首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robinia pseudoacacia microsymbionts from plants growing in Poland and Japan were evaluated for phylogeny and taxonomic position by genomic approach. Based on the comparative analyses of atpD (368 bp) and dnaK (573 bp) gene sequences as well as 16S rDNA restriction analysis (RFLP-16S rDNA), R. pseudoacacia microsymbionts were identified as Mesorhizobium strains. In dnaK and atpD gene phylograms R. pseudoacacia nodulators formed robust, monophyletic clusters with Mesorhizobium species with the nucleotide sequence similarity of 91–98% and 90–98%, respectively. The classification of R. pseudoacacia rhizobia to the genus Mesorhizobium was also supported by amplified 16S rDNA restriction analysis. The studied bacteria formed common clusters with Mesorhizobium species, and their DNA patterns were identical or nearly identical to Mesorhizobium genus strains. When DNA-DNA hybridization was performed, the total DNA of the representative R. pseudoacacia rhizobia exhibited 51–75% relatedness to DNA of Mesorhizobium amorphae ICMP15022 strain and below 41% to DNA of other Mesorhizobium species. These results showed that R. pseudoacacia and M. amorphae belong to the same genomospecies. The G+C content of DNA of R. pseudoacacia two microsymbionts was 59.7 and 60.6 mol% compared to 61–64 mol% across M. amorphae strains.  相似文献   

2.
Fifteen bacterial isolates, representatives of different 16S rRNA-RFLP genomogroups which were isolated from root nodules of Lotus creticus and L. pusillus growing in the arid areas of Tunisia were characterized by phenotypic features and 16S rDNA sequences. Phenotypically, all isolates are fast growers with the ability to grow at a pH between 5.5 and 9. Most of the tested isolates tolerate NaCl concentrations from 1.39 to 3.48 %. Phylogenetically, the studied isolates are affiliated into the genera: Sinorhizobium (5 strains), Rhizobium (2 strains), and Mesorhizobium (4 strains). The 16S rDNA sequences of Tunisian Lotus sp. nodule isolates: LAC7511, LAC733, and Mesorhizobium alhagi (Alhagi sparsifolia symbiont) shared 100 % identical nucleotides similar to the 16S rDNA sequences of LAC831, LAC814 and Mesorhizobium temperatum CCNWSX0012-2 (Astragalus adsurgens symbiont). Non-nodulating bacteria, considered as endophytes of Lotus sp. nodules, were also found in our studies and they were classified into the genera: Phyllobacterium (2 strains), Starkeya (1 strain) and Pseudomonas (1 strain). Except for these four endophytic Lotus sp. bacteria, all other strains under investigation induce nodules on Lotus sp., but they differ in the number of induced root nodules and the effectiveness of atmospheric nitrogen fixation. The Sinorhizobium sp., Mesohizobium sp. and Lotus sp. nodule isolates, forming the most effective symbiosis with the plant host, are potential candidates for inoculants in revegetation programs.  相似文献   

