首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为了观察肿瘤坏死因子相关凋亡诱导配体(TRAIL)基因对体外培养的小鼠蜕膜基质细胞增殖及凋亡的作用,探讨TRAIL对小鼠子宫蜕膜化进程的影响,构建TRAIL过表达及干扰质粒,转染小鼠基质细胞后诱导蜕膜化发生.转染72h后,应用半定量RT-PCR和Western blotting检测蜕膜基质细胞中TRAILmRNA和蛋白质的表达情况、MTT法观察蜕膜基质细胞的生长和增殖能力、流式细胞术检测蜕膜基质细胞的细胞周期分布情况和凋亡率.经酶切和核苷酸测序证实,TRAIL基因正确克隆入真核表达载体且能够上调TRAIL的表达,干扰质粒能有效地抑制TRAIL基因的表达.TRAIL过表达和RNA干扰的结果表明:TRAIL具有将蜕膜基质细胞阻滞在G0/G1期、抑制蜕膜基质细胞增殖并促使其凋亡的功效,提示TRAIL可能参与调节胚胎植入后基质细胞的有序蜕膜化进程.  相似文献   

2.
腺病毒E4启动子结合蛋白-4(E4BP4)是哺乳动物细胞核内的一种碱性亮氨酸拉链(bZIP)型转录因子,参与调控细胞的存活和增殖。前期研究表明,它在孕第5天的小鼠着床位点有明显的高表达。本文分别应用Northem blot、in situ杂交、Western blot和免疫组织化学技术,对E4BP4基因在小鼠妊娠初始期子宫、着床期胚胎着床位点和非着床位点的表达情况进行了研究。观察发现:在小鼠妊娠初始期,E4BP4基因在子宫组织中的表达逐步上调;至胚胎着床期间,其在胚胎着床位点的表达水平进一步提高,并明显高于非着床位点;该基因的表达不依赖于胚胎,人工蜕膜化可诱导其表达:E4BP4 mRNA和E4BP4蛋白分子都主要分布于子宫腔周围的基质细胞和蜕膜细胞。上述结果提示E4BP4基因可能通过促进着床位点基质细胞的增殖和抑制蜕膜细胞的凋亡而参与胚胎着床过程的调控。  相似文献   

3.
环状RNA(circular RNA,circRNA)是一类新型内源性非编码RNA,与多种疾病的发生、发展密切相关,但在胚胎着床的过程中罕见报道。该文旨在探讨环状RNA circCapzb在早孕小鼠围植入期子宫内膜中的表达。采用Real-time PCR检测正常妊娠小鼠孕第5天(d5)至第7天(d7)胚胎着床点及胚胎着床旁组织中circCapzb的表达水平;分别构建小鼠体内人工诱导蜕膜化模型和原代小鼠子宫内膜基质细胞体外人工诱导蜕膜化模型,采用Real-time PCR分别检测circCapzb在组织及细胞蜕膜化诱导模型中的表达;通过生物信息学预测circCapzb下游靶miRNA:miR-377-3p和miR-7005-5p,并采用Real-time PCR检测其在蜕膜化诱导模型中的表达。结果表明,circCapzb在小鼠孕第5天至第7天胚胎着床点的表达明显高于着床旁;circCapzb在组织及体内外细胞蜕膜化诱导模型中诱导组的表达明显高于未诱导组(对照组);circCapzb下游靶miR-377-3p和miR-7005-5p在组织及体内外细胞蜕膜化诱导模型中诱导组的表达明显低于未诱导组。该研究初步表明,circCapzb在小鼠早孕期胚胎着床点高表达,在组织及体内外细胞蜕膜化诱导模型中高表达,在小鼠妊娠早期子宫内膜蜕膜化过程中可能发挥作用,但具体机制有待进一步研究。  相似文献   

4.
为研究蛋白激酶H11基因在生殖系统中的作用,我们采用半定量RT-PCR和原位杂交方法,研究了蛋白激酶H11基因在小鼠中的组织特异性表达,在妊娠初始期胚胎植入位点、妊娠期子宫和胎盘以及正常动情周期子宫中的表达及其受性激素的调节。结果发现:蛋白激酶H11基因在小鼠多种组织中都有表达,在卵巢及子宫等一些生殖相关的组织中表达水平较高;妊娠初始期,蛋白激酶H11基因在小鼠子宫内膜植入位点处有明显的高表达,其mRNA定位于腔上皮细胞和基质细胞中。在动情周期中,蛋白激酶H11基因在动情前期子宫中表达水平较低;卵巢切除模型显示雌激素和孕激素均可显著上调蛋白激酶H11基因的表达。以上结果提示蛋白激酶H11可能参与了胚胎植入过程中腔上皮细胞凋亡和基质细胞增殖与蜕膜化以及动情周期小鼠子宫内膜细胞的功能调节[动物学报51(3):462-468,2005]。  相似文献   

