首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfolobus metallicus is a hyperthermophilic and chemolithoautotrophic archaeon that uses elemental sulfur as an energy source. Its ability to oxidize H2S was measured either in the presence or absence of elemental sulphur, showing its ability for using both as an energy source. A biotrickling filter was set up and a biofilm of S. metallicus was established over the support. The maximum removal capacity of the biotrickling filter reached at 55°C was 40 g S/m3h for input loads higher than 70 g S/m3h. Thus, S. metallicus can be used in a biofiltration system for the treatment of waste gas emissions at high temperatures contaminated with H2S.  相似文献   

2.
The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 ± 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover–Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U max) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K B) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.  相似文献   

3.
Biological treatment is an emerging and prevalent technology for treating off-gases from wastewater treatment plants. The most commonly reported odorous compound in off-gases is hydrogen sulfide (H2S), which has a very low odor threshold. A self-designed, bench-scale, cross-flow horizontal biotrickling filter (HBF) operated with bacteria immobilized activated carbon (termed biological activated carbon—BAC), was applied for the treatment of H2S. A mixed culture of sulfide-oxidizing bacteria dominated by Acidithiobacillus thiooxidans acclimated from activated sludge was used as bacterial seed and the biofilm was developed by culturing the bacteria in the presence of carbon pellets in mineral medium. HBF performance was evaluated systematically over 120 days, depending on a series of changing factors including inlet H2S concentration, gas retention time (GRT), pH of recirculation solution, upset and recovery, sulfate accumulation, pressure drop, gas-liquid ratio, and shock loading. The biotrickling filter system can operate at high efficiency from the first day of operation. At a volumetric loading of 900 m3 m–3 h–1 (at 92 ppmv H2S inlet concentration), the BAC exhibited maximum elimination capacity (113 g H2S/m–3 h–1) and a removal efficiency of 96% was observed. If the inlet concentration was kept at around 20 ppmv, high H2S removal (over 98%) was achieved at a GRT of 4 s, a value comparable with those currently reported for biotrickling filters. The bacterial population in the acidic biofilter demonstrated capacity for removal of H2S over a broad pH range (pH 1–7). A preliminary investigation into the different effects of bacterial biodegradation and carbon adsorption on system performance was also conducted. This study shows the HBF to be a feasible and economic alternative to physical and chemical treatments for the removal of H2S.  相似文献   

4.
The carbon disulfide (CS2)-oxidizing bacterium Thiomonas sp. WZW was enriched and isolated using activated sewage sludge as inoculum. Growth of Thiomonas sp. WZW was observed on CS2, thiosulfate, dimethylsulfide (DMS), dimethyldisulfide (DMDS), and H2S. No growth occurred on dimethylsulfoxide, methanol, acetate, and on complex media with glucose, yeast extract, or tryptone. DMDS-grown cells respired CS2, DMS, and DMDS, while thiosulfate-grown cells did not respire CS2. Chemostat cultures growing on thiosulfate could be rapidly adapted to growth on CS2. Growth was observed between pH 6 and 8. The K s values for CS2, thiosulfate, and sulfide of CS2-grown cells were between 5 and 10 μM. CS2 was inhibitory above 0.3 mM. A lab-scale biotrickling filter with lava stone as carrier material for treatment of CS2-polluted air was inoculated with Thiomonas sp. WZW. A rapid start up (95% removal in 1 week) was obtained at an inlet CS2 concentration of 2 cmol l−1 and an initial space velocity (SV) of 54 h−1. Subsequent thiosulfate addition for a week during start up increased the removal to 99%. The step-wise increase of SV to 130 h−1 and a CS2 concentration to 3 μmol l−1 resulted in a stable performance with a removal efficiency of 95%. Feeding mixtures of volatile sulfur compounds showed simultaneous conversion of H2S, CS2, dimethyldisulfide (DMDS), and DMS, with a preference in this order.  相似文献   

