首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Akoka  C Tellier  S Poignant 《Biochemistry》1986,25(22):6972-6977
Dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidylcholine (DPPC), 15N-labeled in the polar head group, were synthesized. The proton-decoupled 15N spectra of DPPC and DPPE in aqueous dispersion have exactly the form anticipated for powder line shapes governed by an axially symmetric shielding tensor. The chemical shift anisotropy (delta sigma) of DPPC is lower than 0.4 ppm at 30 degrees C and vanished when the temperature or the half-height line width is increased; DPPE always exhibits an asymmetric line shape, and 15N NMR spectra of DPPE are obtained at various temperatures and simulated to measure exactly the chemical shift anisotropy. At each temperature, the order parameter of the C-N bond segment is derivated from delta sigma and reveals that the average orientation of the C-N bond around the axis of rotation is near the "magic angle" (54.7 degrees). Isotropic correlation times are derived from T1, which are higher than values obtained for phosphatidylcholine by other nuclei. Arrhenius plots of T1 and T2 allowed us to calculate the activation energy for the motion of the DPPE and the DPPC C-N bond. The value of this activation energy for the DPPE (53 kJ/mol) is higher than the one found for the DPPC C-N bond (32 kJ/mol). These differences agree with the capacity of the ethanolamine head groups to bind noncovalently to their neighbors in the plane of the membrane surface. A direct titration curve of the amino group is achieved by the variation of the chemical shift with the bulk pH, and the interfacial pKa is calculated to be 11.1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The pH dependence of the 1H NMR spectrum of staphylococcal nuclease H124L was investigated as a function of the binding of Ca2+, the ion required for enzymatic activity, and deoxythymidine-3',5'-diphosphate (pdTp), a competitive inhibitor. The protein studied was the product of a cloned gene expressed in Escherichia coli which yields a protein having a sequence identical to that of the nuclease isolated from the V8 strain of Staphylococcus aureus. Of the observable ring protons of the three histidine residues, only the C delta 1H of His46 shows a large chemical shift perturbation on formation of the ternary complex, (nuclease H124L).pdTp.Ca2+. The pKa of His46 is lowered by 0.2 pH unit in the binary complex. All seven tyrosines titrate with normal pKa values between 9 and 11 in the unligated nuclease. In the ternary complex, however, the pKa values of Tyr85 and Tyr93 increase above pH 11.0. The chemical shift perturbations of the ring protons of the Tyr27, Tyr85, Tyr113, and Tyr115 were observed between pH 4 and 6; these spectral perturbations are attributed to interactions with carboxylate groups. Binding Ca2+ alone acted opposite to the perturbation in Tyr113 and Tyr115. Ca2+ binding leads to deshielding the ring protons of Tyr113, but this effect is removed in the ternary complex. Binding of pdTp and Ca2+ stabilizes the protein against high pH denaturation up to pH 11.5.  相似文献   

3.
T A Gerken 《Biochemistry》1984,23(20):4688-4697
13C NMR spectroscopy has been used to study the amino group environments and metal binding properties of 13C reductively methylated bovine alpha-lactalbumin. Bovine alpha-lactalbumin is a Ca2+ metalloprotein containing 12 lysyl amino groups and a free amino terminus. All 13 amino groups can be 13C-dimethylated without altering Ca2+ binding or biological activity. pH titrations (chemical shift vs. pH) of this dimethylated protein reveal unique behavior for each of the 13 amino groups. The pKa values for the lysyl amino groups range from 9.1 to 10.8 while the pKa for the N-terminal amino group is 8.3. This relatively high pKa (by 1 pH unit) for the N-terminal supports its interaction in an ion pair as proposed by Warme et al. [Warme, P. K., Momany, F. A., Rumball, S. V., Tuttle, R. W., & Scheraga, H. A. (1974) Biochemistry 13, 768-782]. Carbon-13 NMR studies further show that the removal of Ca2+ from the high-affinity binding site results in a conformational change, with the disruption of the N-terminal ion pair interaction (pKa decreased to 7.4). The study of Zn2+ binding to Ca2+-saturated protein suggests that Zn2+ binds initially at a low-affinity Ca2+ site while maintaining the N-terminal ion pair interaction. The further addition of Zn2+ leads to the disruption of this ion pair forming a presumed apoprotein-like conformation. Finally on the basis of the specific effects of added Mn2+ on the 13C NMR spectra of the methylated protein, a low-affinity divalent metal binding site is proposed about 7.5 A from the amino terminus.  相似文献   

