insulin-like growth factor 1 (IGF-1) and fetal calf serum (FCS) are unaffected. p38 MAPK inhibitors significantly reverse inhibition of cartilage organ culture proteoglycan synthesis by IL-1. p38 MAPK inhibition potentiated basal, IGF-1-stimulated and FCS-stimulated chondrocyte proliferation, and reversed IL-1 inhibition of IGF-1-stimulated and FCS-stimulated DNA synthesis. Decreases in nitric oxide but not prostaglandin E2 synthesis in IL-1-activated chondrocytes treated with p38 MAPK inhibitors are partly responsible for this restoration of response. Synovial fibroblast proliferation is minimally affected by p38 MAPK inhibition.p38 MAPK activity modulates chondrocyte proliferation under basal and IL-1-activated conditions. Inhibition of p38 MAPK enhances the ability of growth factors to overcome the inhibitory actions of IL-1 on proliferation, and thus could facilitate restoration and repair of diseased and damaged cartilage.  相似文献   

4.
摘要 目的:探讨circPPP1R12A(circ_0000423)调控p53信号通路对骨关节炎(osteoarthritis,OA)中软骨细胞增殖和凋亡的影响。方法:采用qRT-PCR检测circPPP1R12A在OA软骨细胞中的表达水平。在OA软骨细胞中分别转染oe-circPPP1R12A和sh-circPPP1R12A后,采用CCK-8检测细胞增殖情况;免疫荧光检测Ki-67阳性细胞表达率;流式细胞术检测细胞凋亡情况;qRT-PCR检测Ki-67和p53表达水平;Western Blot检测Cleaved-caspase3、P53、BCL-2和BAX的表达水平。结果:OA软骨细胞中circPPP1R12A的表达水平明显高于正常软骨细胞。过表达circPPP1R12A能够抑制OA软骨细胞增殖和促进细胞凋亡,通过上调p53表达激活p53信号通路,低表达circPPP1R12A能够促进OA软骨细胞增殖和抑制细胞凋亡,通过下调p53表达阻滞p53信号通路。在OA软骨细胞中同时低表达circPPP1R12A和过表达p53能够反转单独低表达circPPP1R12A对OA软骨细胞增殖和凋亡的影响。结论:circPPP1R12A在OA软骨细胞中明显高表达,circPPP1R12A能够通过激活p53信号通路抑制骨OA软骨细胞增殖和促进软骨细胞凋亡。circPPP1R12A可能成为OA治疗的干预靶点。  相似文献   

5.
Exosomes are membranous vesicles containing various biomolecules, including non-coding RNAs (ncRNAs). ncRNAs are secreted from several cell types and are involved in various biological functions, including cellular communication. The aim of this study was to identify and illustrate the significance of the osteoarthritis (OA)-specific packaging of exosomal ncRNAs. In this study, we hypothesized that selective packaging of ncRNAs into exosomes would reflect the cellular response to chondrocyte death during OA pathogenesis. Exosomal HULC level significantly decreased in OA exosomes, whereas exosomal miR-372-3p level significantly increased in OA exosomes. In addition, chondrocytes with high HULC levels in the cytosol showed lower overall proliferation and higher apoptotic cell death than normal chondrocytes, whereas chondrocytes with high miR-372-3p in the cytosol showed higher overall proliferation and lower cell death than OA chondrocytes. Among the signaling molecules known to be involved in OA pathogenesis, GSK is one of the regulators of the selective exosomal packaging observed in OA chondrocytes. Inhibition of GSK observed in OA chondrocytes was responsible for enriched uploading of miR-372-3p and suppressed uploading of HULC during OA pathogenesis. In conclusion, we show that selective ncRNAs observed in OA play a critical role in chondrocyte proliferation/apoptosis.  相似文献   