5.
Cardiac fibroblasts are crucial in pathophysiology of the myocardium whereby their aberrant proliferation has significant impact on cardiac function. Hydrogen sulphide (H2S) is a gaseous modulator of potassium channels on cardiomyocytes and has been reported to attenuate cardiac fibrosis. Yet, the mechanism of H2S in modulating proliferation of cardiac fibroblasts remains poorly understood. We hypothesized that H2S inhibits proliferative response of atrial fibroblasts through modulation of potassium channels. Biophysical property of potassium channels in human atrial fibroblasts was examined by whole‐cell patch clamp technique and their cellular proliferation in response to H2S was assessed by BrdU assay. Large conductance Ca2+‐activated K+ current (BKCa), transient outward K+ current (Ito) and inwardly rectifying K+ current (IKir) were found in human atrial fibroblasts. Current density of BKCa (IC50 = 69.4 μM; n = 6), Ito (IC50 = 55.1 μM; n = 6) and IKir (IC50 = 78.9 μM; n = 6) was significantly decreased (P < 0.05) by acute exposure to NaHS (a H2S donor) in atrial fibroblasts. Furthermore, NaHS (100–500 μM) inhibited fibroblast proliferation induced by transforming growth factor‐β1 (TGF‐β1; 1 ng/ml), Ang II (100 nM) or 20% FBS. Pre‐conditioning of fibroblasts with NaHS decreased basal expression of Kv4.3 (encode Ito), but not KCa1.1 (encode BKCa) and Kir2.1 (encode IKir). Furthermore, H2S significantly attenuated TGF‐β1–stimulated Kv4.3 and α‐smooth muscle actin expression, which coincided with its inhibition of TGF‐β–induced myofibroblast transformation. Our results show that H2S attenuates atrial fibroblast proliferation via suppression of K+ channel activity and moderates their differentiation towards myofibroblasts.  相似文献   

6.
The present study reported for the first time, cloning, expression and characteristics of a Proxidomal APX gene (PpAPX) from Populus tomentosa. The PpAPX gene encodes a protein of 287 amino acid residues with a calculated molecular mass of 31.58 kDa. The over-expressed recombinant PpAPX protein showed high activity towards the substrates ascorbate aicd (ASA) and H2O2. At fixed ASA concentrations, the K m and V max values were 0.12 ± 0.01 mM and 23.4 ± 4.2 mmol/min mg for H2O2. And at fixed H2O2 concentrations, the K m and V max values were 0.53 ± 0.04 mM and 20.0 ± 2.3 mmol/min mg for ASA.  相似文献   

7.
The on-line measurement of the relevant parameters and the control conception for three production processes for fine chemicals by fermentation and biotransformation at the 15 m3 scale were developed. The models describe the bioprocesses which successfully result in fully automated manufacturing steps. Modelling also proved to be a valuable tool for a better insight into biochemical fundamentals of the processes. Moreover, proper use of data logging, modelling and process control was important for quality, since two processes were controlled on-line and quality relevant deviations were registered early. Finally, combining modelling with simulation, we could drastically reduce both development time and cost.List of Symbols F l/h flux - V l volume - U 0 g/l nicotinonitrile concentration influx - U g/l actual nicotinonitrile concentration - q ug/gh specific educt (=nicotinonitrile) transformation rate - x g/l biocatalyst concentration - p 0 g/l nicotinamide concentration influx - p g/l actual nicotinamide concentration - q pg/gh specific product (=nicotinamide) formation rate - k parameter loss of activity - q u, maxg/gh max. specific educt transformation rate - K ug/l saturation constant for nicotinonitrile - K ig/l inhibition constant for nicotinonitrile - K iig/l inhibition constant for nicotinamide - MW Ag/mol molecular weight for nicotinonitrile - MW Bg/mol molecular weight for nicotinamide - NS Nicotinic acid - 6-HNS 6-Hydroxynicotinic acid - r NS, 6HNS g/lh 6-HNS production rate - r 6HNS, X g/lh biomass production rate - r NS, 6HNS, max g/lh max. 6-HNS production rate - S NS g/l actual NS concentration - K S, NS g/l saturation constant for NS - K i, 6HNS g/l inhibition constant for 6-HNS - K o2 g/l saturation constant for oxygen - r 6HNS, X, max g/lh max. biomass production rate - S 6HNS g/l actual 6-HNS concentration - K ii, NS g/l inhibition constant for NS - RQ mol/mol respiration quotient - S xylg/l actual xylene concentration - K i, xylg/ inhibition constant for xylene - K i, DMPYg/ inhibition constant for 2,5-dimethylpyrazine - r Xg/lh biomass production rate - r X, maxg/lh max. biomass production rate - K s, xylg/l saturation constant for xylene - S DMPYg/l actual concentration of DMPY - K i, MPCAg/ inhibition constant for MPCA - K O2g/ saturation constant for oxygen - S MPCAg/l actual MPCA concentration - S O2g/l actual oxygen concentration - r MPCAg/lh MPCA production rate - r MPCA, maxg/lh max. MPCA production rate - k lgl inhibition constant for the intermediates - k s, DMPYgl saturation constant for DMPY  相似文献   

