共查询到20条相似文献,搜索用时 78 毫秒
1.
γ节律振荡是大脑皮质中常见的,频率在30~80 Hz之间的神经振荡模式,在初级视觉通道中能观察到多种起源的γ节律振荡.在小鼠、猫与猴V1的视觉诱发的γ节律振荡主要起源于L2/3和L4B,并对刺激参数敏感.猫与小鼠初级视觉通道(视网膜、LGN与V1)中观察到起源于视网膜由亮度诱发的高频γ节律振荡;在猴LGN却没有观察到γ节律振荡,而在V1上记录到亮度诱发的γ活动.γ节律振荡的产生与抑制性中间神经元网络有重要的关系,其中抑制性中间神经元中PV细胞被认为与自发γ节律振荡的产生相关. SOM细胞的参与对低频γ节律振荡(20~40 Hz)的产生起到关键作用;而光栅诱发的高频γ节律振荡(65~80 Hz)主要与PV细胞有关.动物在不同生理状态、发育阶段与脑疾病状态下光栅诱发的γ节律振荡存在较大差异,反映大脑对视觉信息加工的变化. 相似文献
2.
恐惧作为个体应对内外界危险因素形成的自我保护机制的一部分,在生物体的生存中发挥着重要作用.但过度的恐惧不仅对个体生存无益,反而易引发创伤后应激障碍、焦虑等精神疾病,严重影响个体生活质量.临床上通常采用基于行为学研究结果的暴露疗法对恐惧相关疾病进行治疗,然而在患者处于治疗环境之外的时候,上述症状经常会复发.因此,解析恐惧记忆相关神经环路内信息处理的神经机制,对于理解这些疾病的发生发展,寻求切实有效的治疗方案至关重要.大量研究表明与恐惧记忆消退相关的脑区主要涉及杏仁核、内侧前额叶和海马.在恐惧消退的过程中,这3个脑区表现出特定的神经振荡模式,而且这些活动也具有同步性,构成了恐惧记忆成功消退的神经基础.未来可利用基于神经神经振荡的无创性脑刺激手段干预恐惧记忆消退的神经环路,以促进恐惧记忆的消退并避免复发,为恐惧相关障碍的临床治疗提供重要的科学依据. 相似文献
3.
4.
学习与记忆是大脑的重要高级功能,认知神经科学的迅速发展为探索学习与记忆的神经机制提供了新的思路和方法。突触的可塑性变化可能是记忆形成与巩固的分子与细胞机制,随着神经联结的形成,大脑构建出不同的记忆通路,不同类型的记忆又享有各自的记忆系统。对记忆的脑机制研究能够指导人们如何有效地提高记忆。论述了记忆的形成与巩固的神经机制,脑的记忆系统以及如何有效地提高记忆成绩。 相似文献
5.
大脑的感觉、情绪、认知等功能与其神经振荡模式有密切的联系。通过施加节律性刺激可以调控大脑的神经振荡模式,进而影响个体感受、情绪状态和认知功能等。与近年来常见的非侵入性电刺激和磁刺激相比,同样依赖于外部刺激输入的节律性感觉刺激具有成本低、易操作等优点,被认为是一种极具潜力的神经调控手段。本文以节律性听觉刺激为例,系统综述了不同类型的节律性听觉刺激如何影响大脑的神经振荡模式,进而影响相关状态和功能;并通过总结外部节律性听觉刺激对个体感知觉、情绪与认知功能的影响,讨论其生理机制和应用前景。 相似文献
6.