6.
7.
The ERK and p38 MAPK pathways are well-known transducers of signals that regulate proliferation and differentiation, but precisely how these pathways control growth plate chondrocyte development is unclear. For example, the ERK pathway has been reported to be required by some investigators but inhibitory to chondrocyte development by others. Moreover, how these two pathways interact to regulate chondrocyte development is even less clear. Using primary bovine growth plate chondrocytes and murine ATDC5 cells, we demonstrate that the ERK and p38 pathways have opposing effects on proliferation but are both absolutely required for differentiation. Two factors that promote chondrocyte differentiation, brain-derived neurotrophic factor (BDNF) and C-type natriuretic peptide, increase p38 activity while decreasing, but not completely inhibiting, ERK activity. The attenuation of ERK activity by BDNF occurs via p38-dependent raf-1 inhibition. The inhibition of raf-1 by p38 is direct, because purified p38 protein inhibits the kinase activity of purified active raf-1 as well as raf-1 immunoprecipitated from chondrocyte lysates. Moreover, IGF-I, which stimulates proliferation, suppresses p38 activation. This work describes a model wherein unopposed IGF-I promotes high ERK/p38 activity ratios favoring proliferation, whereas BDNF signals a transition to differentiation by decreasing the ERK/p38 activity ratio without completely inhibiting ERK, which involves the direct inhibition of raf-1 by p38.  相似文献   

8.
There is increasing evidence suggesting that chondrocyte death may contribute to the progression of osteoarthritis (OA). This study focused on the characterization of signaling cascade during NO-induced cell death in human OA chondrocytes. The NO generator, sodium nitroprusside (SNP), promoted chondrocyte death in association with DNA fragmentation, caspase-3 activation, and down-regulation of Bcl-2. Both caspase-3 inhibitor Z-Asp(OCH3)-Glu(OCH3)-Val-Asp(OCH3)-CH2F and caspase-9 inhibitor Z-Leu-Glu(OCH3)-His-Asp(OCH3)-CH2F prevented the chondrocyte death. Blocking the mitogen-activated protein kinase pathway by the mitogen-activated protein kinase kinase 1/2 inhibitor PD98059 or p38 kinase inhibitor SB202190 also inhibited the SNP-mediated cell death, suggesting possible requirements of both extracellular signal-related protein kinase 1/2 and p38 kinase for the NO-induced cell death. Furthermore, the selective inhibition of cyclooxygenase (COX)-2 by NS-398 or the inhibition of COX-1/COX-2 by indomethacin blocked the SNP-induced cell death. The chondrocyte death induced by SNP was associated with an overexpression of COX-2 protein (as determined by Western blotting) and an increase in PGE2 release. PD98059 and SB202190, but neither Z-DEVD FMK nor Z-LEHD FMK completely inhibited the SNP-mediated PGE2 production. Analysis of interactions between PGE2 and the cell death showed that PGE2 enhanced the SNP-mediated cell death, whereas PGE2 alone did not induce the chondrocyte death. These data indicate that NO-induced chondrocyte death signaling includes PGE2 production via COX-2 induction and suggest that both extracellular signal-related protein kinase 1/2 and p38 kinase pathways are upstream signaling of the PGE2 production. The results also demonstrate that exogenous PGE2 may sensitize human OA chondrocytes to the cell death induced by NO.  相似文献   

9.
The multiligand receptor for advanced glycation end products (RAGE) mediates certain chronic vascular and neurologic degenerative diseases accompanied by low-grade inflammation. RAGE ligands include S100/calgranulins, a class of low-molecular-mass, calcium-binding polypeptides, several of which are chondrocyte expressed. Here, we tested the hypothesis that S100A11 and RAGE signaling modulate osteoarthritis (OA) pathogenesis by regulating a shift in chondrocyte differentiation to hypertrophy. We analyzed human cartilages and cultured human articular chondrocytes, and used recombinant human S100A11, soluble RAGE, and previously characterized RAGE-specific blocking Abs. Normal human knee cartilages demonstrated constitutive RAGE and S100A11 expression, and RAGE and S100A11 expression were up-regulated in OA cartilages studied by immunohistochemistry. CXCL8 and TNF-alpha induced S100A11 expression and release in cultured chondrocytes. Moreover, S100A11 induced cell size increase and expression of type X collagen consistent with chondrocyte hypertrophy in vitro. CXCL8-induced, IL-8-induced, and TNF-alpha-induced but not retinoic acid-induced chondrocyte hypertrophy were suppressed by treatment with soluble RAGE or RAGE-specific blocking Abs. Last, via transfection of dominant-negative RAGE and dominant-negative MAPK kinase 3, we demonstrated that S100A11-induced chondrocyte type X collagen expression was dependent on RAGE-mediated p38 MAPK pathway activation. We conclude that up-regulated chondrocyte expression of the RAGE ligand S100A11 in OA cartilage, and RAGE signaling through the p38 MAPK pathway, promote inflammation-associated chondrocyte hypertrophy. RAGE signaling thereby has the potential to contribute to the progression of OA.  相似文献   

