首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
水分胁迫下AM真菌对沙打旺生长和抗旱性的影响   总被引:7,自引:0,他引:7  
郭辉娟  贺学礼 《生态学报》2010,30(21):5933-5940
利用盆栽试验研究了水分胁迫条件下接种AM真菌对优良牧草和固沙植物沙打旺(Astragalus adsurgens Pall.)生长和抗旱性的影响。在土壤相对含水量为70%、50%和30%条件下,分别接种摩西球囊霉(Glomus mosseae)和沙打旺根际土著菌,不接种处理作为对照。结果表明,水分胁迫显著降低了沙打旺植株(无论接种AM真菌与否)的株高、分枝数、地上部干重和地下部干重,并显著提高了土著AM真菌的侵染率,对摩西球囊霉的侵染率无显著影响。接种AM真菌可以促进沙打旺生长和提高植株抗旱性,但促进效应因土壤含水量和菌种不同而存在差异。不同水分条件下,接种AM真菌显著提高了植株菌根侵染率、根系活力、地下部全N含量和叶片CAT活性。土壤相对含水量为30%和50%时,接种株地上部全N、叶片叶绿素、可溶性蛋白、脯氨酸含量和POD活性显著高于未接种株;接种AM真菌显著降低了叶片MDA含量;接种土著AM真菌的植株株高、分枝数、地上部和地下部干重显著高于未接种株。土壤相对含水量为30%时,接种AM真菌显著增加了地上部全P含量和叶片相对含水量;接种摩西球囊霉的植株株高、分枝数、地上部和地下部干重显著高于未接种株。水分胁迫40d,接种AM真菌显著提高了叶片可溶性糖含量。水分胁迫80d,接种株叶片SOD活性显著增加。菌根依赖性随水分胁迫程度增加而提高。沙打旺根际土著菌接种效果优于摩西球囊霉。水分胁迫和AM真菌的交互作用对分枝数、菌根侵染率、叶片SOD、CAT和POD活性、叶绿素、脯氨酸、可溶性蛋白、地上部全N和全P、地下部全N和根系活力有极显著影响,对叶片丙二醛和地下部全P有显著影响。AM真菌促进根系对土壤水分和矿质营养的吸收,改善植物生理代谢活动,从而提高沙打旺抗旱性,促进其生长。试验结果为筛选优良抗旱菌种,充分利用AM真菌资源促进荒漠植物生长和植被恢复提供了依据。  相似文献   

2.
The outcome of dual infection of the grass Lolium perenne L. by arbuscular mycorrhizal (AM) fungi and the parasitic angiosperm Rhinanthus minor L. was investigated in a glasshouse study. Colonization of L. perenne roots by AM fungi was significantly reduced by the presence of R. minor , as was host growth which fell by 44–51%. It was concluded that these two responses were linked, with AM colonization declining in response to the reduction in availability of host carbon. Parasite growth and reproductive output rose by 58% and 47% respectively when the hosts were mycorrhizal. These trends were unrelated to the attachment success of the parasite, but were accompanied by a significant increase in the formation of secondary haustoria. The benefits afforded the parasite when the hosts were mycorrhizal were attributed to increased carbon and nutrient flux resulting from alternations in sink strength. Host responses to parasitism and mycorrhizal colonization were not affected by the interaction between the two symbionts. However, the suggestion is made that the interaction between the AM fungi and parasite might have long-term ecological implications for the host species via its impact on parasite fecundity.  相似文献   

3.
该研究比较了摩西球囊霉(Glmous mosseae)和幼套球囊霉(Glmous etunicatum)两种丛枝菌根真菌和内生真菌单独及混合接种对羊草(Leymus chinensis)生长的影响。结果表明, 内生真菌对2种菌根真菌的侵染均无显著影响, 内生真菌可极显著增加羊草的分蘖数、地上生物量、总生物量。内生真菌与菌根真菌之间的相互作用因菌根真菌种类而不同, 幼套球囊霉对宿主植物生长无明显影响且和内生真菌之间也无明显的相互作用; 单独接种摩西球囊霉显著增加羊草的地上、地下和总生物量, 当其与内生真菌共同存在时, 二者之间存在一定的拮抗作用。冗余分析结果表明, 在内生真菌-AM真菌-羊草共生体中, 内生真菌对宿主植物生长的影响最大, 摩西球囊霉对宿主植物生长也有一定的贡献, 幼套球囊霉对宿主植物生长无明显影响。  相似文献   