人脑每时每刻都要接收大量视觉信息,由于人脑加工信息的能力有限,所以在较大视野内将注意分配给相关信息,同时抑制引起注意分散的不相关信息,对执行目标导向的行为至关重要。这种对视觉信息的选择性和主动性加工以适应当前目标的过程被称作视觉注意(visual attention),且视觉注意可分为自上而下的注意与自下而上的注意两种不同功能。由于来自大脑电信号的神经振荡活动在认知加工中发挥重要作用,已有研究综述了视觉注意与神经振荡(neural oscillation)的密切关系,但并未涉及不同的注意功能与神经振荡的关系。本文系统性调查了不同注意功能与神经振荡的关系,发现额-顶区域的theta频带振荡活动反映了自上而下的认知控制,而后部脑区的theta振荡与自下而上的注意相关。顶-枕区域alpha振荡的偏侧化有助于注意分配,而alpha频带的大规模同步促成了注意对视皮层自上而下的影响。Beta振荡介导了自上而下的信息与自下而上的信息之间的互动,作为信息载体促进了视觉信息处理。Gamma振荡则可能与自上而下和自下而上的注意间整合相关。本文就视觉注意功能与神经振荡关系的研究现状展开综述,旨在揭示不同的神经振荡活动在特定的视觉注意功能中的作用。 相似文献
7.
《生理学报》2017,(5)
神经元集群(neuronal ensemble)的节律性活动往往能诱导产生清晰可见的神经振荡,反映着该群神经元规则化和同步化的活动。通常依据频率可将神经振荡分为delta振荡(0.5~3 Hz)、theta振荡(4~12 Hz)、beta振荡(12~30 Hz)、gamma振荡(30~100 Hz)和尖波涟漪(sharp-wave ripples,SWR)(100 Hz的纹波叠加在0.01~3 Hz的尖波上)。这些神经振荡在人和动物的许多脑区中出现,常伴随着感觉、运动、睡眠等行为产生,在认知、学习和记忆巩固过程中发挥着至关重要的作用。本文简要回顾海马脑区神经振荡的研究历程,对其中的最重要的三种神经振荡——theta振荡、gamma振荡和SWR的产生机制、主要功能及各频率神经振荡的相互作用作出概述,并对今后的研究方向作出展望。 相似文献
8.
神经耦合振荡的量子孤波分析 总被引:1,自引:0,他引:1
为了分析神经耦合振荡产生频率同步的原因,在神经信息波动方程孤立子解的基础上讨论了神经耦合振荡方程组的稳定解。分别从同地和异地耦合孤波的同相和反相四种情况给出了孤波之间距离随时间的变化规律。阐述了大脑视觉皮层神经元集群之间的耦合振荡在神经孤波模式下呈现出的波粒二象性,体现了知觉具有量子化的特点。因而神经振荡必将引发集体突发,形成脑波频率同步。 相似文献
9.
神经同步活动被认为是神经系统信息处理的关键。脑内存在多种不同频段的局部同步活动和区域间同步活动,这些神经同步活动与多种行为和认知功能相关。记忆作为脑的高级认知功能,其形成和巩固的过程与神经同步活动关系密切。本文主要从体内非快速眼动(non-rapid eye movement, NREM)睡眠期间多个脑区间的神经振荡活动以及体外培养神经网络的同步爆发活动两个层面综述了神经同步活动与记忆巩固关系的研究进展,分析了当前研究存在的问题,并对今后的相关研究作出展望。 相似文献
10.
结合高考例题及解析对静息电位、动作电位、局部电流等概念进行详细阐述,帮助学生正确理解和掌握有关神经冲动的产生及其机制的知识点,提高解题能力。 相似文献
11.
It has been found that gamma oscillations and the oscillation frequencies are regulated by the properties of external stimuli in many biology experimental researches. To unveil the underlying mechanism, firstly, we reproduced the experimental observations in an excitatory/inhibitory (E/I) neuronal network that the oscillation became stronger and moved to a higher frequency band (gamma band) with the increasing of the input difference between E/I neurons. Secondly, we found that gamma oscillation was induced by the unbalance between positive and negative synaptic currents, which was caused by the input difference between E/I neurons. When this input difference became greater, there would be a stronger gamma oscillation (i.e., a higher peak power in the power spectrum of the population activity of neurons). Further investigation revealed that the frequency dependency of gamma oscillation on the input difference between E/I neurons could be explained by the well-known mechanisms of inter-neuron-gamma (ING) and pyramidal-interneuron-gamma (PING). Finally, we derived mathematical analysis to verify the mechanism of frequency regulations and the results were consistent with the simulation results. The results of this paper provide a possible mechanism for the external stimuli-regulated gamma oscillations. 相似文献
12.