10.
Lee SW  Song YS  Lee SY  Yoon YG  Lee SH  Park BS  Yun I  Choi H  Kim K  Chung WT  Yoo YH 《PloS one》2011,6(4):e19163
Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF)-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA) model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence versus a cause of the degeneration in vivo.  相似文献   

11.
In the present study we demonstrated that CD95L cross-linking generated reverse signalling in the mouse derived Sertoli cell line TM4. Treatment of TM4 cells with mAb anti-CD95L induced activation of the cytosolic phospholipase A2 (cPLA2). Cytosolic PLA2 activation was controlled by the MAPK pathway as indicated by the ability of the specific MEK inhibitor, PD098059, to abolish cPLA2 activation. In addition, Western blot experiments showed a rapid increase in phosphorylated Erk1/2 following CD95L cross-linking, while no effect on the phosphorylation of other MAPK, p38 or JNK, was observed. CD95L cross-linking by mAb increased the levels of soluble CD95L and apoptotic activity of TM4 cell supernatants, which was blocked by co-incubation with the PLA2 inhibitor, AACOCF3 or PD098059. Finally, pre-treatment of TM4 cells with AACOCF3 or PD098059 completely abolished TM4-induced apoptosis of Jurkat T cells, thus indicating that the Erk/cPLA2 pathway is required for CD95L-induced apoptosis.  相似文献   

12.
肿瘤抑制蛋白p53是一种可以有效调节哺乳动物细胞生长的核磷酸化蛋白质。p53表达增加能够激活一系列细胞基因,通过抑制多个细胞周期蛋白依赖性激酶导致细胞周期停滞并凋亡。有研究表明,骨关节炎(osteoarthritis,OA)软骨细胞中,p53的表达高于正常软骨细胞,通过下调p53表达能够减少软骨细胞凋亡,进而预防和缓解骨关节炎病变,这可能与线粒体凋亡途径密切相关,但是具体机制尚不明确。本文通过综述近年来p53调控骨关节炎软骨细胞凋亡的文献资料,为骨关节炎机制和治疗有关研究提供理论基础。  相似文献   

13.
Innate immune molecule surfactant protein D (SP-D), a member of the C-type lectin protein family, plays an indispensable role in host defense and the regulation of inflammation in the lung and other tissues. Osteoarthritis (OA) is a degenerative disease of cartilage, with inflammation that causes pathologic changes and tissue damage. However, it is unknown whether there exist SP-D expression and its potential role in the pathogenesis of OA. In this study, we examined SP-D expression and explored its biological function in a sodium nitroprusside (SNP)-stimulated rat chondrocytes and surgically-induced rat OA model. We found SP-D expression in both human and rat articular chondrocytes, with higher level in normal chondrocytes compared to in OA chondrocytes. Furthermore, In vivo study demonstrated that recombinant human SP-D (rhSP-D) ameliorated cartilage degeneration in surgically-induced rat OA model. In vitro cell culture study showed that rhSP-D markedly inhibited the expression of caspase-3 as an apoptosis biomarker, and decreased phosphorylation of p38 mitogen-activated protein kinase (MAPK), which resulted in maintaining normal nuclear morphology and increasing mitochondrial membrane potential in SNP-stimulated rat chondrocytes. Collectively, these findings indicate that SP-D expresses in articular chondrocytes and suppresses SNP-stimulated chondrocyte apoptosis and ameliorates cartilage degeneration via suppressing p38 MAPK activity.  相似文献   