4.
本文以荧光探针为手段,通过测量膜偏振度的变化,探讨了竹红菌甲素光敏作用对红细胞膜和几种磷脂脂质体膜的流动性的损伤。结果表明,甲素光敏作用使不同种类的磷脂(DPPC,DPPC/DPPE,红细胞膜磷脂)脂质体的流动性增加,其对光敏作用的敏感程度为红细胞膜磷脂脂质体显著小于DPPC/DPPE脂质体及DPPC脂质体。对红细胞膜来说,甲素光敏作用使其流动性呈现先降低而后增加的现象。去除膜上的spectrin以及用胰蛋白酶处理可使这种流动性变化的幅度受到抑制。据此,我们认为,膜磷脂,膜蛋白对甲素光敏作用中膜流动性的变化有着不同的影响,膜蛋白,特别是spectrin,是其中极重要的因素。  相似文献   

5.
竹红菌甲素对红细胞膜和几种磷脂脂质体膜的流动...   总被引:5,自引:0,他引:5  
In this paper, the photodamage of Hypocrellin A to the fluidity of human erythrocyte membranes and some kinds of membranes of phospholipid liposomes was investigated by measuring the changes in fluorescence polarization of the membranes. The results showed that the photosensitization effect of HA caused the decrease of membrane fluidity of the phospholipid (DPPC, DPPC/DPPE, phospholipid of erythrocyte membranes) liposomes. The DPPC and DPPC/DPPE liposomes were more sensitive to the damage than the phospholipid liposomes of erythrocyte membranes. To human erythrocyte membranes, the photodamage effect of HA caused its fluidity first increased and then, with the increment of illumination time, decreased. To spectrin-depleted and trypsin-treated erythrocyte membranes, this kind of change in fluidity was inhibited. All of the results indicated that phospholipids and proteins play different roles in the photodamage of HA to the fluidity of membranes. Membrane proteins, especially spectrin, were the key factor involved in the changes of the fluidity.  相似文献   

6.
Characterization of methylphosphonate as a 31P NMR pH indicator   总被引:1,自引:0,他引:1  
The 31P NMR pH indicator, methylphosphonate, has been extensively characterized, and the uncertainty in pH determination by its chemical shift has been analyzed. The pKa decreases by 0.003 pH unit/degrees C and 0.06 pH unit/100 mM ionic strength. The pKa appears not to be sensitive to Ca2+ but is sensitive to Mg2+, resulting in an uncertainty of +/- 0.05 pH unit. Substituting 300 mM Na+ for 300 mM K+ causes the pKa to decrease by 0.1 pH unit. Taking the effects of temperature, ionic strength, and cation identity into account, the overall estimated uncertainty in pH determination can be as high as +/- 0.1 pH unit. Methylphosphonate was tested as a pH indicator in Ehrlich ascites tumor cells. Our data indicate that both the unchanged and monoanion forms of methyl phosphonate are very permeable, rendering this compound unsuitable as a pH indicator in this system. However, the sensitivity of this compound's chemical shift to pH and the relative insensitivity to other parameters suggest that phosphonates, as a group, may be applicable as pH indicators by 31P NMR.  相似文献   