3.
In the present study, a total of 154 bacterial strains isolated from nodules of eighteen Vicia species mainly grown in the temperate Chinese provinces were characterized by ARDRA, ITS PCR–RFLP, BOX-PCR, sequencing of 16S rDNA, nodC, nifH, atpD and glnII, and nodulation tests. The results demonstrated that most of the R. leguminosarum strains were effective microsymbionts of the wild Vicia species, while genomic species related to Rhizobium gallicum, Mesorhizobium huakuii, Ensifer meliloti and Bradyrhizobium spp. were symbiotic bacteria occasionally nodulating with Vicia species. In addition, fourteen strains related to Agrobacterium, Phyllobacterium, Ensifer, Shinella and R. tropici, as well as 22 strains of R. leguminosarum might be nodule endophytes without symbiotic genes. Diverse symbiotic gene lineages were found among the test strains and a strong association was found among the symbiotic gene types and genomic species, indicating the absence of lateral gene transfer. These results greatly enlarged the rhizobial spectrum of Vicia species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
In this study, the nitrogen fixing Astragalus glycyphyllos symbionts were characterized by phenotypic properties, restriction fragment length polymorphism (RFLP), and sequences of 16S rDNA. The generation time of A. glycyphyllos rhizobia in yeast extract mannitol medium was in the range 4–6 h. The studied isolates exhibited a low resistance to antibiotics, a moderate tolerance to NaCl, assimilated di- and trisaccharides, and produced acid in medium containing mannitol as a sole carbon source. In the cluster analysis, based on 86 phenotypic properties of A. glycyphyllos symbionts and the reference rhizobia, examined isolates and the genus Mesorhizobium strains were placed on a single branch, clearly distinct from other lineages of rhizobial genera. By the comparative analysis of 16S rRNA gene sequences and 16S rDNA–RFLP, A. glycyphyllos nodulators were also identified as the members of the genus Mesorhizobium. On the 16S rDNA sequence phylogram, the representatives of A. glycyphyllos nodule isolates formed a robust, monophyletic cluster together with the Mesorhizobium species at 16S rDNA sequence similarity of these bacteria between 95 and 99 %. Similarly, the cluster analysis of the combined RFLP–16S rDNA patterns, obtained with seven restriction endonucleases, showed that A. glycyphyllos rhizobia are closely related to the genus Mesorhizobium bacteria. The taxonomic approaches used in this paper allowed us to classify the studied bacteria into the genus Mesorhizobium.  相似文献   

5.
Thirty-seven rhizobium strains, isolated from root nodules of Astragalus cicer (L.) (cicer milkvetch) deriving from different geographic regions, were compared with the representative strains of the known rhizobial species and genera by numerical analysis of phenotypic characteristics. Our results indicated that Astragalus cicer rhizobia were related to the bacteria of Mesorhizobium species and formed two major phena. One phenon, localized on Mesorhizobium loti branch, contained strains from Poland. Another cluster, placed in the vicinity of M. tianshanense, M. mediterraneum, M. ciceri, and M. huakuii, comprised cicer milkvetch nodule isolates from Canada, Ukraine, and one strain from Poland. The relationship of Astragalus cicer microsymbionts to bacteria of the Mesorhizobium species was also supported by phage typing. Received: 10 February 2000 / Accepted: 8 March 2000  相似文献   

6.
7.
Kurdistan province of Iran is one of the main places for producing chickpea, and there is no published research on root-nodulating bacteria of this crop. Plant samples were collected and a total of 73 Rhizobium strains were isolated from root nodules. Nodulation test was done on chickpea plants. Phenotypic characteristics of the 16 representative strains were determined based on the standard bacteriological methods. Total soluble cell protein patterns by electrophoresis approach (SDS-PAGE) showed heterogeneity among the tested rhizobia strains. Based on the phenotypic features, Rhizobium strains of three groups belong to different species of the genus Mesorhizobioum including M. ciceri and M. mediterraneum and Mesorhizobium sp. The PCR technique was employed for amplification of 16S rDNA and atpD genes. For further characterisation, amplified fragment of 16S rDNA gene from a representative strain (AK21) using primers 41F and 1488R was subjected to sequencing. Sequences were aligned by BLAST software at NCBI GenBank and results showed 99% similarity with M. mediterraneum strain BKBCF3q.  相似文献   

8.
A series of expression vectors containing TurboGFP and TurboRFP genes of fluorescent proteins under the control of the T5 phage constitutive promoter was created for a vital staining of nodule bacteria. These vectors were either obtained using the broad host range pBBRI replicon for labeling of strains, where a marker gene was expressed from a transformed plasmid, or they were prepared using the pRL765 gfp plasmid for labeling of strains via the introduction of genes of fluorescent proteins into the bacterial chromosome. Transformation was shown to be the most convenient method of transfer of constructions into cells of nodule bacteria, as there exists the possibility of spontaneous plasmid mobilization and, consequently, its transition from cells of labeled strains into other soil bacteria if the mob locus is present in vectors needed for conjugation. Fluorescent labeled strains of Rhizobium sp., Mesorhizobium sp., Ensifer (Sinorhizobium) sp., Bradyrhizobium sp., Phyllobacterium sp., and Agrobacterium sp. were prepared using the obtained vector constructions. The suitability of the obtained strains for both in vivo and in vitro experiments was demonstrated.  相似文献   