8.
A kinetic modeling-based study was carried out to evaluate the start-up performance of a 10-L up-flow anaerobic sludge blanket (UASB) reactor treating municipal wastewater under different organic and hydraulic loading conditions. The reactor was operated for 105 days (around 4 months) below 20 °C and with three different hydraulic retention times of 24, 12 and 5 h. Imposed volumetric organic loading rates (OLR) ranged from 0.57 (±0.05) to 11.78 (±0.85) kg TCOD/m3-day. Although relatively high incoming volumetric OLR values were employed to the system, the UASB reactor demonstrated a favorable performance on the anaerobic treatability of municipal wastewater, and no process failure was recorded in the start-up stage. On the basis of experimental results, the modified Stover–Kincannon model was successfully applied to define the start-up kinetics with a very high value of the correlation coefficient (R = 0.9729). Maximum substrate utilization rate constant and saturation constant of the modified Stover–Kincannon model were determined as U max = 1.996 g/L-day and K B = 1.536 g/L-day, respectively.  相似文献   

9.
Endogenous and maximum respiration rates of nine purple sulfur bacterial strains were determined. Endogenous rates were below 10 nmol O2 · (mg protein · min)-1 for sulfur-free cells and 15–35 nmol O2 · (mg protein · min)-1 for cells containg intracellular sulfur globules. With sulfide as electron-donating substrate respiration rates were considerably higher than with thiosulfate. Maximum respiration rates of Thiocystis violacea 2711 and Thiorhodovibrio winogradskyi SSP1 (254.8 and 264.2 nmol O2 · (mg protein · min)-1, respectively) are similar to those of aerobic bacteria. Biphasic respiration curves were obtained for sulfur-free cells of Thiocystis violacea 2711 and Chromatium vinosum 2811. In Thiocystis violacea the rapid and incomplete oxidation of thiosulfate was five times faster than the oxidation of stored sulfur. A high affinity of the respiratoty system for oxygen (K m =0.3–0.9 M O2, V max=260 nmol O2 · (mg protein · min)-1 with sulfide as substrate, K m =0.6–2.4 M O2, V max=14–40 nmol O2 · (mg protein · min)-1 with thiosulfate as substrate), for sulfide (K m =0.47 M, V max=650 nmol H2S · (mg protein × min)-1, and for thiosulfate (K m =5–6 M, V max =24–72 nmol S2O 3 2- · (mg protein · min)-1 was obtained for different strains. Respiration of Thiocystis violacea was inhibited by very low concentrations of NaCN (K i =1.7 M) while CO concentrations of up to 300 M were not inhibitory. The capacity for chemotrophic growth of six species was studied in continuous culture at oxygen concentrations of 11 to 67 M. Thiocystis violacea 2711, Amoebobacter roseus 6611, Thiocapsa roseopersicina 6311 and Thiorhodovibrio winogradskyi SSP1 were able to grow chemotrophically with thiosulfate/acetate or sulfide/acetate. Chromatium vinosum 2811 and Amoebobacter purpureus ML1 failed to grow under these conditions. During shift from phototrophic to chemotrophic conditions intracellular sulfur and carbohydrate accumulated transiently inside the cells. During chemotrophic growth bacteriochlorophyll a was below the detection limit.  相似文献   

