首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Recent technological advances have enabled high-throughput measurements of protein-protein interactions in the cell, producing large protein interaction networks for various species at an ever-growing pace. However, common technologies like yeast two-hybrid may experience high rates of false positive detection. To combat false positive discoveries, a number of different methods have been recently developed that associate confidence scores with protein interactions. Here, we perform a rigorous comparative analysis and performance assessment among these different methods.  相似文献   

2.

Background  

Cellular processes require the interaction of many proteins across several cellular compartments. Determining the collective network of such interactions is an important aspect of understanding the role and regulation of individual proteins. The Gene Ontology (GO) is used by model organism databases and other bioinformatics resources to provide functional annotation of proteins. The annotation process provides a mechanism to document the binding of one protein with another. We have constructed protein interaction networks for mouse proteins utilizing the information encoded in the GO annotations. The work reported here presents a methodology for integrating and visualizing information on protein-protein interactions.  相似文献   

3.

Background  

It has been shown for an evolutionarily distant genomic comparison that the number of protein-protein interactions a protein has correlates negatively with their rates of evolution. However, the generality of this observation has recently been challenged. Here we examine the problem using protein-protein interaction data from the yeast Saccharomyces cerevisiae and genome sequences from two other yeast species.  相似文献   

4.

Background  

Protein-protein interactions are critical for cellular functions. Recently developed computational approaches for predicting protein-protein interactions utilize co-evolutionary information of the interacting partners, e.g., correlations between distance matrices, where each matrix stores the pairwise distances between a protein and its orthologs from a group of reference genomes.  相似文献   

5.

Background  

The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties.  相似文献   

6.

Background  

In recent years, a considerable amount of research effort has been directed to the analysis of biological networks with the availability of genome-scale networks of genes and/or proteins of an increasing number of organisms. A protein-protein interaction (PPI) network is a particular biological network which represents physical interactions between pairs of proteins of an organism. Major research on PPI networks has focused on understanding the topological organization of PPI networks, evolution of PPI networks and identification of conserved subnetworks across different species, discovery of modules of interaction, use of PPI networks for functional annotation of uncharacterized proteins, and improvement of the accuracy of currently available networks.  相似文献   

7.

Background  

There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome.  相似文献   

8.

Background  

A lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles.  相似文献   

9.

Background

We describe a biosensor platform for monitoring molecular interactions that is based on the combination of a defined nano-porous silicon surface, coupled to light interferometry. This platform allows the label-free detection of protein-protein and protein-DNA interactions in defined, as well as complex protein mixtures. The silicon surface can be functionalized to be compatible with traditional carboxyl immobilization chemistries, as well as with aldehyde-hydrazine bioconjugation chemistries.

Results

We demonstrate the utility of the new platform in measuring protein-protein interactions of purified products in buffer, in complex mixtures, and in the presence of different organic solvent spikes, such as DMSO and DMF, as these are commonly used in screening chemical compound libraries.

Conclusion

Nano-porous silicon, when combined with white light interferometry, is a powerful technique for the measurement of protein-protein interactions. In addition to studying the binary interactions of biomolecules in clean buffer systems, the newly developed surfaces are also suited for studying interactions in complex samples, such as plasma.  相似文献   

10.

Aim

Species geographical range sizes play a crucial role in determining species vulnerability to extinction. Although several mechanisms affect range sizes, the number of biotic interactions and species climatic tolerance are often thought to play discernible roles, defining two dimensions of the Hutchinsonian niche. Yet, the relative importance of the trophic and the climatic niche for determining species range sizes is largely unknown.

Location

Central and northern Europe.

Time period

Present.

Major taxa studied

Gall-inducing sawflies and their parasitoids.

Methods

We use data documenting the spatial distributions and biotic interactions of 96 herbivore species, and their 125 parasitoids, across Europe and analyse the relationship between species range size and the climatic and trophic dimensions of the niche. We then compare the observed relationships with null expectations based on species occupancy to understand whether the relationships observed are an inevitable consequence of species range size or if they contain information about the importance of each dimension of the niche on species range size.

Results

We find that both niche dimensions are positively correlated with species range size, with larger ranges being associated with wider climatic tolerances and larger numbers of interactions. However, diet breadth appears to more strongly limit species range size. Species with larger ranges have more interactions locally and they are also able to interact with a larger diversity of species across sites (i.e. higher β-diversity), resulting in a larger number of interactions at continental scales.

Main conclusions

We show for the first time how different aspects of species diet niches are related to their range size. Our study offers new insight into the importance of biotic interactions in determining species spatial distributions, which is critical for improving understanding and predictions of species vulnerability to extinction under the current rates of global environmental change.  相似文献   

11.

Background  

Several protein-protein interaction studies have been performed for the yeast Saccharomyces cerevisiae using different high-throughput experimental techniques. All these results are collected in the BioGRID database and the SGD database provide detailed annotation of the different proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives.  相似文献   

12.