5.
为探讨DNA结合蛋白果蝇Eph激酶(Drosophila Eph kinase,DEK)对人子宫内膜基质蜕膜化的调节作用和途径,该研究采用qPCR(Real-time quantitative polymerase chain reaction)、免疫组化(immunohistochemical)和蛋白印迹(Western blot)分别检测人子宫内膜增生期、分泌期和蜕膜组织中DEK基因和蛋白的表达;利用siRNA抑制基质细胞和蜕膜细胞的DEK,再用细胞流式技术、细胞免疫荧光、qPCR、细胞碱性磷酸酶脂显色和Western blot检测DEK沉默后细胞的变化。结果显示,蜕膜组织中DEK mRNA表达水平低于增生期和分泌期(P0.05),蜕膜组织中DEK蛋白表达水平高于增生期和分泌期(P0.05);抑制基质细胞DEK会使细胞增殖和分化能力降低,从而抑制基质细胞蜕膜化;抑制蜕膜细胞DEK可使细胞凋亡增加,DNA损伤情况加剧,导致蜕膜细胞的维持和发展受到影响。综上,该研究初步证实,DEK可能通过调控细胞蜕膜化而参与胚胎着床过程,其可能途径与其通过调控细胞增殖、分化、凋亡和核损伤有关。  相似文献   

6.
该研究探讨Rictor及SGK1对小鼠基质细胞蜕膜化的影响及其在人自然流产子宫蜕膜组织中的表达。分离和培养小鼠基质细胞,siRNA沉默小鼠基质细胞Rictor基因并人工诱导蜕膜化,检测Rictor和SGK1的蛋白及mRNA表达情况,并检测蜕膜化标志物Dtprp mRNA的水平;此外,过表达SGK1,检测Dtprp mRNA的水平。选取妊娠8~10周无菌新鲜自然流产及正常人工流产的蜕膜组织标本作为实验研究组(自然流产组,n=17)及正常对照组(正常妊娠组,n=34);分别用Western blot、免疫组织化学、Real-time PCR检测Rictor及SGK1的蛋白和mRNA表达水平。结果表明,沉默Rictor基因后,Rictor及SGK1的蛋白和mRNA表达水平均显著降低,同时蜕膜化指标Dtprp mRNA也显著降低,而过表达SGK1后,蜕膜化指标Dtprp mRNA较前升高且差异有统计学意义。与正常妊娠组相比,Rictor和SGK1的蛋白及mRNA表达水平在自然流产组明显降低。该研究得出,Rictor可通过影响SGK1的表达来抑制基质细胞蜕膜化;Rictor和SGK1在自然流产组的表达均显著低于正常组,从而可能成为流产发生的原因之一。  相似文献   

7.
为研究甲基化CpG结合域蛋白2(methyl-CpG binding domain protein 2,MBD2)在围植入期小鼠子宫内膜的表达规律,通过采用实时荧光定量PCR(Real-time fluorescence quantitative PCR,qPCR)、Western blot和免疫组化技术检测未孕小鼠(d0)和不同孕天小鼠子宫MBD2的表达情况。qPCR结果显示,d0至d7的小鼠子宫内膜组织均有MBD2 mRNA表达,在d5至d7高表达。MBD2蛋白在子宫内膜的表达规律与qPCR结果相符。MBD2蛋白在孕d1到d4中度表达于腔上皮、腺上皮和基质细胞,在d5至d7基质细胞表达增强,主要表达于蜕膜区。假孕小鼠子宫内膜中,MBD2在腔上皮、腺上皮和基质细胞中中度表达,d5至d7基质细胞表达明显减弱。动物模型中,宫角注射MBD2基因反义寡聚脱氧核苷酸,可抑制MBD2的表达,降低人工诱导蜕膜化反应和蜕膜化标志物PRL的表达。MBD2在早孕小鼠子宫内膜的表达模式提示其可能参与了蜕膜化过程。  相似文献   