9.
Intra-specific diversity of 200 Aureobasidium pullulans strains isolated from different sources and their relatives Kabatiella lini CBS 125.21 T and Hormonema prunorum CBS 933.72 T were studied by assessment of macromorphological, and physiological tests, sodium dodecyl sulfate-polyacrylamide gel electrophoresis technique (SDS–PAGE) of whole-cell proteins as well as enterobacterial repetitive intergenic consensus (ERIC)-, repetitive extragenic palindromic (REP)- and BOX-PCR techniques (collectively known as rep-PCR). Rep-PCR is an efficient procedure for discrimination of A. pullulans in terms of simplicity and rapidity. RFLP-PCR technique was applied for the identification of A. pullulans isolates and distinction from related species. This technique was insufficient for investigation of intra-specific diversity. The tested strains of A. pullulans could be divided into two groups based on their macromorphological, protein patterns obtained after SDS-PAGE as well as rep-PCR patterns. The first group of strains shared similar characteristics and was very different from the second one, designated as “complex group”, consisting of strains with very little similarities within the group. Phenetic analysis of ERIC banding patterns failed to group the isolates on the basis of their substrate or geographical origin. Using 18S rDNA gene sequence analysis of selected isolates, three strains: HoHe3 km, A. pullulans DSM 62074 and H. prunorum CBS 933.72 T were distinguished from all other analysed members of genera Aureobasidium and Kabatiella. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The karyotype analysis and physical locations of 45S rDNA were carried out by means of fluorescence in situ hybridization in three species, and two forms of Sophora, two species of Robina, and one species of Amorpha. S. japonica L., S. japonica L. f. oligophylla Franch., S. japonica L. f. pendula Loud., and S. xanthantha C. Y. Ma. are all tetraploids with 2n = 28. There were four 45S rDNA sites in pericentromeric regions of two pairs of chromosomes in each of them. S. rubriflora Tsoong. is a triploid with 2n = 21, and three sites were located in each satellite of group 5 chromosomes. In R. pseudoacacia L. (2n = 2x = 22), we examined four intensive signals in telomeric regions of two pairs of satellite chromosomes. In R. hispida L. (2n = 2x = 30), there were four other signals in centromeric regions besides those like in R. pseudoacacia. Amorpha fruticosa L. has most chromosomes (2n = 40) among the eight materials, however, there were only six 45S rDNA loci and they laid in centromeric regions, and satellites of three pairs of chromosomes. 45S rDNA is a valuable chromosomal landmark in karyotype analysis. The distribution and genomic organization of rDNA in the three genera were also discussed. __________ Translated from Acta Botanica Yunnanica, 2005, 27(3): 261–268 [译自: 云南植物研究, 2005, 27(3): 261–268]  相似文献   

11.
A total of eight strains of bacteria were isolated from the root nodule of Vicia faba on the selective media of Rhizobium. Two of these strains produced phenotypically distinct mucoid colonies (one slow growing and the other fast growing) and were examined using a polyphasic approach for taxonomic identification. The two strains (MTCC 7405 and MTCC 7406) turned out to be new strains of biovar 1 Agrobacterium rather than Rhizobium, as they showed growth on alkaline medium as well as on 2% NaCl and neither catabolized lactose as the carbon source nor oxidized Tween-80. The distinctness between the two strains was marked with respect to their growth on dextrose and the production of lysine dihydrolase, ornithine decarboxylase and DNA G + C content. 16S rDNA sequencing and their comparison with the 16S rDNA sequences of previously described agrobacteria as well as rhizobia strains confirmed the novelty of the two strains. Both of the strains clustered with strains of Agrobacterium tumefaciens in the 16S rDNA-based phylogenetic tree. The phenotypic and biochemical properties of the two strains differed from those of the recognized biovar of A. tumefaciens. It is proposed that the strains MTCC 7405 and MTCC 7406 be classified as novel biovar of the species A. tumefaciens (Type strains MTCC 7405 = DQ383275 and MTCC 7406 = DQ383276).
Bhupendra N. TiwaryEmail:
  相似文献   