4.
Individual plants typically interact with multiple mutualists and enemies simultaneously. Plant roots encounter both arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi, while the leaves are exposed to herbivores. AMF are usually beneficial symbionts, while the functional role of DSE is largely unknown. Leaf herbivory may have a negative effect on root symbiotic fungi due to decreased carbon availability. However, evidence for this is ambiguous and no inoculation-based experiment on joint effects of herbivory on AM and DSE has been done to date. We investigated how artificial defoliation impacts root colonization by AM (Glomus intraradices) and DSE (Phialocephala fortinii) fungi and growth of Medicago sativa host in a factorial laboratory experiment. Defoliation affected fungi differentially, causing a decrease in arbuscular colonization and a slight increase in DSE-type colonization. However, the presence of one fungal species had no effect on colonization by the other or on plant growth. Defoliation reduced plant biomass, with this effect independent of the fungal treatments. Inoculation by either fungal species reduced root/shoot ratios, with this effect independent of the defoliation treatments. These results suggest AM colonization is limited by host carbon availability, while DSE may benefit from root dieback or exudation associated with defoliation. Reductions in root allocation associated with fungal inoculation combined with a lack of effect of fungi on plant biomass suggest DSE and AMF may be functional equivalent to the plant within this study. Combined, our results indicate different controls of colonization, but no apparent functional consequences between AM and DSE association in plant roots in this experimental setup.  相似文献   

5.
乌日罕  刘慧  吴曼  任安芝  高玉葆 《生态学杂志》2018,29(12):4145-4151
内生真菌与丛枝菌根(AM)真菌是构成草原生态系统的重要组成部分.内生真菌会抑制其宿主植物的AM真菌侵染率.本研究以感染2种香柱菌属内生真菌[Epichloё gansuensis(Eg)和E. sibirica(Es)]的天然禾草羽茅为供试材料,进行体外纯培养的内生真菌培养滤液、感染内生真菌的羽茅叶片(包括鲜叶和枯叶)浸提液,以及根系分泌物对摩西球囊霉(Gm)和幼套球囊霉(Ge)2种AM真菌孢子萌发影响试验.结果表明: 香柱菌属内生真菌的培养滤液会显著抑制2种AM真菌孢子的萌发,而感染香柱菌属内生真菌的羽茅根系分泌物只对Ge孢子萌发有显著抑制作用,且上述抑制作用与内生真菌种类无关;鲜叶浸提液对Gm和Ge的孢子萌发率均无显著影响,而枯叶浸提液对Ge的孢子萌发有显著抑制作用.在自然生态系统中,香柱菌属内生真菌通常存在于宿主植物体内,可能通过影响宿主植物的根系分泌物来影响AM真菌孢子的萌发.  相似文献   

6.
采用分室培养系统,模拟正常水分和干旱胁迫两种环境条件,探讨不同丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)对紫花苜蓿(Medicago sativa L.)生长和土壤水稳性团聚体的影响.试验条件下,Glomus intraradices对苜蓿根系的侵染率均显著高于Acaulospora scrobiculata和Diversispora spurcum接种处理.正常水分条件下,供试AM真菌均能显著提高植株生物量及磷浓度.干旱胁迫显著抑制了植株生长和菌根共生体发育,总体上菌根共生体对植株生长没有明显影响,接种D.spurcum甚至趋于降低植株生物量;同时,仅有G.intraradices显著提高了植株磷浓度.AM真菌主要影响到>2mm的水稳性团聚体数量,以G.intraradices作用效果最为显著.在菌丝室中,G.intraradices显著提高了总球囊霉素含量.研究表明AM真菌对土壤大团聚体形成具有积极作用,而菌根效应因土壤水分条件和不同菌种而异,干旱胁迫下仅有G.intraradices对土壤结构和植物生长表现出显著积极作用.在应用菌根技术治理退化土壤时,需要选用抗逆性强共生效率高的菌株,对于不同AM真菌抗逆性差异的生物学与遗传学基础尚需进一步研究.  相似文献   