8.
通过免疫组化、免疫荧光和小鼠胚胎-子宫内膜上皮细胞共培养体系,研究了前蛋白转换酶Proprotein Convertases (PCs)家族中的Furin和PC7在小鼠妊娠早期子宫和胚胎中的表达及对胚胎植入的影响.结果显示:Furin和PC7在妊娠D1-D4小鼠子宫的腺上皮和D5-D7小鼠子宫的蜕膜、腺上皮高表达;PC7在植入前胚胎的2-细胞和4-细胞期表达很低,8-细胞期表达开始增加,囊胚期滋养外胚层有显著的高表达.Furin的抑制剂Dec-RVKR-CMK可显著抑制共培养体系中胚胎的粘附和扩展.以上结果表明,Furin在植入期胚胎的粘附和扩展中发挥重要作用.此外,Furin和PC7可能参与子宫内膜蜕膜化和早期胚胎发育.  相似文献   

9.
构建携带针对大鼠维甲酸受体β(Retinoic acid receptorβ,RARβ)基因的siRNA重组腺病毒,并感染全反式维甲酸(All-trans retinoic acid,ATRA)处理的骨髓间充质干细胞(Mesenchymal stem cells,MSCs),检测其对RARβ的表达及MSCs成神经分化的影响。设计针对大鼠RARβ的4对siRNA的DNA序列,体外退火形成双链,定向克隆至含有U6/H1双启动子的腺病毒穿梭质粒pSES-HUS,随后与腺病毒骨架质粒pAd-Easy1在BJ5183细菌中同源重组,并在HEK293细胞中包装获得重组腺病毒Ad-siRARβ。腺病毒感染大鼠MSCs后经ATRA处理24 h,Real-time、Western blotting及免疫荧光检测RARβ的表达情况。改良神经诱导培养基(Modified neuronal induction medium,MNM)诱导MSCs神经分化,Real-time PCR及免疫荧光检测神经相关蛋白表达。PCR、酶切及测序鉴定均证实siRNA正确克隆至腺病毒质粒中,腺病毒感染大鼠MSCs后可观察到60%以上的细胞有红色荧光蛋白(Red fluorescent protein,RFP)表达。经ATRA处理24 h,Real-time、Westernblotting及免疫荧光检测发现RARβ表达定位于细胞核,ATRA作用后MSCs中RARβ表达增高16.5±2.34倍(P<0.05),有3组siRNA能有效抑制ATRA诱导的RARβ表达增强,抑制率分别为(66.26±9.12)%、(48.70±5.78)%、(64.09±0.53)%(P<0.05),且以pool组效果最强,抑制率为(78.09±4.24)%(P<0.01)。ATRA联合MNM诱导MSCs成神经样细胞,表达相关神经特异蛋白Nestin、NSE、MAP-2、Tau,免疫荧光结果显示神经标志蛋白Nestin、NSE、Tju1表达阳性细胞率为(50-88)%,而腺病毒介导的siRARβ能有效抑制MSCs的神经标志物表达水平及阳性细胞率(P<0.05)。成功构建了携带针对大鼠RARβ基因的siRNA重组腺病毒,能有效感染MSCs并显著抑制ATRA诱导的RARβ表达增强和MSCs的神经分化。  相似文献   

10.
李涛  姜科声  阮琴  刘志强 《生物工程学报》2012,28(10):1253-1264
为研究心脏发育关键基因nkx2.5的功能及应用价值,构建Ad-Nkx2.5重组腺病毒,并检测nkx2.5过表达拮抗氧化应激损伤的效应及机制。采用AdEasy腺病毒表达系统构建Ad-Nkx2.5重组腺病毒,建立H2O2诱导H9c2心肌细胞凋亡模型,分别用Ad-Nkx2.5重组病毒或对照病毒感染细胞,采用Hoechst33342染色观察细胞形态变化、MTT法检测细胞存活率,免疫印迹检测caspase-3活化、细胞色素C的胞浆含量。并通过Real-timePCR检测凋亡相关基因bcl-2和bax表达。结果发现,nkx2.5过表达促进H9c2细胞存活,抑制H2O2诱导的caspase-3活化及线粒体细胞色素C的释放。Nkx2.5过表达上调bcl-2表达,显著下调H2O2诱导的bax表达。并发现H2O2对Nkx2.5核定位无明显影响。结果显示重组腺病毒介导的Nkx2.5过表达可通过调控凋亡相关基因表达,抑制线粒体凋亡途径,保护心肌细胞抗氧化损伤。  相似文献   