13.
Shuang Liu Sitong Chen Zhenni Huang Xiaoya Liu Meijuan Li Fangyue Su Xinyu Hao Dong Ming 《Cognitive neurodynamics》2022,16(5):1059
Directed brain networks may provide new insights into exploring physiological mechanism and neuromarkers for depression. This study aims to investigate the abnormalities of directed brain networks in depressive patients. We constructed the directed brain network based on resting electroencephalogram for 19 depressive patients and 20 healthy controls with eyes closed and eyes open. The weighted directed brain connectivity was measured by partial directed coherence for α, β, γ frequency band. Furthermore, topological parameters (clustering coefficient, characteristic path length, and et al.) were computed based on graph theory. The correlation between network metrics and clinical symptom was also examined. Depressive patients had a significantly weaker value of partial directed coherence at alpha frequency band in eyes-closed state. Clustering coefficient and characteristic path length were significantly lower in depressive patients (both p < .01). More importantly, in depressive patients, disruption of directed connectivity was noted in left-to-left (p < .05), right-to-left (p < .01) hemispheres and frontal-to-central (p < .01), parietal-to-central (p < .05), occipital-to-central (p < .05) regions. Furthermore, connectivity in LL and RL hemispheres was negatively correlated with depression scale scores (both p < .05). Depressive patients showed a more randomized network structure, disturbed directed interaction of left-to-left, right-to-left hemispheric information and between different cerebral regions. Specifically, left-to-left, right-to-left hemispheric connectivity was negatively correlated with the severity of depression. Our analysis may serve as a potential neuromarker of depression. 相似文献
14.
Amit K Mahajan Gregory B Diette Umur Hatipo?lu Andrew Bilderback Alana Ridge Vanessa Walker Harris Vijay Dalapathi Sameer Badlani Stephanie Lewis Jeff T Charbeneau Edward T Naureckas Jerry A Krishnan 《Respiratory research》2011,12(1):120
Background
High frequency chest wall oscillation (HFCWO) is used for airway mucus clearance. The objective of this study was to evaluate the use of HFCWO early in the treatment of adults hospitalized for acute asthma or chronic obstructive pulmonary disease (COPD).Methods
Randomized, multi-center, double-masked phase II clinical trial of active or sham treatment initiated within 24 hours of hospital admission for acute asthma or COPD at four academic medical centers. Patients received active or sham treatment for 15 minutes three times a day for four treatments. Medical management was standardized across groups. The primary outcomes were patient adherence to therapy after four treatments (minutes used/60 minutes prescribed) and satisfaction. Secondary outcomes included change in Borg dyspnea score (≥ 1 unit indicates a clinically significant change), spontaneously expectorated sputum volume, and forced expired volume in 1 second.Results
Fifty-two participants were randomized to active (n = 25) or sham (n = 27) treatment. Patient adherence was similarly high in both groups (91% vs. 93%; p = 0.70). Patient satisfaction was also similarly high in both groups. After four treatments, a higher proportion of patients in the active treatment group had a clinically significant improvement in dyspnea (70.8% vs. 42.3%, p = 0.04). There were no significant differences in other secondary outcomes.Conclusions
HFCWO is well tolerated in adults hospitalized for acute asthma or COPD and significantly improves dyspnea. The high levels of patient satisfaction in both treatment groups justify the need for sham controls when evaluating the use of HFCWO on patient-reported outcomes. Additional studies are needed to more fully evaluate the role of HFCWO in improving in-hospital and post-discharge outcomes in this population.Trial Registration
ClinicalTrials.gov: NCT00181285相似文献15.