14.
Chondrocyte survival is closely linked to cartilage integrity, and forms of chondrocyte apoptotic death can contribute to cartilage degeneration in articular diseases. Since growing evidence also implicates polyamines in the control of cell death, we have been investigating the role of polyamine metabolism in chondrocyte survival and apoptosis. Treatment of human C-28/I2 chondrocytes with N(1),N(11)-diethylnorspermine (DENSPM), a polyamine analogue with clinical relevance as an experimental anticancer agent, inhibited polyamine biosynthesis and induced polyamine catabolism, thus rapidly depleting all main polyamines. DENSPM did not increase significantly caspase activity, but provoked a late cell death associated to DNA fragmentation. A short treatment with DENSPM did not reduce cell viability when given alone, but enhanced caspase-3 and -9 activation in chondrocytes exposed to tumor necrosis factor-alpha (TNF) and cycloheximide (CHX). A longer treatment with DENSPM however reduced caspase response to TNF plus CHX. Depletion of all polyamines obtained by specific inhibitors of polyamine biosynthesis did not cause cell death and contrasted apoptosis by decreasing caspase activities. In conclusion, following DENSPM treatment, C-28/I2 chondrocytes are initially sensitized to caspase 9-dependent apoptosis in the presence of TNF and CHX and may eventually undergo a late and mainly caspase-independent cell death in the absence of other stimuli. Moreover, these results indicate that a reduction of polyamine levels not only leads to inhibition of cell proliferation, but also of caspase-mediated pathways of chondrocyte apoptosis.  相似文献   

15.
Mechanical stress has detrimental effects on cartilaginous endplate chondrocytes due to apoptosis in vivo and in vitro. In this study, we investigated the possible apoptosis signaling pathways induced by mechanical stress in cultured rat cervical endplate chondrocytes. Static mechanical load significantly reduced cell viability in a time- and load-dependent manner, as demonstrated by the Cell Counting Kit-8 (CCK-8) assay. Chondrocyte apoptosis induced by mechanical stress was confirmed by annexin V/propidium iodide (PI) staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Western blot analysis revealed that static load-induced chondrocyte apoptosis was accompanied by increased phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 mitogen-activated protein kinase (MAPK). The loss of mitochondrial membrane potential (ΔΨm), increased Cytochrome c release, and activated Caspase-9 and Caspase-3, indicating that the mitochondrial pathway is involved in mechanical stress-induced chondrocyte apoptosis. Treatment with inhibitors of JNK (SP600125), p38 MAPK (SB203580), and ERK (PD98059) prior to mechanical stimulation reversed both the static load-induced chondrocyte apoptosis and the activation of JNK, p38 MAPK, and ERK. Taken together, the data presented in this study demonstrate that mechanical stress induces apoptosis in rat cervical endplate chondrocytes through the MAPK-mediated mitochondrial apoptotic pathway.  相似文献   

16.
Among other cellular responses, tumor necrosis factor (TNF) induces different forms of cell death and the activation of the p38 mitogen-activated protein kinase (MAPK). The influence of p38 MAPK activation on TNF-induced apoptosis or necrosis is controversially discussed. Here, we demonstrate that pharmacological inhibition of p38 MAPK enhances TNF-induced cell death in murine fibroblast cell lines L929 and NIH3T3. Furthermore, overexpression of dominant-negative versions of p38 MAPK or its upstream kinase MKK6 led to increased cell death in L929 cells. While overexpression of the p38 isoforms alpha and beta did not protect L929 cells from TNF-induced toxicity, overexpression of constitutively active MKK6 decreased TNF-induced cell death. Although the used inhibitors of p38 MAPK decreased the phosphorylation of the survival kinase PKB/Akt, this effect could be ruled out as cause of the observed sensitization to TNF-induced cytotoxicity. Finally, we demonstrate that the nuclear factor kappaB (NF-kappaB)-dependent gene expression, shown as an example for the anti-apoptotic gene cellular inhibitor of apoptosis (c-IAP2), was reduced by p38 MAPK inhibition. In consequence, we found that inhibition of p38 MAPK led to the activation of the executioner caspase-3.  相似文献   