11.
In mouse, decidualization is characterized by the proliferation of stromal cells and their differentiation into specialized type of cells (decidual cells) with polyploidy, surrounding the implanting blastocyst. However, the mechanisms involved in these processes remain poorly understood. Using multiple approaches, we have examined the role of Adam12 in decidualization during early pregnancy in mice. Adam12 is spatiotemporally expressed in decidualizing stromal cells in intact pregnant females and in pseudopregnant mice undergoing artificially induced decidualization. In the ovariectomized mouse uterus, the expression of Adam12 is upregulated after progesterone treatment, which is primarily mediated by nuclear progesterone receptor. In a stromal cell culture model, the expression of Adam12 gradually rises with the progression of stromal decidualization, whereas the attenuated expression of Adam12 after siRNA knockdown significantly blocks the progression of decidualization. Our study suggests that Adam12 is involved in promoting uterine decidualization during pregnancy.  相似文献   

12.
13.
Decidualization is an intricate biological process where extensive morphological, functional, and genetic changes take place in endometrial stromal cells to support the development of an implanting blastocyst. Deficiencies in decidualization are associated with pregnancy complications and reproductive diseases. Decidualization is coordinately regulated by steroid hormones, growth factors, and molecular and epigenetic mechanisms. Transforming growth factor β (TGFβ) superfamily signaling regulates multifaceted reproductive processes. However, the role of TGFβ signaling in uterine decidualization is poorly understood. Recent studies using the Cre-LoxP strategy have shed new light on the critical role of TGFβ signaling machinery in uterine decidualization. Herein, we focus on reviewing exciting findings from studies using both mouse genetics and in vitro cultured human endometrial stromal cells. We also delve into emerging mechanisms that underlie decidualization, such as non-coding RNAs and epigenetic modifications. We envision that future studies aimed at defining the interrelationship among TGFβ signaling circuitries and their potential interactions with epigenetic modifications/non-coding RNAs during uterine decidualization will open new avenues to treat pregnancy complications associated with decidualization deficiencies.  相似文献   

14.
The effects of epidermal growth factor (EGF) on human endometrial stromal cells have not been characterized well, although production of EGF in endometrial epithelial and stromal cells and expression of EGF receptors in endometrial stromal cells have been reported. We investigated the effects of EGF on endometrial cell viability, 8-Br-cAMP-induced stromal decidualization, and prolactin secretion from decidualized endometrial stromal cells using an in vitro decidualization activity assay of human endometrial stromal cells. EGF did not show any significant effects on viable cell numbers of nondecidualized and 8-Br-cAMP-induced decidualized cells. Prolactin release from the 8-Br-cAMP-induced decidualized cells was not affected by EGF. However, EGF dose-dependently inhibited prolactin release from the stromal cells that were in the process of decidualization by co-stimulation with 8-Br-cAMP and EGF, though there was no significant change in viable cell numbers of the 8-Br-cAMP-stimulated decidualizing cells. Flow cytometric analysis revealed that 8-Br-cAMP enhanced EGF receptor expression on the endometrial stromal cells. These results indicate that endometrial EGF inhibits decidualization through autocrine/paracrine mechanisms.  相似文献   

15.
A critical role of progesterone (P) during early pregnancy is to induce differentiation of the endometrial stromal cells into specialized decidual cells that support the development of the implanting embryo. The P-induced signaling pathways that participate in the formation and function of the decidual cells remain poorly understood. We report here that the expression of the bone morphogenetic protein 2 (BMP2), a morphogen belonging to the TGFbeta superfamily, is induced downstream of P action in the mouse uterine stroma during decidualization. To determine the function of BMP2 during this differentiation process, we employed a primary culture system in which undifferentiated stromal cells isolated from pregnant mouse uterus undergo decidualization. When recombinant BMP2 was added to these stromal cultures, it markedly advanced the differentiation program. We also found that siRNA-mediated silencing of BMP2 expression in these cells efficiently blocked the differentiation process. Gene expression profiling experiments identified Wnt4 as a downstream target of BMP2 regulation in stromal cells undergoing decidualization. Attenuation of Wnt4 expression by siRNAs greatly reduced stromal differentiation in vitro, indicating that it is a key mediator of BMP2-induced decidualization. We also observed a remarkable induction in the expression of BMP2 in human endometrial stromal cells during decidualization in vitro in response to steroids and cAMP. Addition of BMP2 to these cultures led to a robust enhancement of Wnt4 expression and stimulated the differentiation process. Collectively, our studies uncovered a unique conserved pathway involving BMP2 and Wnt4 that mediates P-induced stromal decidualization in the mouse and the human.  相似文献   