7.
不同水肥条件下AM真菌对丹参幼苗生长和营养成分的影响   总被引:2,自引:0,他引:2  
贺学礼  马丽  孟静静  王平 《生态学报》2012,32(18):5721-5728
利用盆栽接种试验,探讨不同水肥条件下AM真菌摩西球囊霉Glomus mosseae对丹参幼苗生长和微量元素的影响,为丹参水肥合理施用提供理论依据。结果表明,不同水肥条件下,接种AM真菌显著提高了根系侵染率和生物量。40%相对含水量、不同施P水平,接种株丹参酮含量升高,总黄酮、丹参素及地下部总酚酸含量降低,植株Zn及地上部Ca、K、Mn、Fe含量升高,而对植株Mg、Cu和地下部Ca、K、Mn、Fe无显著影响;接种效应随施P量不同而变化。70%相对含水量、不同施P水平,接种株药用成分含量显著升高,植株Ca、Mn和地上部K、Cu及地下部Fe和Zn含量升高,而对植株Mg、地下部K、Cu和地上部Fe和Zn含量无显著影响。不同水分和同一施P水平,接种株丹参酮含量升高,地上部Ca、K和地下部Zn含量升高,接种效应因土壤含水量不同而变化,其中以70%含水量时效果最好。说明AM真菌能促进宿主植物根系对水分和矿质元素的吸收与利用,提高水分和P肥利用率,降低水分和P胁迫对丹参的伤害程度,其中以70%相对含水量,施P量为0.16 gP/kg土时AM真菌对丹参的接种效果最佳。  相似文献   

8.
丛枝菌根化翅果油树幼苗根际土壤微环境   总被引:7,自引:0,他引:7       下载免费PDF全文
以我国二级濒危保护植物翅果油(Elaeagnus mollis)为供试植物, 通过温室盆栽试验, 研究接种丛枝菌根真菌对翅果油树幼苗根际土壤微生态环境的影响。试验设计分4个组: 摩西球囊霉(Glomus mosseae)单独接种组(GM)、脆无梗囊霉(Acaulospora delicata)单独接种组(AD)、混合接种组(GM + AD)、不接种的对照组(CK)。测定了菌根侵染率、生物量、根际微生物数量、土壤pH值、土壤酶活性及其对N、P营养的影响等指标。结果显示: 菌根真菌对3个接种组均有侵染, 其中, GM + AD的侵染率最大(90.5%), 生态学效应最好; 与对照组相比, 接种组的生物量均明显提高(p < 0.05), 其中GM + AD组生物量显著增加, 是CK组的2.2倍; AM菌根对根部微生物种群数量产生一定的影响, 主要是使根面上的细菌、放线菌、固氮菌的数量显著增加(p < 0.05); AM菌根使根际pH值降低, 与菌根侵染率呈显著负相关关系(p < 0.05); 接种组根际土壤磷酸酶、脲酶、蛋白酶的活性增加, 根际土壤的磷酸酶、蛋白酶的活性增加量与菌根侵染率呈极显著相关关系(p < 0.01); 接种组的根际土壤中, 可直接被植物吸收利用的N、P元素出现富集现象, 与菌根侵染率呈显著相关关系(p < 0.05)。研究表明: 丛枝菌根的形成改善了翅果油树幼苗的微生态环境, 提高了根际土壤肥力。  相似文献   

9.
The diversity of functional and life-history traits of organisms depends on adaptation as well as the legacy of shared ancestry. Although the evolution of traits in macro-organisms is well studied, relatively little is known about character evolution in micro-organisms. Here, we surveyed an ancient and ecologically important group of microbial plant symbionts, the arbuscular mycorrhizal (AM) fungi, and tested hypotheses about the evolution of functional and life-history traits. Variation in the extent of root and soil colonization by AM fungi is constrained to a few nodes basal to the most diverse groups within the phylum, with relatively little variation associated with recent divergences. We found no evidence for a trade-off in biomass allocated to root versus soil colonization in three published glasshouse experiments; rather these traits were positively correlated. Partial support was observed for correlated evolution between fungal colonization strategies and functional benefits of the symbiosis to host plants. The evolution of increased soil colonization was positively correlated with total plant biomass and shoot phosphorus content. Although the effect of AM fungi on infection by root pathogens was phylogenetically conserved, there was no evidence for correlated evolution between the extent of AM fungal root colonization and pathogen infection. Variability in colonization strategies evolved early in the diversification of AM fungi, and we propose that these strategies were influenced by functional interactions with host plants, resulting in an evolutionary stasis resembling trait conservatism.  相似文献   

