首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

While the current model of pre-mRNA splicing is based on the recognition of four canonical intronic motifs (5' splice site, branchpoint sequence, polypyrimidine (PY) tract and 3' splice site), it is becoming increasingly clear that splicing is regulated by both canonical and non-canonical splicing signals located in the RNA sequence of introns and exons that act to recruit the spliceosome and associated splicing factors. The diversity of human intronic sequences suggests the existence of novel recognition pathways for non-canonical introns. This study addresses the recognition and splicing of human introns that lack a canonical PY tract. The PY tract is a uridine-rich region at the 3' end of introns that acts as a binding site for U2AF65, a key factor in splicing machinery recruitment.  相似文献   

2.
3.

Background  

Accurate selection of splice sites during the splicing of precursors to messenger RNA requires both relatively well-characterized signals at the splice sites and auxiliary signals in the adjacent exons and introns. We previously described a feature generation algorithm (FGA) that is capable of achieving high classification accuracy on human 3' splice sites. In this paper, we extend the splice-site prediction to 5' splice sites and explore the generated features for biologically meaningful splicing signals.  相似文献   

4.

Background  

We previously described the use of tailed oligonucleotides as a means of reprogramming alternative pre-mRNA splicing in vitro and in vivo. The tailed oligonucleotides that were used interfere with splicing because they contain a portion complementary to sequences immediately upstream of the target 5' splice site combined with a non-hybridizing 5' tail carrying binding sites for the hnRNP A1/A2 proteins.  相似文献   

5.

Background  

Despite some degeneracy of sequence signals that govern splicing of eukaryotic pre-mRNAs, it is an accepted rule that U2-dependent introns exhibit the 3' terminal dinucleotide AG. Intrigued by anecdotal evidence for functional non-AG 3' splice sites, we carried out a human genome-wide screen.  相似文献   

6.
7.

Background  

Alternative splicing is an important gene regulation mechanism. It is estimated that about 74% of multi-exon human genes have alternative splicing. High throughput tandem (MS/MS) mass spectrometry provides valuable information for rapidly identifying potentially novel alternatively-spliced protein products from experimental datasets. However, the ability to identify alternative splicing events through tandem mass spectrometry depends on the database against which the spectra are searched.  相似文献   

8.

Background  

Alternative splicing is an efficient mechanism for increasing the variety of functions fulfilled by proteins in a living cell. It has been previously demonstrated that alternatively spliced regions often comprise functionally important and conserved sequence motifs. The objective of this work was to test the hypothesis that alternative splicing is correlated with contact regions of protein-protein interactions.  相似文献   

9.

Background  

Given the complexity of higher organisms, the number of genes encoded by their genomes is surprisingly small. Tissue specific regulation of expression and splicing are major factors enhancing the number of the encoded products. Commonly these mechanisms are intragenic and affect only one gene.  相似文献   

10.

Background  

RNA editing and alternative splicing play an important role in expanding protein diversity and this is well illustrated in studies of nicotinic acetylcholine receptors (nAChRs).  相似文献   

11.
12.

Background  

Almost all known nucleic acid polymerases catalyze 5'-3' polymerization by mediating the attack on an incoming nucleotide 5' triphosphate by the 3'OH from the growing polynucleotide chain in a template dependent or independent manner. The only known exception to this rule is the Thg1 RNA polymerase that catalyzes 3'-5' polymerization in vitro and also in vivo as a part of the maturation process of histidinyl tRNA. While the initial reaction catalyzed by Thg1 has been compared to adenylation catalyzed by the aminoacyl tRNA synthetases, the evolutionary relationships of Thg1 and the actual nature of the polymerase reaction catalyzed by it remain unclear.  相似文献   

13.
14.

Background  

Muscleblind-like 1 (MBNL1) is an alternative splicing factor containing four CCCH Zinc fingers (ZnFs). The sequestration of MBNL1 by expanded CUG and CCUG repeats is a major component in causing myotonic dystrophy. In addition to binding the structured expanded CUG and CCUG repeats; previous results suggested that MBNL1 binds single-stranded RNAs containing GC dinucleotides.  相似文献   

15.

Background  

Alternative splicing of mutually exclusive exons is an important mechanism for increasing protein diversity in eukaryotes. The insect Mhc (myosin heavy chain) gene produces all different muscle myosins as a result of alternative splicing in contrast to most other organisms of the Metazoa lineage, that have a family of muscle genes with each gene coding for a protein specialized for a functional niche.  相似文献   

16.
17.

Background  

Single point mutations at both synonymous and non-synonymous positions within exons can have severe effects on gene function through disruption of splicing. Predicting these mutations in silico purely from the genomic sequence is difficult due to an incomplete understanding of the multiple factors that may be responsible. In addition, little is known about which computational prediction approaches, such as those involving exonic splicing enhancers and exonic splicing silencers, are most informative.  相似文献   

18.
19.
20.

Background  

Alternative splicing has been reported in various eukaryotic groups including plants, apicomplexans, diatoms, amoebae, animals and fungi. However, whether widespread alternative splicing has evolved independently in the different eukaryotic groups or was inherited from their last common ancestor, and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional classes, cellular locations, intron/exon structures and evolutionary origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号