12.
Nodulation abilities of bacteria in the subclasses Gammaproteobacteria and Betaproteobacteria on black locust (Robinia pseudoacacia) were tested. Pseudomonas sp., Burkholderia sp., Klebsiella sp., and Paenibacillus sp. were isolated from surface-sterilized black locust nodules, but their nodulation ability is unknown. The aims of this study were to determine if these bacteria are symbiotic. The species and genera of the strains were determined by RFLP analysis and DNA sequencing of 16S rRNA gene. Inoculation tests and histological studies revealed that Pseudomonas sp. and Burkholderia sp. formed nodules on black locust and also developed differentiated nodule tissue. Furthermore, a phylogenetic analysis of nodA and a BLASTN analysis of the nodC, nifH, and nifHD genes revealed that these symbiotic genes of Pseudomonas sp. and Burkholderia sp. have high similarities with those of rhizobial species, indicating that the strains acquired the symbiotic genes from rhizobial species in the soil. Therefore, in an actual rhizosphere, bacterial diversity of nodulating legumes may be broader than expected in the Alpha-, Beta-, and Gammaproteobacteria subclasses. The results indicate the importance of horizontal gene transfer for establishing symbiotic interactions in the rhizosphere.  相似文献   

13.
Three lytic phages (ΦRP1, ΦRP2, and ΦRP3) specific for Robinia pseudoacacia rhizobia were isolated from the soil under black locust. They were characterized by their morphology, host range, and some other properties including DNA molecular weights. Studied phages have been found to belong to Siphoviridae family that comprises viruses with long, and noncontractile tails. They had broad host ranges and effectively lysed not only Robinia pseudoacacia microsymbionts but also different Mesorhizobium species. The phages were homogenous in latent periods (300 min) but heterogeneous in burst sizes (100–200 phage particles per one infected cell) and rise periods (90–120 min). They showed a distinct adsorption rate to Robinia pseudoacacia rhizobia (70.4–93.94%). The molecular weights of phage DNAs estimated from restriction enzyme digests were in the range from ca. 82 kb to ca. 105 kb.  相似文献   

14.
Eighty-two strains of rhizobia were isolated from soils taken from several sites in Mauritania and Senegal. These soil samples were collected from natural stands of Acacia nilotica and Acacia senegal. The soils from Mauritania were less rich in native rhizobia than the soils from Senegal. The strains were characterized using polymerase chain reaction–restriction fragment length polymorphism and by sequencing the rDNA 16S–23S intergenic spacer region (IGS). They were sorted into seven IGS groups. These groups were not associated with the geographical origin of the strains or with the host-plant species at the site where the soils were collected. Most of the strains were in three of the IGS groups (I, IV, and V). One representative strain from each IGS group was sequenced and showed that the strains were from the genus Mesorhizobium. IGS groups I, IV, and VI were close to the species M. plurifarium (AF34563), IGS groups IIand III were close to the species Mesorhizobium sp. (AF510360), IGS group V was close to the species Mesorhizobium sp. (AF510366), and IGS group VII was close to Mesorhizobium sp. (AF510346).  相似文献   

15.
The taxonomic study of two Gram-negative, aerobic, non-pigmented bacteria KMM 9010T and KMM 9023T isolated from a sandy sediment sample collected from the Sea of Japan seashore was performed. On the basis of the nearly complete 16S rRNA gene sequences, strains KMM 9010T and KMM 9023T clustered with the Roseobacter lineage (class Alphaproteobacteria) forming a distinct phylogenetic line adjacent to the genus Donghicola. Novel strains shared the highest sequence similarity of 96.4% to each other and lower than 96.1% similarities to other validly named genera of the class Alphaproteobacteria. In both strains, ubiquinone Q-10 was found to be the major respiratory quinone; phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidic acid, and an unknown aminolipid were the major polar lipids and C18:1ω7c and 11-methyl C18:1ω7c were predominant fatty acids. The DNA G+C content was 60.5 mol% (KMM 9010T) and 65.4 mol% (KMM 9023T). Based on phenotypic properties and phylogenetic evidence, strains KMM 9010T and KMM 9023T should be classified as two novel species in a new genus, Poseidonocella gen. nov., with Poseidonocella pacifica sp. nov., the type species with the type strain KMM 9010T (= NRIC 0794T = JCM 17310T), and Poseidonocella sedimentorum sp. nov. as the second species with the type strain KMM 9023T (= NRIC 0796T = JCM 17311T).  相似文献   