10.
An indigenous phenol-degrading bacterial isolate Cupriavidus taiwanensis R186 was used to degrade phenol from an aqueous solution under fed-batch operation. An exponential feeding strategy combined with dissolved oxygen control was applied based on kinetic characteristics of cell growth and phenol degradation to meet sufficient metabolic needs for cellular growth and achieve the best phenol removal efficiency. Without the stress of phenol inhibition, the optimal set point of specific growth rate of exponential feeding for fed-batch phenol degradation was found to be 0.50–0.55μmax (μmax denotes the maximum specific growth rate from Monod model). Meanwhile, the sufficient set point of dissolved oxygen for maximal phenol degradation efficiency was approximately at 10–55% air saturation. With the optimal operation conditions, the best phenol degradation rate was 0.213 g phenol h−1, while a shortest treatment time of 15 h was achieved for complete degradation of 11.35 mM (ca. 3.20 g) of phenol.  相似文献   

11.
《Process Biochemistry》2007,42(3):449-453
An upflow anaerobic packed bed reactor was operated continuously with synthetic saline wastewater at different initial COD concentrations (COD0 = 1900–6300 mg/L), salt concentrations (0–5%, w/v) and hydraulic retention times (θH = 11–30 h) to investigate the effect of those operating parameters on COD removal from saline synthetic wastewater. Anaerobic salt tolerant bacteria, Halanaerobium lacusrosei, were used as dominant microbial culture in the process. The percent COD removal reached up to 94% at COD0 = 1900 mg/L, 19 h hydraulic retention time and 3% salt concentration. No substrate inhibition effect was observed at high feed CODs. Increasing hydraulic retention time from 11 h to 30 h resulted in a substantial improvement in the COD removal from 60% to 84% at around COD0 = 3400 mg/L and 3% salt concentration. Salt inhibition effect on COD utilization was observed at above 3% salt concentration. Modified Stover–Kincannon model was applied to the experimental data to determine the biokinetic coefficients. Saturation value constant, and maximum utilization rate constant of Stover–Kincannon model for COD were determined as KB = 5.3 g/L day, Umax = 7.05 g/L day, respectively.  相似文献   

12.
A thermostable lipase was produced in continuous cultivation of a newly isolated thermophilic Bacillus sp. strain IHI-91 growing optimally at 65 °C. Lipase activity decreased with increasing dilution rate while lipase productivity showed a maximum of 340 U l−1 h−1 at a dilution rate of 0.4 h−1. Lipase productivity was increased by 50% compared to data from batch fermentations. Up to 70% of the total lipase activity measured was associated to cells and by-products or residual substrate. Kinetic and stoichiometric parameters for the utilisation of olive oil were determined. The maximal biomass output method led to a saturation constant K S of 0.88 g/l. Both batch growth data and a washout experiment yielded a maximal specific growth rate, μmax, of 1.0 h−1. Oxygen uptake rates of up to 2.9 g l−1h−1 were calculated and the yield coefficient, Y X/O, was determined to be 0.29 g dry cell weight/g O2. From an overall material balance the yield coefficient, Y X/S, was estimated to be 0.60 g dry cell weight/g olive oil. Received: 8 January 1997 / Received revision: 30 April 1997 / Accepted: 4 May 1997  相似文献   

13.
The purple sulfur bacterium Thiocapsa roseopersicina, being the dominant anoxygenic phototroph in microbial mats, was tested for growth on polysulfide as the electron donor for carbon dioxide fixation. Data collected in continuous cultures revealed max to be 0.065 h-1 and the saturation affinity constant K s to be 6.7 M. The value of the inhibition constant K i was estimated in batch cultures and was found to be approximately 1100 M. When grown on monosulfide, the organism was capable of trisulfide utilization without lag. Monosulfide-limited growth was established to have a max of 0.091 h-1 and K s of 8.0 M. Field observations revealed polysulfide, present at supra-optimal concentrations, as a major pool of reduced sulfur in a laminated marine sediment ecosystem.Non-standard abbreviations DLP Direct Linear Plot - TS Total Sugar - SS Structural Sugar - P Protein - R R concentration of growth limiting nutrient in reservoir vessel - S nutrient residual concentration of growth-limiting nutrient in the culture vessel - S sulfur compound concentration of sulfur in the corresponding compound - D dilution rate - max maximum specific growth rate - K s saturation constant - K i inhibition constant Dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 65th birthday  相似文献   