17.
BACKGROUND: HIV-associated nephropathy is accompanied by significant tubular alterations in the form of tubular cell proliferation, apoptosis, and microcystic dilatation. In the present study we evaluated the role of CD4 receptors in HIV-1-induced tubular cell injury. METHODS: To confirm the presence of CD4 receptors in tubular cells, immunocytochemical, Western and Northern blot studies were carried out. To determine the downstream effect of CD4 and gp120 interaction, we evaluated the effect of gp120 on tubular cell p38 mitogen-activated protein kinase (MAPK) activity and phosphorylation. To establish causal relationships between gp120, CD4, and p38 MAPK pathways, we studied the effect of anti-CD4 antibody and SB 202190 (an inhibitor of p38 MAPK) on gp120-induced tubular cell apoptosis. RESULTS: Proximal tubular cells in culture as well as in intact tissue showed expression of CD4 (immunocytochemical and Western blot studies). Cultured tubular cells also showed mRNA expression for CD4 (Northern blot studies). Gp120, at concentrations of 10-100 ng/ ml, triggered tubular cell apoptosis; however, this effect of gp120 was inhibited by anti-CD4 antibody. SB 202190 also inhibited gp120-induced tubular cell apoptosis. In addition, gp120 promoted tubular cell p38 MAPK phosphorylation in a time- and dose- dependent manner. CONCLUSION: Gp120 through interaction with CD4 triggers tubular cell apoptosis. This effect of gp120 on tubular cells is mediated through phosphorylation of p38 MAPK.  相似文献   

18.
19.
Fibroblast growth factors (FGFs) regulate long bone development by affecting the proliferation and differentiation of chondrocytes. FGF treatment inhibits the proliferation of chondrocytes both in vitro and in vivo, but the signaling pathways involved have not been clearly identified. In this report we show that both the MEK-ERK1/2 and p38 MAPK pathways, but not phospholipase C gamma or phosphatidylinositol 3-kinase, play a role in FGF-mediated growth arrest of chondrocytes. Chemical inhibitors of the MEK1/2 or the p38 MAPK pathways applied to rat chondrosarcoma (RCS) chondrocytes significantly prevented FGF-induced growth arrest. The retinoblastoma family members p107 and p130 were previously shown to be essential effectors of FGF-induced growth arrest in chondrocytes. The dephosphorylation of p107, one of the earliest events in RCS growth arrest, was significantly blocked by MEK1/2 inhibitors but not by the p38 MAPK inhibitors, whereas that of p130, which occurs later, was partially prevented both by the MEK and p38 inhibitors. Furthermore, by expressing the nerve growth factor (NGF) receptor, TrkA, and the epidermal growth factor (EGF) receptor, ErbB1, in RCS cells we show that NGF treatment of the transfected cells caused growth inhibition, whereas EGF did not. FGF- and NGF-induced growth inhibition is accompanied by a strong and sustained activation of ERK1/2 and p38 MAPK and a decrease of AKT phosphorylation, whereas EGF induces a much more transient activation of p38 and ERK1/2 and increases AKT phosphorylation. These results indicate that inhibition of chondrocyte proliferation by FGF requires both ERK1/2 and p38 MAPK signaling and also suggest that sustained activation of these pathways is required to achieve growth inhibition.  相似文献   

20.
This study was aimed to explore the role of miR‐29b‐3p and PGRN in chondrocyte apoptosis and the initiation and progress of osteoarthritis (OA). Both miR‐29b‐3p and PGRN were up‐regulated in cartilage tissue from patients with OA. Transfection of miR‐29b‐3p mimic into rat primary chondrocytes and SW1353 chondrosarcoma cells significantly suppressed PGRN expression and release, induced apoptosis, inhibited proliferation and scratch wound closure. By contrast, transfection of miR‐29b‐3p inhibitor exhibited the opposite effects. Moreover, the expression and secretion of cartilaginous degeneration‐related molecules were also altered by miR‐29b‐3p. Luciferase reporter gene assay showed rat GRN mRNA is directly targeted and repressed by miR‐29b‐3p. The fact that recombinant PGRN or shPGRN‐mediated PGRN interference abolished miR‐29b‐3p mimic‐induced cell apoptosis and growth inhibition suggested miR‐29b‐3p affect the cellular functions of chondrocyte through regulating PGRN expression. In vivo, joint cavity injection of miR‐29b‐3p antagomir prior to surgical induction of OA significantly suppressed the upregulation of miR‐29b‐3p, whereas further promoted the increased expression of PGRN. Articular chondrocytes apoptosis and cartilage loss in the knee joint of surgically induced OA rats were also ameliorated by the injection of miR‐29b‐3p antagomir, demonstrated by TUNEL and safranin O‐fast green staining. This work showed miR‐29b‐3p facilitates chondrocyte apoptosis and OA by targeting PGRN, and miR‐29b‐3p or PGRN may be the potential target for OA treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号