10.
Considered to play an important role in plant mineral nutrition, arbuscular mycorrhizal (AM) symbiosis is a common relationship between the roots of a great majority of plant species and glomeromycotan fungi. Its effects on the plant host are highly context dependent, with the greatest benefits often observed in phosphorus (P)‐limited environments. Mycorrhizal contribution to plant nitrogen (N) nutrition is probably less important under most conditions. Moreover, inasmuch as both plant and fungi require substantial quantities of N for their growth, competition for N could potentially reduce net mycorrhizal benefits to the plant under conditions of limited N supply. Further compounded by increased belowground carbon (C) drain, the mycorrhizal costs could outweigh the benefits under severe N limitation. Using a field AM fungal community or a laboratory culture of Rhizophagus irregularis as mycorrhizal inoculants, we tested the contribution of mycorrhizal symbiosis to the growth, C allocation, and mineral nutrition of Andropogon gerardii growing in a nutrient‐poor substrate under variable N and P supplies. The plants unambiguously competed with the fungi for N when its supply was low, resulting in no or negative mycorrhizal growth and N‐uptake responses under such conditions. The field AM fungal communities manifested their potential to improve plant P nutrition only upon N fertilization, whereas the Rirregularis slightly yet significantly increased P uptake of its plant host (but not the host's growth) even without N supply. Coincident with increasing levels of root colonization by the AM fungal structures, both inoculants invariably increased nutritional and growth benefits to the host with increasing N supply. This, in turn, resulted in relieving plant P deficiency, which was persistent in non‐mycorrhizal plants across the entire range of nutrient supplies.  相似文献   

11.
The influence of arbuscular mycorrhizal (AM) fungus Glomus deserticola (Trappe and John) on plant growth, nutrition, flower yield, water relations, chlorophyll (Chl) contents and water-use efficiency (WUE) of snapdragon (Antirhinum majus cv. butterfly) plants were studied in potted culture under well-watered (WW) and water-stress (WS) conditions. The imposed water stress condition significantly reduced all growth parameters, nutrient contents, flower yield, water relations, and Chl pigment content and increased the electrolyte leakage of the plants comparing to those of nonstressed plants. Regardless of the WS level, the mycorrhizal snapdragon plants had significantly higher shoot and root dry mass (DM), WUE, flower yield, nutrient (P, N, K, Mg, and Ca) and Chl contents than those nonmycorrhizal plants grown both under WW or WS conditions. Under WS conditions, the AM colonization had greatly improved the leaf water potential (??w), leaf relative water content (RWC) and reduced the leaf electrolyte leakage (EL) of the plants. Although the WS conditions had markedly increased the proline content of the leaves, this increase was significantly higher in nonmycorrhizal than in mycorrhizal plants. This suggests that AM colonization enhances the host plant WS tolerance. Values of benefit and potential dry matter for AM-root associations were highest when plants were stressed and reduced under WW conditions. As a result, the snapdragon plants showed a high degree of dependency on AM fungi which improve plant growth, flower yield, water relations particularly under WS conditions, and these improvements were increased as WS level had increased. This study confirms that AM colonization can mitigate the deleterious effect of water stress on growth and flower yield of the snapdragon ornamental plant.  相似文献   