Background  

Domains are the basic functional units of proteins. It is believed that protein-protein interactions are realized through domain interactions. Revealing multi-domain cooperation can provide deep insights into the essential mechanism of protein-protein interactions at the domain level and be further exploited to improve the accuracy of protein interaction prediction.  相似文献   

13.
Information assessment on predicting protein-protein interactions   总被引:1,自引:0,他引:1  

Background  

Identifying protein-protein interactions is fundamental for understanding the molecular machinery of the cell. Proteome-wide studies of protein-protein interactions are of significant value, but the high-throughput experimental technologies suffer from high rates of both false positive and false negative predictions. In addition to high-throughput experimental data, many diverse types of genomic data can help predict protein-protein interactions, such as mRNA expression, localization, essentiality, and functional annotation. Evaluations of the information contributions from different evidences help to establish more parsimonious models with comparable or better prediction accuracy, and to obtain biological insights of the relationships between protein-protein interactions and other genomic information.  相似文献   

14.

Background  

The study of protein-protein interactions is becoming increasingly important for biotechnological and therapeutic reasons. We can define two major areas therein: the structural prediction of protein-protein binding mode, and the identification of the relevant residues for the interaction (so called 'hot-spots'). These hot-spot residues have high interest since they are considered one of the possible ways of disrupting a protein-protein interaction. Unfortunately, large-scale experimental measurement of residue contribution to the binding energy, based on alanine-scanning experiments, is costly and thus data is fairly limited. Recent computational approaches for hot-spot prediction have been reported, but they usually require the structure of the complex.  相似文献   

15.

Background  

Determining the function of uncharacterized proteins is a major challenge in the post-genomic era due to the problem's complexity and scale. Identifying a protein's function contributes to an understanding of its role in the involved pathways, its suitability as a drug target, and its potential for protein modifications. Several graph-theoretic approaches predict unidentified functions of proteins by using the functional annotations of better-characterized proteins in protein-protein interaction networks. We systematically consider the use of literature co-occurrence data, introduce a new method for quantifying the reliability of co-occurrence and test how performance differs across species. We also quantify changes in performance as the prediction algorithms annotate with increased specificity.  相似文献   

16.

Background  

Initiation of eukaryotic DNA replication involves many protein-protein and protein-DNA interactions. We have previously shown that 14-3-3 proteins bind cruciform DNA and associate with mammalian and yeast replication origins in a cell cycle dependent manner.  相似文献   

17.

Aim

To measure the effects of including biotic interactions on climate‐based species distribution models (SDMs) used to predict distribution shifts under climate change. We evaluated the performance of distribution models for an endangered marsupial, the northern bettong (Bettongia tropica), comparing models that used only climate variables with models that also took into account biotic interactions.

Location

North‐east Queensland, Australia.

Methods

We developed separate climate‐based distribution models for the northern bettong, its two main resources and a competitor species. We then constructed models for the northern bettong by including climate suitability estimates for the resources and competitor as additional predictor variables to make climate + resource and climate + resource + competition models. We projected these models onto seven future climate scenarios and compared predictions of northern bettong distribution made by these differently structured models, using a ‘global’ metric, the I similarity statistic, to measure overlap in distribution and a ‘local’ metric to identify where predictions differed significantly.

Results

Inclusion of food resource biotic interactions improved model performance. Over moderate climate changes, up to 3.0 °C of warming, the climate‐only model for the northern bettong gave similar predictions of distribution to the more complex models including interactions, with differences only at the margins of predicted distributions. For climate changes beyond 3.0 °C, model predictions diverged significantly. The interactive model predicted less contraction of distribution than the simpler climate‐only model.

Main conclusions

Distribution models that account for interactions with other species, in particular direct resources, improve model predictions in the present‐day climate. For larger climate changes, shifts in distribution of interacting species cause predictions of interactive models to diverge from climate‐only models. Incorporating interactions with other species in SDMs may be needed for long‐term prediction of changes in distribution of species under climate change, particularly for specialized species strongly dependent on a small number of biotic interactions.  相似文献   

18.

Background  

The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms.  相似文献   

19.

Background  

As protein interactions mediate most cellular mechanisms, protein-protein interaction networks are essential in the study of cellular processes. Consequently, several large-scale interactome mapping projects have been undertaken, and protein-protein interactions are being distilled into databases through literature curation; yet protein-protein interaction data are still far from comprehensive, even in the model organism Saccharomyces cerevisiae. Estimating the interactome size is important for evaluating the completeness of current datasets, in order to measure the remaining efforts that are required.  相似文献   

20.

Background  

One of the most challenging aspects of protein-protein docking is the inclusion of flexibility into the docking procedure. We developed a postfilter where the grid-representation of proteins for docking is extended by an optimised weighting factor for each amino acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号