首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid droplets are ubiquitous cellular organelles that allow cells to store large amounts of neutral lipids for membrane synthesis and energy supply in times of starvation. Compared to other cellular organelles, lipid droplets are structurally unique as they are made of a hydrophobic core of neutral lipids and are separated to the cytosol only by a surrounding phospholipid monolayer. This phospholipid monolayer consists of over a hundred different phospholipid molecular species of which phosphatidylcholine is the most abundant lipid class. However, lipid droplets lack some indispensable activities of the phosphatidylcholine biogenic pathways suggesting that they partially depend on other organelles for phosphatidylcholine synthesis.  相似文献   

2.
Inositol lipids: receptor-stimulated hydrolysis and cellular lipid pools   总被引:3,自引:0,他引:3  
Our current knowledge of the process by which receptors stimulate the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) has its origin in the discovery by Hokin & Hokin (J. biol. Chem. 263, 967 (1953] that some pancreatic secretagogues not only elicit exocrine secretion but also stimulate the metabolism of membrane phospholipids. Despite the recent elucidation of many aspects of this widespread signalling system, there is still little information on the control of the supply of its substrate, PtdIns(4,5)P2. In particular, some studies have suggested that inositol-lipid-mediated signalling involves much or all of the inositol lipid complement of the stimulated cells, whereas other observations have equally clearly implicated the receptor-activated hydrolysis of an inositol phospholipid pool that comprises only a small fraction of the total cellular complement of these lipids. These studies, which have largely employed radiochemical analyses using single isotopes, are briefly reviewed. In addition, we report the first information obtained by a new procedure for analysing the metabolic characteristics of the inositol lipids that are broken down during stimulation. This technique employs cells that are doubly labelled in the inositol moiety of their lipids (to isotopic equilibrium with 14C and only briefly with 3H) to search for functional metabolic heterogeneity among the inositol lipids of stimulated cells. Using this method, we have found that the inositol phosphates liberated in stimulated cells during brief stimulation of V1a-vasopressin receptors or prostaglandin F2 alpha receptors come from phospholipid that has a turnover rate typical of the bulk of the cellular inositol lipids.  相似文献   

3.
Structural lipids are mostly synthesized in the endoplasmic reticulum (ER), from which they are actively transported to the membranes of other organelles. Lipids can leave the ER through vesicular trafficking or non-vesicular lipid transfer and, curiously, both processes can be regulated either by the transported lipid cargos themselves or by different secondary lipid species. For most structural lipids, transport out of the ER membrane is a key regulatory component controlling their synthesis. Distribution of the lipids between the two leaflets of the ER bilayer or between the ER and other membranes is also critical for maintaining the unique membrane properties of each cellular organelle. How cells integrate these processes within the ER depends on fine spatial segregation of the molecular components and intricate metabolic channeling, both of which we are only beginning to understand. This review will summarize some of these complex processes and attempt to identify the organizing principles that start to emerge. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.  相似文献   

4.
Glycerolipid transfer for the building of membranes in plant cells   总被引:5,自引:0,他引:5  
Membranes of plant organelles have specific glycerolipid compositions. Selective distribution of lipids at the levels of subcellular organelles, membrane leaflets and membrane domains reflects a complex and finely tuned lipid homeostasis. Glycerolipid neosynthesis occurs mainly in plastid envelope and endoplasmic reticulum membranes. Since most lipids are not only present in the membranes where they are synthesized, one cannot explain membrane specific lipid distribution by metabolic processes confined in each membrane compartment. In this review, we present our current understanding of glycerolipid trafficking in plant cells. We examine the potential mechanisms involved in lipid transport inside bilayers and from one membrane to another. We survey lipid transfers going through vesicular membrane flow and those dependent on lipid transfer proteins at membrane contact sites. By introducing recently described membrane lipid reorganization during phosphate deprivation and recent developments issued from mutant analyses, we detail the specific lipid transfers towards or outwards the chloroplast envelope.  相似文献   