Gamma-band activity, peaking around 30–100 Hz in the local field potential''s power spectrum, has been found and intensively studied in many brain regions. Although gamma is thought to play a critical role in processing neural information in the brain, its cognitive functions and neural mechanisms remain unclear or debatable. Experimental studies showed that gamma rhythms are stochastic in time and vary with visual stimuli. Recent studies further showed that multiple rhythms coexist in V1 with distinct origins in different species. While all these experimental facts are a challenge for understanding the functions of gamma in the visual cortex, there are many signs of progress in computational studies. This review summarizes and discusses studies on gamma in the visual cortex from multiple perspectives and concludes that gamma rhythms are still a mystery. Combining experimental and computational studies seems the best way forward in the future. 相似文献
16.
Lipo Wang 《Cognitive neurodynamics》2007,1(2):185-188
We show that chaos and oscillations in a higher-order binary neural network can be tuned effectively using interactions between
neural networks. Our results suggest that network interactions may be useful as a means of adjusting the level of dynamic
activities in systems that employ chaos and oscillations for information processing, or as a means of suppressing oscillatory
behaviors in systems that require stability.
URL: http:// www.ntu.edu.sg/home/elpwang 相似文献
17.
Li-Quan Yang Peng Sang Yan Tao Yun-Xin Fu Ke-Qin Zhang 《Journal of biomolecular structure & dynamics》2013,31(3):372-393
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure–function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca2+ removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca2+ removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein–ligand binding, including the concept of the free energy landscape (FEL) of the protein–solvent system, how the ruggedness and variability of FEL determine protein’s dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth. 相似文献
18.
The secondary structures of porcine brain Cu(4)Zn(3)-metallothionein (MT)-III and Cd(5)Zn(2)MT-I, Cd(5)Zn(2)MT-II, and Zn(7)MT-I from rabbit livers in the solid state are investigated by Fourier transform IR spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman). The Cu(4)Zn(3)MT-III contains 26-28% beta-turns and half-turns, 13-14% 3(10)-helices, 47-49% random coils, and 11-12% beta-extended chains. The structural comparison of porcine brain Cu(4)Zn(3)MT-III with rabbit liver Cd(5)Zn(2)MT-I (II) and Zn(7)MT-I shows that the contents of the random coil structure are obviously increased. The results indicate that the insert of an acidic hexapeptide in the alpha domain of Cu(4)Zn(3)MT-III possibly forms an alpha helix. However, because the bands assigned to the alpha-helix and random coil structures are overlapped in the spectra, the content of random coil structures in Cu(4)Zn(3)MT-III is therefore higher than those in Cd(5)Zn(2)MT-I, Cd(5)Zn(2)MT-II, and Zn(7)MT-I. 相似文献
19.
Griffoni C Toni M Spisni E Bianco M Santi S Riccio M Tomasi V 《Cell biochemistry and biophysics》2003,38(3):287-304
Studies on the transmission from man to animals of Creutzfeld-Jacob disease (CJD) led Prusiner to identify a proteinaceous
infectious particle lacking nucleic acid, which was called prion. The identification of the infectious prion (PrPsc) then
led to the discovery of the normal cellular counterpart (PrPc). One of the still enigmatic aspects regarding prion diseases
is actually how, where, and when the transformation PrPc/PrPsc is occurring, this being due to the result of a large extent
to the fact that so far most studies have been dedicated to the formation and transmission of PrPsc, whereas the understanding
of physiologic roles of PrPc are in their infancy. In this review, we hope to identify the most reliable hypotheses for future
experiments on PrPc. This is relevant not only for the understanding of PrPc functions but also to unravel the enigmatic nature
of PrPc/PrPsc conversion. 相似文献
20.
生物体中除了编码蛋白质的mRNA外,还存在多种具有重要调控功能的非编码RNA。细菌中长度50~500 nt的非编码RNA通常定义为sRNA。sRNA在细菌的整个生命活动中发挥着极为广泛的作用,在感受环境压力、基因表达、细胞周期乃至个体发育等过程中均具有重要的调控作用。sRNA的功能学和调控机制的研究已成为当今细菌学研究的热点。本研究就细菌中的sRNA的特征,在细菌中的作用和作用机制进行文献综述。 相似文献