14.
Polyvinyl alcohol (PVA)–silica nanohybrids have been synthesized in a modified Stöber process. The bioactivities of the enzyme loaded hybrids were monitored and the optimum activity sample (H) was calcined at 300 °C in N2 to obtain hybrid gel (H3) with improved performance. The synthesized hybrids have been characterized by Fourier Transform Infra Red spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis and BET surface area analysis. Under the optimized conditions, the bioactivity of the enzyme impregnated H3 (H3-Enz) was 21.823 U/mg. On recycling, H3-Enz retained 88% of its initial bioactivity in the sixth cycle. The kinetic parameters of soluble starch hydrolysis for the immobilized (KM = 4.137 mg mL?1; Vmax = 5.95 mg mL?1 min?1) and free enzyme (KM = 10.667 mg mL?1; Vmax = 6.0557 mg mL?1 min?1) indicated that the immobilization has nearly doubled the enzyme's affinity for the substrate, while the maximum rate of the enzymatic reaction at the saturation point was not much affected. The immobilized enzyme showed greater shelf life in comparison to the free enzyme.  相似文献   

15.
Two bacterial species at the upper boundary of the H2S-containing lower layer of Lake Kaiike, a purple sulfur bacterium and Macromonas sp., markedly changed their population densities in a single year (maximum cell numbers ranged between 106 and <103 cells ml–1), although neither species ever entirely disappeared from the lake over at least the past 30 years. Genetic characteristics based on the sequence of the 16S rDNA of the purple sulfur bacterium showed it to be a new species of the Chromatiaceae family. This bloom of purple sulfur bacterium occurred when the H2S layer was disturbed by an external intrusion of seawater.  相似文献   

16.
Summary Aspergillus terreus NRRL 1960 was grown on porous disks rotating intermittently in and out of the liquid phase. This immobilized fungal cell bioreactor was used to produce itaconic acid from glucose in a continuous operation. The effect of temperature, pH, disk rotation speed, and feed rate on the itaconic acid concentration and volumetric productivity were studied. The highest itaconic acid concentration and volumetric productivity obtained were 18.2 g/l and 0.73 g/l·h, respectively, under the following conditions: temperature at 36°C, pH 3.0, disk rotation speed at 8 rpm, and feed rate at 60 ml/h. These results are better than those by conventional fermentation or by other immobilized method.Nomenclature F feed rate (l/h) - K 1s saturation constant for immobilized cells (g/l) - K 2s saturation constant for suspended cells (g/l) - M 1 increased mass of immobilized cells (g) - M 2 total mass of immobilized cells (g) - P concentration of itaconic acid (g/l) - S substrate concentration in and out of the reactor (g/l) - S 0 substrate concentration in the feed (g/l) - V liquid volume of the reactor (1) - X concentration of the suspended cells (g/l) - Y 1 apparent yield of the immobilized cells (g cells/g substrate) - Y 2 apparent yield of the suspended cells (g cell/g substrate) - Y 3 apparent yield of itaconic acid (g itaconic acid/g substrate) - m 1 maintenance and by-products coefficient of the immobilized cells (g substrate/g cell·h) - m 2 maintenance and by-products coefficient of the suspended cells (g substrate/g cell·h) - µ1max maximum specific growth rate of the immobilized cells (h-1) - µ2max maximum specific growth rate of the suspended cells (h-1)  相似文献   

