首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have used a combination of 30 serological, protein electromorphic, and DNA markers defining 28 loci to construct a linkage map of chromosome 1. These markers form a continuous linkage group of 320 cM in males and 608 cM in females; female genetic distances were on average twofold higher than those of males across the map. Among the DNA markers are 10 highly polymorphic markers reflecting loci that contain a variable number of tandem repeats, well distributed over the length of the chromosome, that will be highly efficient anchor points for application of this map to studies of human genetic disease.  相似文献   

2.
A mapped set of DNA markers for human chromosome 17   总被引:32,自引:0,他引:32  
We have developed and mapped by genetic linkage a primary set of markers for chromosome 17. The map consists of 21 loci derived from 27 probe/enzyme systems, including eight highly informative markers at loci containing a variable number of tandemly repeated DNA sequences (VNTRs). The map is continuous from the telomeric region of the short arm to the telomeric region of the long arm, covering estimated genetic distances of 218 cM in males and 279 cM in females. The average heterozygosity among all 21 loci in the population sample analyzed is 58%; 77% heterozygosity was observed among the eight VNTR markers that were highly informative. This map will make it possible to detect by linkage the location of genetic defects associated with chromosome 17 and will also provide anchor points for a high-resolution map of this chromosome.  相似文献   

3.
Twelve loci form a continuous linkage map for human chromosome 18   总被引:7,自引:0,他引:7  
We have constructed a primary genetic map of human chromosome 18 consisting of 11 DNA markers and one serological marker (JK). Two of these loci define highly polymorphic VNTR systems. The markers define a continuous genetic linkage map of 97 cM in males and 205 cM in females; female genetic distances in a panel of 59 three-generation families were consistently about twice those observed in males. The high odds in support of the linear order of the markers on this recombination map, and the extent of coverage of chromosome 18, indicate that this map will permit efficient linkage studies of human genetic diseases that may be segregating on chromosome 18 and will provide anchor points for development of high-resolution maps for this chromosome.  相似文献   

4.
A mapped set of genetic markers for human chromosome 9   总被引:14,自引:0,他引:14  
A genetic map of markers for human chromosome 9, spanning a genetic distance of 147 cM in males and 231 cM in females, has been constructed from linkage studies with 19 loci in a large panel of reference families. The markers included four classical systems previously assigned to chromosome 9, and restriction fragment length polymorphisms of two cloned genes, ABL oncogene and argininosuccinase synthetase pseudogene 3 (ASSP3). The remaining 13 marker loci, with an average heterozygosity of 42%, were defined by arbitrary DNA probes newly ascertained from genomic libraries; seven of them were variable number of tandem repeat (VNTR) loci. A subset of 7 of the 19 linked markers is proposed for a primary map that could detect linkage with a genetic defect within the covered region of chromosome 9, provided that at least 45 phase-known meioses were available for study in an affected family.  相似文献   

5.
Twenty loci form a continuous linkage map of markers for human chromosome 2   总被引:4,自引:0,他引:4  
We have used a combination of 20 DNA markers and 1 protein electromorph, defining 20 loci, to construct a genetic linkage map of chromosome 2. These markers form a continuous linkage group of 306 cM in males and 529 cM in females. Female map distances varied from approximately twofold higher to equivalence from those of males across the map. Among the DNA markers are six well-distributed, highly polymorphic markers reflecting loci that contain a variable number of tandem repeats that will be highly efficient anchor points for the eventual application of this map to studies of human genetic disease.  相似文献   

6.
A map of 22 loci on human chromosome 22.   总被引:7,自引:0,他引:7  
We constructed a genetic linkage map of the entire long arm of human chromosome 22 with 30 polymorphic markers, defining 22 loci. The map consists of a continuous linkage group 110 cM long, when male and female recombination fractions are combined; average distance between the loci is 5.2 cM. All loci were placed on the map with high support against alternative orders (odds in excess of 1000:1). The order of loci presented in our map is in full agreement with that of the previous linkage maps of chromosome 22 and with the physical assignment of markers. Two markers included in this map, KI-831 (D22S212) and pEFZ31 (D22S32), allowed us to better define the region of the (11;22) translocation breakpoint specific for Ewing sarcoma. Ten additional polymorphic markers were placed on the 22-loci map with odds lower than 1000:1 against alternative locations. In total, we have introduced 29 new markers on the linkage map of chromosome 22.  相似文献   