5.
Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GM1 exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact cellular plasma membranes consistently reveals a constant level of confined diffusion for raft lipid analogs that vary greatly in their partitioning behavior, suggesting different physicochemical bases for these phenomena.  相似文献   

6.
Abstract: The role that inositol lipids play in cellular signaling events in eukaryotic cells remains one of the most intensively investigated areas of cell biology. In this respect, phosphoinositide-mediated signal transduction in the CNS is no exception; major advances have been made since a previous review on this subject (Fisher and Agranoff, 1987). Not only have stimulated phosphoinositide turnover and its physiological sequelae been demonstrated repeatedly in a variety of neural preparations, but, in addition, the detailed molecular mechanisms underlying these events continue to unfold. Here we review the progress that has occurred in selected aspects of this topic since 1987. In the first two sections of this article, emphasis is placed on novel functional roles for the inositol lipids and on recent insights into the molecular characteristics and regulation of three key components of the phosphoinositide signal transduction system, namely, the inositol lipid kinases, phospholipases C (PLCs), and the inositol 1,4,5-trisphosphate[I(1,4,5)P3] receptor. The metabolic fate of I(1,4,5)P3 in neural tissues, as well as its control, is also detailed. Later we focus on identification of the multiple receptor subtypes that are coupled to inositol lipid turnover and discuss possible strategies for intervention into phosphoinositide-mediated signal transduction. Due to space limitations, an extensive evaluation of the diacylglycerol/protein kinase C (DAG/PKC) limb of the signal transduction pathway is not included (for reviews, see Nishizuka, 1988; Kanoh et al., 1990).  相似文献   

7.
Lipid second messengers, particularly those derived from the polyphosphoinositide cycle, play a pivotal role in several cell signaling networks. Phosphoinositide 3-kinases (PI3Ks) generate specific inositol lipids that have been implicated in a plethora of cell functions. One of the best-characterized targets of PI3K lipid products is the serine/threonine protein kinase Akt. Recent findings have implicated Akt in cancer progression because it stimulates cell proliferation and suppresses apoptosis. Evidence accumulated over the past 15 years has highlighted the presence of an autonomous nuclear inositol lipid metabolism, and suggests that lipid molecules are important components of signaling pathways operating within the nucleus. PI3Ks, their lipid products, and Akt have also been identified at the nuclear level. In this review, we shall summarize the most updated findings about these molecules in relationship with the nuclear compartment and provide an overview of the possible mechanisms by which they regulate important cell functions.  相似文献   

8.
When quiescent 3T3 fibroblast cells were pre-labelled with [3H]inositol and stimulated with basic fibroblast growth factor there was a stimulation of the hydrolysis of membrane lipids and the rapid production of [3H]inositol polyphosphates. Rapid and transient peaks of isomers of inositol phosphates with the chromatographic properties of inositol trisphosphates and inositol tetrakisphosphates were detectable by anion-exchange HPLC between 5 and 10 s after stimulation. These data suggest that upon stimulation the receptor for fibroblast growth factor is coupled to a phosphoinositidase C and that one of its signal-transducing pathways involves hydrolysis of inositol lipids and the production of inositol polyphosphates, some of which may act as intracellular signals mediating the cellular response. Chronic stimulation with basic fibroblast growth factor is associated with desensitization of the inositol lipid signaling pathway.  相似文献   

9.
Phosphoinositides (PIs) constitute a minor fraction of total cellular lipids in all eukaryotic cells. They fulfill many important functions through interaction with a wide range of cellular proteins. Members of distinct inositol lipid kinase families catalyze the synthesis of these phospholipids from phosphatidylinositol. The hydrolysis of PIs involves phosphatases and isoforms of PI-specific phospholipase C. Although our knowledge of the roles played by plant PIs is clearly limited at present, there is no doubt that they are involved in many physiological processes during plant growth and development. In this review, we concentrate on inositol lipid-metabolizing enzymes from the model plant Arabidopsis for which biochemical characterization data are available, namely the inositol lipid kinases and PI-specific phospholipase Cs. The biochemical properties and structure of characterized and genome-predicted isoforms are presented and compared with those of the animal enzymes to show that the plant enzymes have some features clearly unique to this kingdom.  相似文献   