17.
Three isoamylases of Rhyzopertha dominica (termed RdA70, RdA79, and RdA90 according to their relative mobility in gel electrophoresis) were isolated by ammonium sulfate fractionation and hydrophobic interaction chromatography. RdA70 and RdA79 showed an optimal pH of 7.0, whereas for RdA90 the optimal pH was 6.5. The three isoamylases remained stable at 50 °C for 1 h, but at 60 °C, all lost 50% of their activity in 20 min and were completely inactivated in 1 h. RdA70 and RdA79 were inhibited by albumin extracts from wheat samples varying widely in amylase inhibitory activity; however, RdA90 was highly resistant to inhibition. β-Mercaptoethanol up to 30 mM increased the activity of the three isoamylases by 2.5-fold. The action pattern of the three isoamylases was typical of endoamylases; however, differences were observed on the hydrolytic efficiency rates measured as Vmax/Km ratio on starch, amylopectin, and amylose. The hydrolyzing action of RdA90 on starch and amylopectin (Vmax/Km = 90.4 ± 2.3 and 78.9 ± 6.6, respectively) was less efficient than that on amylose (Vmax/Km = 214 ± 23.2). RdA79 efficiently hydrolyzed both amylopectin and amylose (Vmax/Km = 260.6 ± 12.9 and 326.5 ± 9.4, respectively). RdA70 hydrolyzed starch and amylose at similar rates (Vmax/Km = 202.9 ± 5.5 and 215.9 ± 6.2, respectively), but amylopectin was a poor substrate (Vmax/Km = 124.2 ± 7.4). The overall results suggest that RdA70 and RdA79 appear to belong to a group of saccharifying isoamylases that breaks down long fragments of oligosaccharide chains produced by the hydrolytic action of RdA90. The simultaneous action of the three isoamylases on starch, aside from the high resistance of RdA90 to wheat amylase inhibitors, might allow R. dominica to feed and reproduce successfully on the wheat kernel.  相似文献   

18.
Kinetics of cellulose hydrolysis with halostable cellulase from a marine Aspergillus niger was analyzed at different salinities. Cellulase activity in 8% NaCl solution was 1.43 folds higher than that in NaCl free solution. Half saturation constant, Km (15.6260 g/L) and the rate constant of deactivation, Kde (0.3369 g/L h) in 8% NaCl solution was lower than that (18.6364 g/L), 0.3754 (g/L h) in NaCl free solution. The maximum initial hydrolysis velocity, Vmax (25.5295 g/L h), in 8% NaCl solution was higher than that in NaCl free solution (25.0153 g/L h). High salinity increased affinity to the cellulase to the substrate and thermostability. Halostable cellulase from a marine Aspergillus niger was valuable for cellulose hydrolysis under high salinity conditions.  相似文献   

19.

Optimal conditions of hyper thermal (HT) acid hydrolysis of the Saccharina japonica was determined to a seaweed slurry content of 12% (w/v) and 144 mM H2SO4 at 160 °C for 10 min. Enzymatic saccharification was carried out at 50 °C and 150 rpm for 48 h using the three enzymes at concentrations of 16 U/mL. Celluclast 1.5 L showed the lowest half-velocity constant (Km) of 0.168 g/L, indicating a higher affinity for S. japonica hydrolysate. Pretreatment yielded a maximum monosaccharide concentration of 36.2 g/L and 45.7% conversion from total fermentable monosaccharides of 79.2 g/L with 120 g dry weight/L S. japonica slurry. High cell densities of Clostridium acetobutylicum and Clostridium tyrobutyricum were obtained using the retarding agents KH2PO4 (50 mM) and NaHCO3 (200 mM). Adaptive evolution facilitated the efficient use of mixed monosaccharides. Therefore, adaptive evolution and retarding agents can enhance the overall butanol and butyric acid yields from S. japonica.

  相似文献   

20.
Wolinella succinogenes was found to grow on H2S plus fumarate with the formation of elemental sulfur and succinate. The growth rate was 0.18 h-1 (t d=3.8 h) and the growth yield was estimated to be 6.0 g per mol fumarate used. Growth also occurred on formate plus elemental sulfur; the products formed were H2S and CO2. The growth rate and estimated growth yield were 0.58 h-1 (t d=1.2 h) and 3.5 g per mol formate used, respectively. These results suggest that certain chemotrophic anaerobes may be involved in both the formation and reduction of sulfur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号