16.
Although Hmgn1 is involved in the regulation of gene expression and cellular differentiation, its physiological roles on the differentiation of uterine stromal cells during decidualization still remain unknown. Here we showed that Hmgn1 mRNA was highly expressed in the decidua on days 6-8 of pregnancy. Simultaneously, increased expression of Hmgn1 was also observed in the artificial and in vitro induced decidualization models. Hmgn1 induced the proliferation of uterine stromal cells and expression of Ccna1, Ccnb1, Ccnb2 and Cdk1 in the absence of estrogen and progesterone. Overexpression of Hmgn1 could enhance the expression of Prl8a2 and Prl3c1 which were 2 well-known differentiation markers for decidualization, whereas inhibition of Hmgn1 with specific siRNA could reduce their expression. Further studies found that Hmgn1 could mediate the effects of C/EBPβ on the expression of Prl8a2 and Prl3c1 during in vitro decidualization. In the uterine stromal cells, cAMP analog 8-Br-cAMP could stimulate the expression of Hmgn1 via C/EBPβ. Moreover, siRNA-mediated down-regulation of Hmgn1 could attenuate the effects of cAMP on the differentiation of uterine stromal cells. During in vitro decidualization, Hmgn1 might act downstream of C/EBPβ to regulate the expression of Cox-2, mPGES-1 and Vegf. Progesterone could up-regulate the expression of Hmgn1 in the ovariectomized mouse uterus, uterine epithelial cells and stromal cells. Knockdown of C/EBPβ with siRNA alleviated the up-regulation of progesterone on Hmgn1 expression. Collectively, Hmgn1 may play an important role during mouse decidualization.  相似文献   

17.
During implantation, matrix metalloproteinases are believed to play roles in the tissue remodelling that accompanies decidualization in the endometrium and in embryo invasion. The objective of this study was to characterize further the expression of matrix metalloproteinases 2 and 9 in the mouse uterus during early pregnancy and oil-induced decidualization. mRNA encoding matrix metalloproteinase 2 was detected in pregnant uteri and uteri undergoing oil-induced decidualization by northern blot analyses. The steady-state concentrations of mRNA encoding matrix metalloproteinase 2 did not change significantly in implantation compared with inter-implantation areas on days 5-8 of pregnancy but were significantly lower in stimulated compared with non-stimulated uterine horns during artificially induced decidualization. mRNA encoding matrix metalloproteinase 9 was also detected in uteri undergoing oil-induced decidualization but not in pregnant uteri. Its concentration was significantly greater in uterine horns undergoing oil-induced decidualization compared with control horns. Immunoreactive matrix metalloproteinases 2 and 9 were detected in the uterus during early pregnancy and oil-induced decidualization by immunohistochemistry, localized to the endometrial stroma, but the staining progressively became weaker and was absent in areas that had undergone decidualization. By day 8 of pregnancy and 72 h after the induction of decidualization, matrix metalloproteinase 2 and 9 proteins remained mainly in the region of non-decidualized stromal cells adjacent to the myometrium. In implantation segments, they were also localized to the region of the trophoblast giant cells. The second objective of the present study was to determine whether endometrial stromal cells isolated from uteri sensitized for decidualization express matrix metalloproteinases 2 and 9. Northern blot analyses and gelatin zymography showed that these cultured cells expressed matrix metalloproteinase 2 and 9, and that transforming growth factor beta1 significantly increased matrix metalloproteinase 9 expression. The results of the present study further characterize matrix metalloproteinases 2 and 9 expression in the uterus during implantation and artificially induced decidualization.  相似文献   