16.
Eighty-eight root-nodule isolates from Lespedeza spp. grown in temperate and subtropical regions of China were characterized by a polyphasic approach. Nine clusters were defined in numerical taxonomy and SDS-PAGE analysis of whole cell proteins. Based upon further characterizations of amplified 16S rDNA restriction analysis (ARDRA), PCR-based restriction fragment length polymorphism of ribosomal IGS, 16S rDNA sequence analysis and DNA-DNA hybridization, these isolates were identified as Bradyrhizobium japonicum, B. elkanii, B. yuanmingense, Mesorhizobium amorphae, M. huakuii, Sinorhizobium meliloti and three genomic species related to B. yuanmingense, Rhizobium gallicum and R. tropici. The Bradyrhizobium species and R. tropici-related rhizobia were mainly isolated from the subtropical region and the species of Mesorhizobium, S. meliloti and R. gallicum-related species were all isolated from the temperate region. Phylogenetic analyses of nifH and nodC indicated that the symbiotic genes of distinct rhizobial species associated with Lespedeza spp. might have different origins and there was no evidence for lateral gene transfer of symbiotic genes. The results obtained in the present study and in a previous report demonstrated that Lespedeza spp. are nodulated by rhizobia with diverse genomic backgrounds and these Lespedeza-nodulating rhizobia were not specific to the host species, but specific to their geographic origins. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. GenBank sequence accession numbers: The GenBank accession numbers were EF61095 through EF061114 and EF051240 for acquired 16S rDNA sequences; EF153395 through EF153402 for nifH sequences; and EF153403 through EF153410 for nodC sequences.  相似文献   

17.
The Order Zoantharia has long been taxonomically neglected primarily due to difficulty in examining the internal morphology of sand-encrusted zoanthids. However, recent work using molecular markers has shown an unexpectedly high diversity of previously “hidden” taxa (families and genera) within Zoantharia (=Zoanthidea, Zoanthiniaria). In this study, unidentified sediment-encrusting zoanthid specimens (n = 8) were collected from living Japanese Red Coral Paracorallium japonicum (Family Coralliidae) during precious coral harvesting by Remotely Operated Vehicle (ROV) and manned submersible (February 2004–January 2006) at depths of 194–250 m at six locations between Ishigaki-jima Island and Kikai-jima Island, southern Japan. DNA sequences (mitochondrial 16S ribosomal DNA [mt 16S rDNA], cytochrome oxidase subunit I [COI], nuclear internal transcribed spacer of ribosomal DNA [ITS-rDNA]) unambiguously place these specimens in a previously undescribed, new monophyletic lineage within the family Parazoanthidae. Corallizoanthus tsukaharai, gen. n. et sp. n. is the first reported zoanthid species associated with the family Coralliidae and unlike other described gorgonian-associated zoanthids (Savalia spp.) does not secrete its own hard axis. Morphologically, C. tsukaharai sp. n. is characterized by generally unitary polyps and bright yellow external coloration. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Communicated by Biology Editor Dr Ruth Gates  相似文献   