10.
Inositol lipids account for 15% of the total cellular phospholipids of Leishmania donovani promastigotes. Four major inositol lipids were identified and characterized: phosphatidylinositol (PI), phosphatidylinositol phosphate (PI-P), phosphatidylinositol diphosphate (PI-P2), and an inositol sphingophospholipid (InSL). Diacyl and alkyl acyl PI were identified. The major esterified fatty acids of PI, PI-P, and PI-P2 were similar and unlike those of mammalian inositol glycerolipids. Leishmania inositol glycerolipids contained only trace amounts of arachidonic acid; the major species were C16 and C18 acids. The InSL comprised about 40% of the inositol lipids. The amide-linked fatty acids of InSL were mainly C16 and C18 acids. Differential hydrolysis and nuclear magnetic resonance spectrometry indicated that the InSL had a phosphoryl bond. The major long chain bases of the InSL were identified by gas-liquid chromatography and high resolution mass spectrometry as straight chain C16 and C18 sphingosines. The finding of InSL in Leishmania is of interest because InSL have previously been found only in plants and fungi. Metabolic radiolabeling experiments suggest that this lipid may be a precursor of an antigenic cell surface membrane lipophosphoglycan which is shed into the culture medium by the organism.  相似文献   

11.
Integral membrane proteins have central roles in a vast number of vital cellular processes. A structural feature that most membrane proteins have in common is the presence of one or more alpha-helices with which they traverse the lipid bilayer. Because of the interaction with the surrounding lipids, the organization of these transmembrane helices will be sensitive to lipid properties like lateral packing, hydrophobic thickness, and headgroup charge. The helices may adapt to the lipids in different ways, which in turn can influence the structure and function of the intact membrane protein. In this review, we will focus on how the lipid environment influences two specific properties of transmembrane segments: their lateral association and their tilt with respect to the bilayer normal.  相似文献   

12.
Biological membranes have unique and highly diverse compositions of their lipid constituents. At present, we have only partial understanding of how membrane lipids and lipid domains regulate the structural integrity and functionality of cellular organelles, maintain the unique molecular composition of each organellar membrane by orchestrating the intracellular trafficking of membrane-bound proteins and lipids, and control the steady-state levels of numerous signaling molecules generated in biological membranes. Similar to other organellar membranes, a single lipid bilayer enclosing the peroxisome, an organelle known for its essential role in lipid metabolism, has a unique lipid composition and organizes some of its lipid and protein components into distinctive assemblies. This review highlights recent advances in our knowledge of how lipids and lipid domains of the peroxisomal membrane regulate the processes of peroxisome assembly and maintenance in the yeast Yarrowia lipolytica. We critically evaluate the molecular mechanisms through which lipid constituents of the peroxisomal membrane control these multistep processes and outline directions for future research in this field.  相似文献   

13.
The in vitro lipid requirements of UDP-N-acetylglucosamine-dolichol phosphate N-acetylglucosamine-1-phosphotransferase for the inositol-containing sphingolipids from Saccharomyces cerevisiae were characterized in terms of concentration and specificity. The effects of combinations of lipids, especially phosphatidylinositol and the inositol-containing sphingolipids, were also tested on the transferase. Phosphatidylinositol and phosphatidylglycerol stimulated the enzyme 3.3- and 2.8-fold, respectively. The inositol-containing sphingolipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine did not stimulate the activity of the transferase. Phosphatidylcholine and phosphatidylethanolamine in combination with phosphatidylinositol had no effect on the transferase activity; however, the inositol-containing sphingolipids markedly inhibited the stimulation of the transferase by phosphatidylinositol. This inhibition by the sphingolipids was prevented if phosphatidylcholine, in addition to the other lipids, was present in the assay mixture. In addition, changes due to inositol starvation in the in vivo membrane lipid environment, i.e., phosphatidylinositol and the inositol-containing sphingolipids, were analyzed to determine whether they corresponded to the observed in vitro effects. Three hours after the beginning of inositol starvation, there were 9- and 14-fold reductions in the accumulation of phosphatidylinositol in membrane fractions IIA (vesicles) and IV (endoplasmic reticulum), respectively, although there was only a 6-fold reduction in membrane fraction I (plasma membrane). The accumulation of [14C]inositol into inositol-containing sphingolipids also reflected the differences in the cellular location of membranes.  相似文献   