12.
蓝莓Vaccinium uliginosum是欧石南菌根(ericoid mycorrhiza,ERM)真菌典型的寄主植物,但同时也可与丛枝菌根(arbuscular mycorrhiza,AM)真菌和深色有隔内生真菌(dark septate endophytes,DSE)共生形成复合共生体。本研究旨在调查和评价不同栽培体制下蓝莓成年树花果期根系共生体发育状况及其根区土壤中AM真菌资源分布状况,以期为优质蓝莓栽培管理提供理论依据和技术基础。从青岛佳沃蓝莓基地采集暖棚、冷棚和露地3种方式栽培的9-10年生‘蓝丰’、‘奥尼尔’和‘公爵’蓝莓的根系及根区土样,观察测定根系共生体着生数量、根区土壤中AM真菌孢子数量和菌种组成。结果表明,所有栽培方式下供试品种蓝莓根系均形成ERM、AM和DSE结构及其复合共生体;其中,AM着生数量最多,其次是ERM,DSE侵染率最低;复合共生体中则呈现ERM+AM>ERM+DSE>ERM+AM+DSE;蓝莓复合共生体着生数量、AM真菌侵染率、丛枝着生率及孢子数量等不同种植方式下呈现暖棚>冷棚>露地,不同品种呈现‘蓝丰’>‘公爵’>‘奥尼尔’,而ERM和DSE侵染率也呈现上述变化趋势。依据AM真菌形态特征,供分离鉴定获得5属11种AM真菌,以暖棚栽培条件下分离获得的AM真菌数量最多,‘蓝丰’根区土壤中分布的AM真菌属种最多。暖棚内成年树花果期蓝莓根系共生体发育健全,AM真菌种类和孢子数量较多,可能有利于提高蓝莓的产量、改善果实品质和抗逆性。  相似文献   

13.
Most organisms engage in beneficial interactions with other species; however, little is known regarding how individuals balance the competing demands of multiple mutualisms. Here we examine three-way interactions among a widespread grass, Schedonorus phoenix , a protective fungal endophyte aboveground, Neotyphodium coenophialum , and nutritional symbionts (arbuscular mycorrhizal fungi) belowground. In a greenhouse experiment, we manipulated the presence/absence of both fungi and applied a fertilizer treatment to individual plants. Endophyte presence in host plants strongly reduced mycorrhizal colonization of roots. Additionally, for plants with the endophyte, the density of endophyte hyphae was negatively correlated with mycorrhizal colonization, suggesting a novel role for endophyte abundance in the interaction between the symbionts. Endophyte presence increased plant biomass, and there was a positive correlation between endophyte hyphal density and plant biomass. The effects of mutualists were asymmetric: mycorrhizal fungi treatments had no significant impact on the endophyte and negligible effects on plant biomass. Fertilization affected all three species – increasing plant biomass and endophyte density, but diminishing mycorrhizal colonization. Mechanisms driving negative effects of endophytes on mycorrhizae may include inhibition via endophyte alkaloids, altered nutritional requirements of the host plant, and/or temporal and spatial priority effects in the interactions among plants and multiple symbionts.  相似文献   

14.
The initiation of a programme of screening and selection of arbuscular-mycorrhizal fungi (AM fungi) and ectomycorrhizal fungi (ECM fungi) for use as inoculant fungi in agriculture, horticulture of forestry will depend on whether inoculation is more appropriate as a management option than manipulation of the indigenous mycorrhizal populations. The greatest immediate potential for the successful use of mycorrhizal inoculants will be in soils and growth media where phosphorus (P) limits plant growth and where the indigenous mycorrhizal fungi are either ineffective at increasing P uptake by the plant or their numbers have been drastically reduced by human influence or natural disturbance. In recent investigations, however, additional benefits to the plant following colonization of roots by effective AM or ECM fungi have been demonstrated. These additional benefits of an effective mycorrhizal association have necessitated a re-evaluation of the optimum screening procedures for isolates of AM and ECM fungi. Both current methodologies and suggestions for alternative approaches to the screening of AM and ECM fungi are discussed in this paper. The problems inherent in choosing suitable experimental conditions to compare different isolates at the screening stage are also addressed. The review also stresses the importance of continued monitoring of introduced mycorrhizal fungi to learn more about their longer-term ecological role, particularly within reforestation or revegetation studies.  相似文献   