7.
A genetic linkage map of human chromosome 5 with 60 RFLP loci.   总被引:6,自引:0,他引:6  
A genetic map of human chromosome 5 that contains 60 restriction fragment length polymorphism (RFLP) loci in one linkage group has been constructed. Segregation data using these markers and 40 large multigenerational families supplied by the Centre d'Etude du Polymorphisme Humain have been collected. Linkage analyses were performed with the program package CRI-MAP; using odds greater than 1000:1, 30 RFLP loci could be placed on the map. This genetic map spans 289 cM sex-equal, 353 cM in females, and 244 cM in males. While the relative rate of recombination for female meioses is nearly twice that of males over much of the chromosome, several instances of statistically significant excess male recombination were observed. The order of probes on the genetic map has been confirmed by their physical order as determined by somatic cell hybrid lines containing deletions of normal chromosome 5. There is concordance between the physical positions of markers and their genetic positions. Our most distal probes on the genetic map are cytologically localized to the most distal portions of the chromosome. This suggests that our genetic map spans most of chromosome 5.  相似文献   

8.
A detailed multipoint gene map of chromosome 1q   总被引:4,自引:0,他引:4  
Utilizing genotyping data for 23 markers, we have constructed a 21-locus multipoint genetic map of the long arm of chromosome 1. Five new RFLPs are reported. The map integrates anonymous loci from previous primary linkage maps and incorporates markers for 10 coding sequences. These markers form a continuous linkage group of 85 cM in males and 141 cM in females. The map was constructed employing the LINKAGE and CRIMAP computational methodologies via a stepwise algorithm.  相似文献   

9.
A genetic linkage map of markers for the short arm of human chromosome 8 has been constructed with 14 polymorphic DNA markers on the basis of genotypes obtained in 40 CEPH reference families. This unbroken map spans 45 cM in males and 79 cM in females. The 14 markers include three genes, MSR, LPL, and NEFL, and one anonymous DNA segment that were previously assigned to chromosome 8. The other 10 marker had been isolated from a chromosome 8-specific cosmid library and physically localized to chromosomal bands by fluorescence in situ hybridization. The order of loci determined by genetic linkage was consistent with their physical locations. This map will facilitate efficient linkage studies of human genetic diseases that may be segregating on chromosome 8p and will provide anchor points for development of high-resolution maps for this chromosomal region.  相似文献   

10.
A genetic linkage map for human chromosome 3 has been constructed using 41 polymorphic DNA markers genotyped in 40 CEPH reference families. The map spans a genetic distance of 261 cM in males and 413 cM in females; the ratio of these distances (approximately 1.6 in favor of female meioses) was fairly constant across the map. Frequency of recombination was relatively uniform throughout much of the chromosome, except that in both telomeric regions recombination was more frequent than the physical distances would predict. The genetic map was basically in agreement with physical localization of 24 loci that were mapped by fluorescent in situ hybridization. This map can be used for linkage studies for genetic diseases, and it will serve as a step toward a high-resolution map for human chromosome 3.  相似文献   

11.
A genetic linkage map of 17 markers on human chromosome 21   总被引:17,自引:0,他引:17  
We have constructed a genetic linkage map of 17 markers on the long arm of human chromosome 21, including six genes and two anonymous loci with a variable number of tandem repeats. The estimated length of the map is 103 cM in males and 140 cM in females, assuming Kosambi interference. Recombination in females was approximately twice that in males between proximal markers. However, over half of the recombination events in either sex occur distally, in 21q22.3, although this region accounts for only about 15% of the physical length of chromosome 21.  相似文献   

12.
We have constructed a primary map of 10 DNA and 2 protein markers for chromosome 19. Three of the markers define loci with a variable number of tandem repeats (VNTRs); 3 define genes--insulin receptor, low-density lipoprotein (LDL) receptor, and apolipoprotein CII; and 2 are classical markers for blood group antigens (Lewis and Secretor). The estimated genetic distance covered by the map is 137 cM in males and 189 cM in females. In some regions of the chromosome we found significant differences in recombination frequencies according to sex. This set of markers will be efficient for linkage studies in families segregating genetic defects and will provide anchor points for a high-resolution map of chromosome 19.  相似文献   