14.
Endocytosis is, besides secretion, the most prominent membrane transport pathway in eukaryotic cells. In membrane transport, defined areas of the donor membranes engulf solutes of the compartment they are bordering and bud off with the aid of coat proteins to form vesicles. These transport vehicles are guided along cytoskeletal paths, often matured and, finally, fuse to the acceptor membrane they are targeted to. Lipids and proteins are equally important components in membrane transport pathways. Not only are they the structural units of membranes and vesicles, but both classes of molecules also participate actively in membrane transport processes. Whereas proteins form the cytoskeleton and vesicle coats, confer signals and constitute attachment points for membrane-membrane interaction, lipids modulate the flexibility of bilayers, carry protein recognition sites and confer signals themselves. Over the last decade it has been realized that all classes of bilayer lipids, glycerophospholipids, sphingolipids and sterols, actively contribute to functional membrane transport, in particular to endocytosis. Thus, abnormal bilayer lipid metabolism leads to endocytic defects of different severity. Interestingly, there seems to be a great deal of interdependence and interaction among lipid classes. It will be a challenge to characterize this plenitude of interactions and find out about their impact on cellular processes.  相似文献   

15.
Mechanisms of Initiation of Membrane Fusion: Role of Lipids   总被引:3,自引:0,他引:3  
Main emphasis in studies on the mechanisms of fusion of cellular membranes has been in the roles of various proteins, with far less interest in the properties of lipids. Yet, on a molecular level fusion involves the merging of lipid bilayers. Studies so far have revealed lipids forming inverted non-lamellar phases to be important in controlling membrane fusion. However, the underlying molecular level mechanisms have remained controversial. While this review is focused on presenting one possible mechanism, involving so-called extended lipid conformation, we are also advocating the view, that in order to obtain a more complete understanding of this process it is necessary to merge the relevant physicochemical properties of lipids with the models describing the specific functions of proteins. To this end, taking into account the central importance of fusion in a wide range of cellular processes, we may anticipate its control to open novel possibilities also for therapeutic intervention.  相似文献   

16.
The sphingosine and diacylglycerol kinases form a superfamily of structurally related lipid signaling kinases. One of the striking features of these kinases is that although they are clearly involved in agonist-mediated signaling, this signaling is accomplished with only a moderate (and sometimes no) increase in the enzymatic activity of the enzymes. Here, we summarize findings that indicate that signaling by these kinases is strongly dependent on their localization to specific intracellular sites rather than on increases in enzyme activity. Both the substrates and products of these enzymes are bioactive lipids. Moreover, many of the metabolic enzymes that act on these lipids are found in specific organelles. Therefore, changes in the membrane localization of these signaling kinases have profound effects not only on the production of signaling lipid phosphates but also on the metabolism of the upstream signaling lipids.  相似文献   