7.
Developing rabbits reutilize the phosphatidylcholine of surfactant with an efficiency of about 95%. The efficiency of reutilization of other components of surfactant have not been determined. 3-day-old rabbits were injected intratracheally with [3H]dipalmitoylphosphatidylcholine (DPPC) mixed with unlabeled natural surfactant and either disaturated [32P]phosphatidylglycerol (DSPG) or [14C]dipalmitoylphosphatidyl-ethanolamine (DPPE). The recovery of [3H]DPPC, [14C]DPPE, and [32P]DSPG in the alveolar wash was measured at different times after injection. By plotting the ratio of [32P]DSPG to [3H]DPPC or [14C]DPPE to [3H]DPPC counts/min in the alveolar wash vs. time after injection we showed that these two phospholipids are reutilized less efficiently than phosphatidylcholine. Based on other studies, several assumptions were made about the kinetics of surfactant phosphatidylethanolamine and phosphatidylglycerol. From the slopes of the semilog plots of total [14C]DPPE and total [32P]DSPG counts/min in the alveolar wash vs. time and these assumptions, we determined that these two phospholipids were reutilized at an efficiency of only 79%.  相似文献   

8.
DSC and (1H and 31P) NMR measurements are used to investigate the perturbation caused by the keratolytic drug, salicylic acid (SA) on the physicochemical properties of the model membranes. Model membranes (in unilamellar vesicular (ULV) form) in the present studies are prepared with the phospholipids, dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylethanolamine (DPPE), dipalmitoyl phosphatidic acid (DPPA) and mixed lipid DPPC-DPPE (with weight ratio, 2.5:2.2). These lipids have the same acyl (dipalmitoyl) chains but differed in the headgroup. The molar ratio of the drug to lipid (lipid mixture), is in the range 0 to 0.4. The DSC and NMR results suggest that the lipid head groups have a pivotal role in controlling (i) the behavior of the membranes and (ii) their interactions with SA. In the presence of SA, the main phase transition temperature of (a) DPPE membrane decreases, (b) DPPA membrane increases and (c) DPPC and DPPC-DPPE membranes are not significantly changed. The drug increases the transition enthalpy (i.e., acyl chain order) in DPPC, DPPA and DPPC-DPPE membranes. However, the presence of the drug in DPPC membrane formed using water (instead of buffer), shows a decrease in the transition temperature and enthalpy. In all the systems studied, the drug molecules seem to be located in the interfacial region neighboring the glycerol backbone or polar headgroup. However, in DPPC-water system, the drug seems to penetrate the acyl chain region also.  相似文献   

9.
Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structures of mixed-ganglioside GT1b-phospholipid monolayers were investigated at the air-liquid interface and compared with monolayers of the pure components. The receptor GT1b is involved in the binding of lectins and toxins, including botulinum neurotoxin, to cell membranes. Monolayers composed of 20 mol % ganglioside GT1b, the phospholipid dipalmitoyl phosphatidylethanolamine (DPPE), and the phospholipid dipalmitoyl phosphatidylcholine (DPPC) were studied in the gel phase at 23°C and at surface pressures of 20 and 40 mN/m, and at pH 7.4 and 5. Under these conditions, the two components did not phase-separate, and no evidence of domain formation was observed. The x-ray scattering measurements revealed that GT1b was intercalated within the host DPPE/DPPC monolayers, and slightly expanded DPPE but condensed the DPPC matrix. The oligosaccharide headgroups extended normally from the monolayer surfaces into the subphase. This study demonstrated that these monolayers can serve as platforms for investigating toxin membrane binding and penetration.  相似文献   

10.
The interaction between 1-decyloxymethyl-3-carbamoylpyridinium salts (PS-X) and two types of vesicles (multilamellar vesicle and sonicated vesicle) was investigated. Vesicles were formed from two classes of phospholipids: 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (DPPE). The PS-X salts used had nitrate, perchlorate, tetrafluoroborate and halides as counterions. Measurements were carried out using differential scanning calorimetry and 1H NMR. All studied compounds decreased the main phase transition temperatures of both DPPC and DPPE bilayers. All of them also decreased the transition enthalpy of DPPC bilayers, however they had a dual effect on the transition enthalpy of DPPE. Namely, at low concentrations the PS-X salts studied significantly increased the main transition enthalpy of DPPE (perchlorate and tetrafluoroborate the least among them) and decreased it at higher concentrations. We have suggested that surfactant rich and pure domains form on the DPPE bilayer in the presence of PS-ClO4, PS-BF4 and PS-NO3, whereas they form on DPPC bilayer only in the presence of PS-ClO4. Results are discussed in terms of counterion molecular geometry and the ability of amide group to form hydrogen bonds with lipids.  相似文献   