13.
We have constructed a linkage map of 14 short tandem repeat polymorphisms (11 with heterozygosity > 70%) on the long arm of human chromosome 22 using 23 non-CEPH pedigrees. Twelve of the markers could be positioned uniquely with a likelihood of at least 1,000:1, and distributed at an average distance of 6.62 cM (range 1.5–16.1 cM). The sex-combined map covers a total of 79.6 cM, the female map 93.2 cM and the male map 64.6 cM. Based on comparisons between physical maps and other genetic maps, we estimate that our map covers 70%–80% of the chromosome. The map integrates markers from previous genetic maps and uniquely positions one marker (D22S307). Data from physical mapping on the location of four genetic markers correlates well with our linkage map, and provides information on an additional marker (D22S315). This map will facilitate high resolution mapping of additional polymorphic loci and disease genes on chromosome 22, and act as a reference for building and verifying physical maps.  相似文献   

14.
Microsatellite repeat loci can provide informative markers for genetic linkage. Currently, the human chromosome 2 genetic linkage map has very few highly polymorphic markers. Being such a large chromosome, it will require a large number of informative markers for the dense coverage desired to allow disease genes to be mapped quickly and accurately. Dinucleotide repeat loci from two anonymous chromosome 2 genomic DNA clones were sequenced so that oligonucleotide primers could be designed for amplifying each locus using the polymerase chain reaction (PCR). Five sets of PCR primers were also generated from nucleotide sequences in the GenBank Database of chromosome 2 genes containing dinucleotide repeats. In addition, one PCR primer pair was made that amplifies a restriction fragment length polymorphism on the TNP1 gene (Hoth and Engel, 1991). These markers were placed on the CEPH genetic linkage map by screening the CEPH reference DNA panel with each primer set, combining these data with those of other markers previously placed on the map, and analyzing the combined data set using CRI-MAP and LINKAGE. The microsatellite loci are highly informative markers and the TNP1 locus, as expected, is only moderately informative. A map was constructed with 38 ordered loci (odds 1000:1) spanning 296 cM (male) and 476 cM (female) of chromosome 2 compared with 306 cM (male) and 529 cM (female) for a previous map of 20 markers.  相似文献   

15.
A genetic linkage map is a powerful research tool for mapping traits of interest and is essential to understanding genome evolution. The aim of this study is to provide an expanded genetic linkage map of common carp to effectively carry out quantitative trait loci analysis and conduct comparative mapping analysis between lineages. Here, we constructed a genetic linkage map of common carp (Cyprinus carpio L.) using microsatellite and single-nucleotide polymorphism (SNP) markers in a 159 sibling family. A total of 246 microsatellites and 306 SNP polymorphic markers were genotyped in this family. Linkage analysis using JoinMap 4.0 organized 427 markers (186 microsatellites and 241 SNPs) to 50 linkage groups, ranging in size from 1.4 to 130.1 cM. Each group contained 2-30 markers. The linkage map covered a genetic distance of 2,039.2 cM and the average interval for markers within the linkage groups was approximately 6.4 cM. In addition, comparative genome analysis within five model teleost fish revealed a high percentage (74.7%) of conserved loci corresponding to zebrafish chromosomes. In most cases, each zebrafish chromosome comprised two common carp linkage groups. The comparative analysis also revealed independent chromosome rearrangements in common carp and zebrafish. The linkage map will be of great assistance in mapping genes of interest and serve as a reference to approach comparative mapping and enable further insights into the comprehensive investigations of genome evolution of common carp.  相似文献   

16.
A primary genetic map of markers of human chromosome 10   总被引:19,自引:0,他引:19  
We have constructed a primary genetic map for human chromosome 10 from 13 polymorphic marker systems defining 11 loci, using a new gene mapping algorithm implemented in the computer program GMS. The loci form a continuous genetic map that spans approximately 116 cM in males and 170 cM in females. These loci provide regularly spaced anchor points for linkage studies, except for one interval that is 28 cM in males and 64 cM in females.  相似文献   