15.
Variation in aluminum resistance among arbuscular mycorrhizal fungi   总被引:3,自引:0,他引:3  
Kelly CN  Morton JB  Cumming JR 《Mycorrhiza》2005,15(3):193-201
Arbuscular mycorrhizal (AM) fungi mediate interactions between plants and soils, and are important where nutrient or metal concentrations limit plant growth. Variation in fungal response to edaphic conditions may influence the effectiveness of the plant-mycorrhizal association in some soil environments. Andropogon virginicus (broomsedge) colonizes disturbed sites in the eastern United States, including acidic mine soils where aluminum (Al) is phytotoxic, and Al resistance in broomsedge has been associated with colonization by the AM fungus Glomus clarum. In the present study, inter- and intra-specific variation to confer Al resistance to broomsedge was assessed among selected species of AM fungi. Broomsedge seeds were grown in sand culture inoculated with one of five isolates of three species of fungi (G. clarum, Acaulospora morrowiae, and Scutellospora heterogama). Plants were exposed to 0 or 400 µM Al in nutrient solution and harvested after 4 or 9 weeks of growth. Mean infection percentage, plant biomass, and plant tissue Al and phosphorus (P) concentrations were measured. G. clarum conferred the greatest Al resistance to broomsedge, with the lowest variability among isolates for colonization and growth inhibition by Al [tolerance indices (TI) between 22.4 and 92.7%]. Broomsedge plants colonized by A. morrowiae were consistently the most sensitive to Al, with little variation among isolates (TI between 1.6 and 12.1%). Al resistance by S. heterogama isolates was intermediate and wide-ranging (TI between 3.9 and 40.0%). Across all AM fungal isolates, resistance was associated with high rates of colonization and low tissue Al concentrations of broomsedge plants. The functional diversity in Al resistance displayed by these AM fungi reflect variation in acclimation mechanisms operating in the mycorrhizal symbiosis under environmental stress.  相似文献   

16.
Soil disturbances can alter microbial communities including arbuscular mycorrhizal (AM) fungi, which may in turn, affect plant community structure and the abundance of exotic species. We hypothesized that altered soil microbial populations owing to disturbance would contribute to invasion by cheatgrass (Bromus tectorum), an exotic annual grass, at the expense of the native perennial grass, squirreltail (Elymus elymoides). Using a greenhouse experiment, we compared the responses of conspecific and heterospecific pairs of cheatgrass and squirreltail inoculated with soil (including live AM spores and other organisms) collected from fuel treatments with high, intermediate and no disturbance (pile burns, mastication, and intact woodlands) and a sterile control. Cheatgrass growth was unaffected by type of soil inoculum, whereas squirreltail growth, reproduction and nutrient uptake were higher in plants inoculated with soil from mastication and undisturbed treatments compared to pile burns and sterile controls. Squirreltail shoot biomass was positively correlated with AM colonization when inoculated with mastication and undisturbed soils, but not when inoculated with pile burn soils. In contrast, cheatgrass shoot biomass was negatively correlated with AM colonization, but this effect was less pronounced with pile burn inoculum. Cheatgrass had higher foliar N and P when grown with squirreltail compared to a conspecific, while squirreltail had lower foliar P, AM colonization and flower production when grown with cheatgrass. These results indicate that changes in AM communities resulting from high disturbance may favor exotic plant species that do not depend on mycorrhizal fungi, over native species that depend on particular taxa of AM fungi for growth and reproduction.  相似文献   

17.
丛枝菌根真菌与植食性昆虫的相互作用   总被引:1,自引:0,他引:1  
高春梅  王淼焱  弥岩  万方浩  刘润进 《生态学报》2014,34(13):3481-3489
丛枝菌根(arbuscular mycorrhizal AM)真菌与昆虫均是陆地生态系统中的重要组分,同植物关系密切,对植物的影响和作用是巨大的。生态系统中则以AM真菌-植物-昆虫互作体系参预食物网与生态过程。早在20世纪80年代,人们已开始研究AM真菌对昆虫的影响。进入21世纪人们越来越重视AM真菌与昆虫的相互作用。总结了AM真菌对昆虫取食偏好、生长、繁殖和对植物危害等方面的影响、以及昆虫对AM真菌侵染、扩展和产孢的影响;分析了植物营养状况、昆虫性别、昆虫龄期和AM真菌种类等对AM真菌与昆虫相互作用的影响特点;探讨了AM真菌与昆虫相互作用的机制;展望了利用AM真菌抑制植食性害虫、及促进天敌昆虫和部分传粉昆虫作用的可能性,旨在丰富菌根学研究内容、促进AM真菌与昆虫互作领域的深入研究、为探索生物防控农林业害虫的新途径提供依据。  相似文献   