11.
The influence of the addition of Ca2+ on the phase behaviour of vesicles, composed of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidic acid (DMPA) in a ratio of 4 to 1, has been investigated by means of turbidity measurements. As expected one single phase transition for the mixed phospholipids was observed in the absence of Ca2+. Passing through the temperature range of this transition after the addition of Ca2+, conditions appeared to favor fusion of the vesicles. A possible reason for this is that during the transition Ca2+ may permeate through the vesicle membranes and gain access to the inside DMPA binding sites. Therefore it is not unambiguously possible to determine phase transition temperatures from the turbidity changes that occur under these conditions. However, when within the temperature range of the phase transition of the mixed phospholipids the influence of Ca2+ addition to the vesicles was recorded isothermally, at each temperature separately, the final plot of turbidity versus temperature turned out to be far less confused by fusion events and adopted the form of two separate phase transitions. The temperatures at which these two transitions occur closely resemble the phase transition temperatures that may be observed in the absence of Ca2+ for DMPA and DPPC alone, 39 degrees C and 43 degrees C respectively. The results of this study suggest that when Ca2+ has only access to the outside of the vesicle membranes it may segregate the neutral and the acidic phospholipids into separate domains, both domains adopting their proper phase condition at the actual temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The relative force-pCa relation of skinned frog skeletal muscle fibers is shifted along the pCa axis by changes in pH. This shift has been interpreted as arising from competition between H+ and Ca2+ for a binding site on troponin. Unfortunately, binding studies have been unable to confirm such competition. Alternatively, however, the data fit a model where H+ influences the degree of dissociation of ionizable groups on the surface of the thin filaments, thus altering the electrostatic potential surrounding the filaments. Alterations in the potential will, in turn, change the concentration of Ca2+ near the troponin binding sites in accordance with the Boltzmann relation. A simple model, based upon the Gouy-Chapman relation between surface potential and charge density, provides a quantitative explanation for the shift of the relative force-pCa curve with pH, given a reasonable estimate of the surface charge density on the thin filament. A best fit is obtained when the ionizable groups giving rise to the potential have a log proton ionization constant (pKa) of 6.1, similar to that for the imidazole group on histidine, and when the density of these groups is near that estimated from amino acid analysis of thin filament proteins and from filament geometry. In preliminary experiments, reaction of skinned frog fibers with diethylpyrocarbonate (DEP) at pH 6 shifted the force-pCa curve toward lower Ca2+. This would be expected in the model since DEP at pH 6 is reported to specifically react with histidine imidazole groups and to irreversibly decrease their pKa, which would increase the net negative charge of the filaments.  相似文献   

13.
Mixed monolayers of the surface-active lipopeptide surfactin-C(15) and various lipids differing by their chain length (DMPC, DPPC, DSPC) and polar headgroup (DPPC, DPPE, DPPS) were investigated by atomic force microscopy (AFM) in combination with molecular modeling (Hypermatrix procedure) and surface pressure-area isotherms. In the presence of surfactin, AFM topographic images showed phase separation for each surfactin-phospholipid system except for surfactin-DMPC, which was in good agreement with compression isotherms. On the basis of domain shape and line tension theory, we conclude that the miscibility between surfactin and phospholipids is higher for shorter chain lengths (DMPC>DPPC>DSPC) and that the polar headgroup of phospholipids influences the miscibility of surfactin in the order DPPC>DPPE>DPPS. Molecular modeling data show that mixing surfactin and DPPC has a destabilizing effect on DPPC monolayer while it has a stabilizing effect towards DPPE and DPPS molecular interactions. Our results provide valuable information on the activity mechanism of surfactin and may be useful for the design of surfactin delivery systems.  相似文献   