18.
Osteopontin (OPN) is a component of the extracellular matrix that interacts with cell surface receptors, including integrins, to mediate cell adhesion, migration, differentiation, survival, and immune function. In pregnant mice and primates, OPN has been detected in decidualized stroma and is considered to be a gene marker for decidualization. Decidualization involves transformation of spindle-like fibroblasts into polygonal epithelial-like cells that are hypothesized to limit conceptus trophoblast invasion through the uterine wall during invasive implantation. Decidualization is not considered characteristic of species with noninvasive implantation, such as domestic animals. However, the extent of trophoblast invasion between sheep and pigs differs, with sheep exhibiting erosion of the uterine luminal epithelium (LE) and fusion of trophectoderm with LE to form syncytia, and pigs maintaining an intact LE throughout pregnancy. Therefore, the present study measured changes in the decidualization marker genes OPN, desmin, and alpha smooth muscle actin (alphaSMA) in ovine and porcine uterine stroma throughout pregnancy. The morphology of endometrial stromal cells in pregnant ewes changes following conceptus attachment, with cells increasing in size and becoming polyhedral in shape by Day 35 of pregnancy. Expression of OPN mRNA and protein, as well as desmin and alphaSMA proteins, was observed in this same uterine stromal compartment. In contrast, no morphological changes in uterine stroma nor induction of OPN mRNA and protein, or desmin protein, were detected during porcine pregnancy. Interestingly, alphaSMA protein was absent on Day 20, but prominent in uterine stroma of pregnant pigs on Day 45. Collectively, these results indicate that the uterine stroma of sheep undergoes a program of differentiation similar to decidualization in invasive implanting species, whereas porcine stroma exhibits differentiation that is more limited than that in sheep, rodents, or primates. Results suggest that uterine stromal decidualization is common to species with different types of placentation, but the extent is variable and correlates with the depth of trophoblast invasion during implantation.  相似文献   

19.
Follistatin (FST) and activin A as gonadal proteins exhibit opposite effects on follicle-stimulating hormone (FSH) release from pituitary gland, and activin A-FST system is involved in regulation of decidualization in reproductive biology. However, the roles of FST and activin A in migration of decidualized endometrial stromal cells are not well characterized. In this study, transwell chambers and microfluidic devices were used to assess the effects of FST and activin A on migration of decidualized mouse endometrial stromal cells (d-MESCs). We found that compared with activin A, FST exerted more significant effects on adhesion, wound healing and migration of d-MESCs. Similar results were also seen in the primary cultured decidual stromal cells (DSCs) from uterus of pregnant mouse. Simultaneously, the results revealed that FST increased calcium influx and upregulated the expression levels of the migration-related proteins MMP9 and Ezrin in d-MESCs. In addition, FST increased the level of phosphorylation of JNK in d-MESCs, and JNK inhibitor AS601245 significantly attenuated FST action on inducing migration of d-MESCs. These data suggest that FST, not activin A in activin A-FST system, is a crucial chemoattractant for migration of d-MESCs by JNK signalling to facilitate the successful uterine decidualization and tissue remodelling during pregnancy.  相似文献   

20.
Prostaglandin E(2) (PGE(2)) is considered important for blastocyst spacing, implantation, and decidualization in rodent uteri. PGE synthase (PGES) catalyzes the isomerization of PGH(2) to PGE(2). Two isoforms of PGES exist: microsomal PGES (mPGES) and cytosolic PGES (cPGES); however, the expression and regulation of cPGES in the mammalian uterus during early pregnancy are still unknown. The aim of this study was to investigate the differential expression of cPGES in mouse uterus during early pregnancy and its regulation under different conditions using in situ hybridization and immunohistochemistry. A strong level of cPGES mRNA signal was exhibited in the stromal cells at the implantation site on Day 5 of pregnancy, whereas cPGES immunostaining was strongly detected in the luminal epithelium. The signals for both cPGES mRNA and immunostaining were strongly detected in the decidualized cells from Days 6-8 of pregnancy. A basal level of cPGES mRNA signal and immunostaining was exhibited in the uterus in delayed implantation. After delayed implantation was terminated by estrogen treatment and embryo implantation was initiated, cPGES mRNA signal was strongly detected in the stroma underlying the luminal epithelium at the implantation site, and cPGES immunostaining was strongly observed in the luminal epithelium surrounding the implanting blastocyst. A strong cPGES mRNA signal and immunostaining were detected in decidualized cells under artificial decidualization, whereas only a basal level of cPGES mRNA signal and immunostaining were observed in the control horn. Our data suggest that cPGES may play an important role during implantation and decidualization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号