18.
龙脑香科植物对丛枝菌根真菌的影响   总被引:2,自引:0,他引:2  
在天然林地和温室盆栽条件下,比较研究了龙脑香科植物对丛枝菌根(Arbuscular mycorrhizas,AM)真菌孢子密度、相对多度、频度、属的组成、丰度和侵染状况等方面的影响.结果表明,用坡垒作盆栽寄主加富培养后,菌根侵染率、泡囊、丛枝和侵入点都低于原采样植物,以原坡垒土壤中栽植苗木的侵染率为最高,可达20.3%;而以望天树根围土壤栽植的苗木为最低,仅为10.6%;坡垒还不同程度地改变了原采样植物根围土壤中AM真菌孢子的密度、相对多度、频度、属的组成、丰度等.在4种土壤中,栽植坡垒苗木后,AM真菌的孢子密度都有不同程度的增长.采用与原采样相同种类的植物作为AM真菌加富培养的寄主更有利于促进AM真菌的生长发育、保持AM的多样性.  相似文献   

19.
Field response of wheat to arbuscular mycorrhizal fungi and drought stress   总被引:3,自引:0,他引:3  
Al-Karaki G  McMichael B  Zak J 《Mycorrhiza》2004,14(4):263-269
Mycorrhizal plants often have greater tolerance to drought than nonmycorrhizal plants. This study was conducted to determine the effects of arbuscular mycorrhizal (AM) fungi inoculation on growth, grain yield and mineral acquisition of two winter wheat (Triticum aestivum L.) cultivars grown in the field under well-watered and water-stressed conditions. Wheat seeds were planted in furrows after treatment with or without the AM fungi Glomus mosseae or G. etunicatum. Roots were sampled at four growth stages (leaf, tillering, heading and grain-filling) to quantify AM fungi. There was negligible AM fungi colonization during winter months following seeding (leaf sampling in February), when soil temperature was low. During the spring, AM fungi colonization increased gradually. Mycorrhizal colonization was higher in well-watered plants colonized with AM fungi isolates than water-stressed plants. Plants inoculated with G. etunicatum generally had higher colonization than plants colonized with G. mosseae under both soil moisture conditions. Biomass and grain yields were higher in mycorrhizal than nonmycorrhizal plots irrespective of soil moisture, and G. etunicatum inoculated plants generally had higher biomass and grain yields than those colonized by G. mosseae under either soil moisture condition. The mycorrhizal plants had higher shoot P and Fe concentrations than nonmycorrhizal plants at all samplings regardless of soil moisture conditions. The improved growth, yield and nutrient uptake in wheat plants reported here demonstrate the potential of mycorrhizal inoculation to reduce the effects of drought stress on wheat grown under field conditions in semiarid areas of the world.  相似文献   

20.
Soybean plants can form tripartite symbiotic associations with rhizobia and arbuscular mycorrhizal (AM) fungi, but little is known about effects of co-inoculation with rhizobia and AM fungi on plant growth, or their relationships to root architecture as well as nitrogen (N) and phosphorus (P) availability. In the present study, two soybean genotypes contrasting in root architecture were grown in a field experiment to evaluate relationships among soybean root architecture, AMF colonization, and nodulation under natural conditions. Additionally, a soil pot experiment in greenhouse was conducted to investigate the effects of co-inoculation with rhizobia and AM fungi on soybean growth, and uptake of N and P. Our results indicated that there was a complementary relationship between root architecture and AMF colonization in the field. The deep root soybean genotype had greater AMF colonization at low P, but better nodulation with high P supply than the shallow root genotype. A synergistic relationship dependent on N and P status exists between rhizobia and AM fungi on soybean growth. Co-inoculation with rhizobia and AM fungi significantly increased soybean growth under low P and/or low N conditions as indicated by increased shoot dry weight, along with plant N and P content. There were no significant effects of inoculation under adequate N and P conditions. Furthermore, the effects of co-inoculation were related to root architecture. The deep root genotype, HN112, benefited more from co-inoculation than the shallow root genotype, HN89. Our results elucidate new insights into the relationship between rhizobia, AM fungi, and plant growth under limitation of multiple nutrients, and thereby provides a theoretical basis for application of co-inoculation in field-grown soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号