18.
Fifty-five bacterial isolates were obtained from surface-sterilized nodules of woody and shrub legumes growing in Ethiopia: Crotalaria spp., Indigofera spp., and Erythrina brucei, and the food legumes soybean and common bean. Based on partial 16S rRNA gene sequence analysis, the majority of the isolates were identified as Gram-negative bacteria belonging to the genera Achromobacter, Agrobacterium, Burkholderia, Cronobacter, Enterobacter, Mesorhizobium, Novosphingobium, Pantoea, Pseudomonas, Rahnella, Rhizobium, Serratia, and Variovorax. Seven isolates were Gram-positive bacteria belonging to the genera Bacillus, Paenibacillus, Planomicrobium, and Rhodococcus. Amplified fragment length polymorphism (AFLP) fingerprinting showed that each strain was genetically distinct. According to phylogenetic analysis of recA, glnII, rpoB, and 16S rRNA gene sequences, Rhizobium, Mesorhizobium, and Agrobacterium were further classified into six different genospecies: Agrobacterium spp., Agrobacterium radiobacter, Rhizobium sp., Rhizobium phaseoli, Mesorhizobium sp., and putative new Rhizobium species. The strains from R. phaseoli, Rhizobium sp. IAR30, and Mesorhizobium sp. ERR6 induced nodules on their host plants. The other strains did not form nodules on their original host. Nine endophytic bacterial strains representing seven genera, Agrobacterium, Burkholderia, Paenibacillus, Pantoea, Pseudomonas, Rhizobium, and Serratia, were found to colonize nodules of Crotalaria incana and common bean on co-inoculation with symbiotic rhizobia. Four endophytic Rhizobium and two Agrobacterium strains had identical nifH gene sequences with symbiotic Rhizobium strains, suggesting horizontal gene transfer. Most symbiotic and nonsymbiotic endophytic bacteria showed plant growth-promoting properties in vitro, which indicate their potential role in the promotion of plant growth when colonizing plant roots and the rhizosphere.  相似文献   

19.
Endophytic fungi were isolated from healthy, living, and symptomless tissues of inner bark, leaf, and roots of Aegle marmelos, a well-known medicinal plant, growing in different parts of India including Varanasi. A total of 79 isolates of endophytic fungi were isolated, representing 21 genera, adopting a standard isolation protocol. Members of the deuteromycotina were more prevalent than ascomycotina and others. The result was quite encouraging in terms of maximum isolates recovery from hyphomycetes (78.5%) followed by ascomycetes (8.9%) and coelomycetes (7.6%) respectively, which corroborates previous studies in same area. However, 5.1% isolates remained unidentified and were classified under Mycelia Sterilia. No isolate was obtained from either basidiomycotina or from zygomycotina. Fusarium spp. had maximum colonization frequency (8.00%) in this plant. The other dominant endophytic genera were Aspergillus spp., Alternaria sp., Drechslera sp., Rhizoctonia sp., Curvularia sp., Nigrospora sp., and Stenella sp. Only two ascomycetous members Chaetomium globosum and Emericella sp. (perfect state of Aspergillus sp.) were obtained from the bark sample. These results indicated that distribution of endophytic fungi within the A. marmelos is not even. Bark harbors more endophytic fungi than leaf and root.  相似文献   

20.
In this study, Pseudomonas species were isolated from the rhizospheres of two plant hosts: rice (Oryza sativa cultivar Pathum Thani 1) and maize (Zea mays cultivar DK888). The genotypic diversity of isolates was determined on basis of amplified rDNA restriction analysis (ARDRA). This analysis showed that both plant varieties selected for two distinct populations of Pseudomonas. The actual biocontrol and plant promotion abilities of these strains was confirmed by bioassays on fungal (Verticillum sp., Rhizoctonia solani and Fusarium sp.) and bacterial (Ralstonia solanacearum and Bacillus subtilis) plant pathogens, as well as indole-3-acetic acid (IAA) production and carbon source utilization. There was a significant difference between isolates from rice and maize rhizosphere in terms of biological control against R.  solanacearum and B.  subtilis. Interestingly, none of the pseudomonads isolated from maize rhizosphere showed antagonistic activity against R.  solanacearum. This study indicated that the percentage of pseudomonad isolates obtained from rice rhizosphere which showed the ability to produce fluorescent pigments was almost threefold higher than pseudomonad isolates obtained from maize rhizosphere. Furthermore, the biocontrol assay results indicated that pseudomonad isolated from rice showed a higher ability to control bacterial and fungal root pathogens than pseudomonad isolates obtained from maize. This work clearly identified a number of isolates with potential for use as plant growth-promoting and biocontrol agents on rice and maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号