14.
Dimeric T. flavoviridis phospholipase A2 has been studied in terms of the interaction with essential Ca2+ by equilibrium gel filtration, ultraviolet difference spectroscopy, fluorescence measurements, and chemical modifications with p-bromophenacyl bromide. The subunit bound to Ca2+ with a 1:1 molar ratio and no cooperative binding was observed. The hypochromic effect produced upon the binding of Ca2+ is due to perturbation of (a) specific tryptophan residue(s) located in the vicinity of the active site and appears to be characteristic of this enzyme. On the basis of the pH dependence of the dissociation constants, it has been found that the alpha-amino group (pKa 8.7) controls the binding of Ca2+. Deprotonation of the alpha-amino group is possibly accompanied by conformational transition to the active form which is able to bind Ca2+. This is in contrast to the case of bovine pancreatic phospholipase A2 in which Asp-49 (pKa 5.2) is responsible for the metal ion binding (Fleer et al. (1981) Eur. J. Biochem. 113, 283-288). Des-octapeptide(1-8)-phospholipase A2 (L-fragment) was found to be capable of binding Ca2+ under the control of a group with a pKa of 7.6. This pKa value was similar to an apparent pKa of 7.5 determined for the histidine residue in the active site of the native enzyme by way of p-bromophenacyl bromide modification. It appears that the N-terminal (octapeptide) sequence affects the binding mode of Ca2+, possibly because of conformational transition arising from its removal. The reinvestigation showed that the N-terminal octapeptide sequence is Gly-Leu-Trp-Gln-Phe-Glu-Asn-Met.  相似文献   

15.
Electrophoretic light scattering (ELS) and depolarization of fluorescence have been used to determine the effect of membrane fluidity on the binding of Ca2+ to liposomes. ELS was used to measure the electrophoretic mobilities of the liposomes. Fluorescence depolarization was used to determine membrane fluidity. Zero to 30 mol% phosphatidylserine (PS) was incorporated into liposomes containing, as bulk phospholipids, one of the following: dimyristoyl-phosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), egg phosphatidylcholine (PC), or hydrogenated egg phosphatidylcholine (H egg PC). The binding of Ca2+ to the liposomes appears to be influenced by membrane fluidity. Liposomes containing bulk phospholipids whose phase transition temperature is higher than the experimental temperature exhibit enhanced binding of CA2+.  相似文献   

16.
Adding Ca2+ or other cations to deionized bacteriorhodopsin causes a blue to purple color shift, a result of deprotonation of Asp85. It has been proposed by different groups that the protonation state of Asp85 responds to the binding of Ca2+ either 1) directly at a specific site in the protein or 2) indirectly through the rise of the surface pH. We tested the idea of specific binding of Ca2+ and found that the surface pH, as determined from the ionization state of eosin covalently linked to engineered cysteine residues, rises about equally at both extracellular and cytoplasmic surfaces when only one Ca2+ is added. This precludes binding to a specific site and suggests that rather than decreasing the pKa of Asp85 by direct interaction, Ca2+ increases the surface pH by binding to anionic lipid groups. As Ca2+ is added the surface pH rises, but deprotonation of Asp85 occurs only when the surface pH approaches its pKa. The nonlinear relationship between Ca2+ binding and deprotonation of Asp85 from this effect is different in the wild-type protein and in various mutants and explains the observed complex and varied spectral titration curves.  相似文献   

17.
Phospholipases D (PLD) catalyse hydrolysis and transphosphatidylation reactions in phospholipids. In the present study, the hydrolytic activity for cabbage PLD was investigated with five different substrates (dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidylcholine (DPPC), didecanoylphosphatidylcholine (DDPC), 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine and lyso-phosphatidylcholine (lyso-PC)) in solution or adsorbed on a silica matrix. In the specific buffer solutions, where the substrates were proved to form large multilamellar polydisperse aggregates, PLD showed preference for DPPC > DPPE > DDPC > 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine > lyso-PC. When the substrates were adsorbed on the silica matrix, PLD hydrolysed 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine and lyso-PC, DDPC, but not DPPC or DPPE. Theoretical studies of the simplest possible adducts between the phospholipids and the silica matrix were performed. Examination of local geometries of DPPC showed a significant blocking of the P-O-X bond-prone to hydrolysis, which could possibly block the access of PLD. Immobilization of phospholipids could be applied for improving the yield of reactions catalysed by PLD as well as for performing a targeted production of short-chain length phosphatidic acid analogs.  相似文献   