17.
Strong evidence has been obtained during the last 16 years suggesting that phosphoinositides, which are involved in the regulation of a large variety of cellular processes in the cytoplasm and in the plasma membrane, are present within the nucleus. A number of advances has resulted in the discovery that nuclear phosphoinositides and their metabolizing enzymes are deeply involved in cell growth and differentiation. Remarkably, the nuclear inositide metabolism is regulated independently from that present elsewhere in the cell. Even though nuclear inositol lipids generate second messengers such as diacyglycerol and inositol 1,4,5-trisphosphate, it is becoming increasingly clear that in the nucleus polyphosphoinositides may act by themselves to influence functions such as pre-mRNA splicing and chromatin structure. This review aims at highlighting the most significant and up-dated findings about inositol lipid metabolism in the nucleus.  相似文献   

18.
Two cell lines transformed by the k-ras oncogene (KiKi and KiMol cells) and a temperature sensitive clone (Ts), all originated from a normal rat thyroid line (FRTL5 cells), have been employed to analyse the intracellular mechanisms affected by the ras p21. In k-ras transformed cells two phosphoinositide derivatives, glycerophosphoinositol and inositol monophosphate, were markedly increased, whereas inositol bisphosphate and trisphosphate maintained the same level as in normal cells. Cytosolic Ca2+ was also unaffected. This indicates that in epithelial cells the phospholipase C activity is not altered upon ras transformation. The formation of glycerophosphoinositol involved the activation of a phosphoinositide specific phospholipase A2. The higher phospholipase A2 activity in ras transformed cells could be further demonstrated by the increase in total arachidonic acid release. In the Ts clone the increase in glycerophosphoinositol and inositol monophosphate was evident only at the permissive temperature (33 degrees C), whereas it disappeared at 39 degrees C. At 33 degrees C the cells were also characterized by an enriched membrane pool of phosphoinositides. All these changes occurred in parallel with morphological transformation. We propose that cell transformation by the k-ras oncogene affects different steps of the membrane lipid metabolism, among which the most prominent one is the activation of a phosphoinositide specific phospholipase A2. These effects could originate mitogenic metabolites. Moreover, they correlate well with the induction of the malignant phenotype.  相似文献   

19.
Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins.  相似文献   

20.
Organelle biogenesis and intracellular lipid transport in eukaryotes.   总被引:8,自引:1,他引:7  
The inter- and intramembrane transport of phospholipids, sphingolipids, and sterols involves the most fundamental processes of membrane biogenesis. Identification of the mechanisms involved in these lipid transport reactions has lagged significantly behind that for intermembrane protein traffic until recently. Application of methods that include fluorescently labeled and spin-labeled lipid analogs, new cellular fractionation techniques, topographically specific chemical modification techniques, the identification of organelle-specific metabolism, permeabilized cell methodology, and yeast molecular genetics has contributed to revealing a diverse biochemical array of transport processes for lipids. Compelling evidence now exists for ATP-dependent, ATP-independent, vesicle-dependent, and vesicle-independent transport processes that are lipid and membrane specific. ATP-dependent transport processes include the transbilayer movement of phosphatidylserine and phosphatidylethanolamine at the plasma membrane and the transport of phosphatidylserine from its site of synthesis to the mitochondria. ATP-independent processes include the transbilayer movement of virtually all lipids at the endoplasmic reticulum, the movement of phosphatidylserine between the inner and outer mitochondrial membranes, and the transfer of nascent phosphatidylcholine and phosphatidylethanolamine to the plasma membrane. The ATP-independent movement of lipids between organelles is believed to be due to the action of lipid transfer proteins, but this still remains to be proved. Vesicle-based transport mechanisms (which are also inherently ATP dependent) include the transport of nascent cholesterol, sphingomyelin, and glycosphingolipids from the Golgi apparatus to the plasma membrane and the recycling of sphingolipids and selected pools of phosphatidylcholine from the plasma membrane to the cell interior. The vesicles involved in cholesterol transport to the plasma membrane are different from those involved in bulk protein transport to the cell surface. The vesicles involved in recycling sphingomyelin to and from the cell surface are different from those involved in the assembly of newly synthesized sphingolipids into the plasma membrane. The preliminary characterization of these lipid translocation processes suggests divergent rather than unifying mechanisms for lipid transport in organelle assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号