17.
We have constructed a genetic linkage map of the sheep X chromosome (OARX) containing 22 new gene loci from across the human X chromosome (HSAX). The female OARX linkage map has a total length of 152.6 cM with average gene spacing of 5.5 cM. Comparison with HSAX confirms one previously reported major breakpoint and inversion, and other minor rearrangements between OARX and HSAX. Comparison of the linkage map with sheep sequence data OAR 1.0 reveals a different arrangement of markers on the q arm, which may more accurately reflect the genuine arrangement of this region.  相似文献   

18.
Molecular genetic maps can provide information for the identification and localization of major genes associated with quantitative traits. However, there are currently no published genetic linkage maps for any ratites. Herein, a preliminary genetic map of ostrich was developed using a two-generation ostrich reference family by linkage analysis of 104 polymorphic microsatellite markers, including 40 novel markers reported in this study. A total of 35 microsatellite markers were placed into 13 linkage groups. Five linkage groups are composed of three or more loci, whereas the remaining eight groups each contained two markers. The sex-averaged map spans 365.4 cM. The marker interval of each linkage group ranges from 5.3 to 25.4 cM, and the average interval distance is 16.61 cM. The male map covers 342.7 cM, with an average intermarker distance of 15.58 cM, whereas the female map is 456.7 cM, with the average intermarker spacing of 20.76 cM. In order to screen the orthologous loci between ostrich and chicken, all of the flanking sequences of the 104 polymorphic loci, nine monomorphic loci and a further 12 reported microsatellite loci for ostrich were screened against the chicken genomic sequence using the BLAST algorithm (Altschul et al., 1990), and corresponding orthologs were found for 13 sequences. The microsatellite loci and genetic map developed in this study will be useful for QTL mapping, population genetics and phylogenetic studies in the ratite. In addition, the 13 orthologous loci identified in this study will be advantageous to the construction of a comparative genetic map between chicken and ostrich.  相似文献   

19.
This paper describes the Centre d'Etude du Polymorphisme Humain (CEPH) consortium linkage map of chromosome 2. The map contains 36 loci defined by genotyping generated from the CEPH family DNAs. A total of 73 different markers were typed by 14 contributing laboratories; of these, 36 loci are ordered on the map with likelihood support of at least 1000:1. Markers are placed along the length of the chromosome but no markers were available to anchor the map at either telomere or the centromere. Multilocus linkage analysis has produced male, female, and sex-averaged maps extending for 261, 430, and 328 cM, respectively. The sex-averaged map contains five intervals greater than 15 cM and the mean genetic distance between the 36 uniquely placed loci is 9.1 cM.  相似文献   

20.
High-density genetic linkage maps were constructed for the Japanese flounder (Paralichthys olivaceus). A total of 1624 microsatellite markers were polymorphic in the reference family. Linkage analysis using JoinMap 4.0 resulted in the mapping of 1487 markers to 24 linkage groups, a result which was consistent with the 24 chromosomes seen in chromosome spreads. The female map was composed of 1257 markers, covering a total of 1663.8 cM with an average interval 1.35 cM between markers. The male map consisted of 1224 markers, spanning 1726.5 cM, with an average interval of 1.44 cM. The genome length in the Japanese flounder was estimated to be 1730.3 cM for the females and 1798.0 cM for the males, a coverage of 96.2% for the female and 96.0% for the male map. The mean recombination at common intervals throughout the genome revealed a slight difference between sexes, i.e. 1.07 times higher in the male than female. High-density genetic linkage maps are very useful for marker-assisted selection (MAS) programs for economically valuable traits in this species and for further evolutionary studies in flatfish and vertebrate species. Furthermore, four quantiative trait loci (QTL) associated with growth traits were mapped on the genetic map. One QTL was identified for body weight on LG 14 f, which explained 14.85% of the total variation of the body weight. Three QTL were identified for body width on LG14f and LG14m, accounting for 16.75%, 13.62% and 13.65% of the total variation in body width, respectively. The additive effects were evident as negative values. There were four QTL for growth traits clustered on LG14, which should prove to be very useful for improving growth traits using molecular MAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号