18.
用CL(心磷脂)与DMPC(二肉豆蔻酰磷脂酰胆碱)或DPPC(二棕榈酰磷脂酰胆碱)所组成的两组体系制备脂质体,可形成少量管状脂质体.加Ca~(2+)或其它二价阳离子后可形成单股或双股螺旋.对产生这类螺旋脂质体的各种条件进行了研究.  相似文献   

19.
Au(DPPE)+2 (bis[1,2-bis(diphenylphosphino)ethane] gold(I] is an organo-gold antineoplastic agent that has anti-tumor activity in a variety of in vitro cell lines and in vivo rodent tumor models. Preliminary studies suggested that this compound represented a novel class of inhibitors of mitochondrial function. The purpose of this study was, therefore, to determine the mechanism of mitochondrial dysfunction induced by Au(DPPE)+2. Au(DPPE)+2 induced a rapid, dose-related collapse of the inner mitochondrial membrane potential (EC50 = 28.0 microM) that was not potentiated by Ca2+ preloading. Au(DPPE)+2-induced dissipation of mitochondrial membrane potential was accompanied by an efflux of Ca2+ from mitochondria upon exposure to Au(DPPE)+2. Ca2+ efflux in these experiments was via a reversal of the Ca2+ uniporter as efflux could be inhibited with ruthenium red. Au(DPPE)+2 did not increase the permeability of mitochondria to oxalacetate, indicating that the collapse of membrane potential may not be a result of gross increased inner membrane permeability. However, Au(DPPE)+2 may mediate an increased permeability of the inner membrane to cations and protons. Au(DPPE)+2 caused passive swelling in potassium acetate buffer in the absence of valinomycin, suggesting Au(DPPE)+2 facilitated the exchange of H+ and K+. Ca2+ cycling was not extensive and did not contribute to the decrease in membrane potential. These data suggest that one possible mechanism of Au(DPPE+2-induced uncoupling of mitochondrial oxidative phosphorylation is via increased permeability of the inner mitochondrial membrane to cations. The disruption of mitochondrial function may be a key process leading to hepatocyte cell injury by this drug.  相似文献   

20.
Molecular dynamics simulations have been used to study structural and dynamic properties of fully hydrated mixed 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) bilayers at 0, 25, 50, 75, and 100 mol % DPPE. Simulations were performed for 50 ns at 350 K and 1 bar for the liquid-crystalline state of the mixtures. Results show that the average area per headgroup reduces from 0.65 +/- 0.01 nm(2) in pure DPPC to 0.52 +/- 0.01 nm(2) in pure DPPE systems. The lipid tails become more ordered with increasing DPPE concentration, resulting in a slight increase in membrane thickness (3.43 +/- 0.01 nm in pure DPPC to 4.00 +/- 0.01 nm in pure DPPE). The calculated area per headgroup and order parameter for pure DPPE deviates significantly from available experimental measurements, suggesting that the force field employed requires further refinement. In-depth analysis of the hydrogen-bond distribution in DPPE molecules shows that the amine groups strongly interact with the phosphate and carbonyl groups through inter/intramolecular hydrogen bonds. This yields a bilayer structure with DPPE headgroups preferentially located near the lipid phosphate and ester oxygens. It is observed that increasing DPPE concentrations causes competitive hydrogen bonding between the amine groups (hydrogen-donor) and the phosphate/carbonyl groups or water (hydrogen-acceptor). Due to the increasing number of hydrogen-donors from DPPE molecules with increasing concentration, DPPE becomes more hydrated. Trajectory analysis shows that DPPE molecules in the lipid mixtures move laterally and randomly around the membrane surface and the movement becomes more localized with increasing DPPE concentrations. For the conditions and simulation time considered, no aggregation or phase separation was observed between DPPC and DPPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号