首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Policymakers should treat DIY‐biology laboratories as legitimate parts of the scientific enterprise and pay attention to the role of community norms. Subject Categories: Synthetic Biology & Biotechnology, S&S: Economics & Business, S&S: Ethics

DIY biology – very broadly construed as the practice of biological experiments outside of traditional research environments such as universities, research institutes or companies – has, during the past decade, gained much prominence. This increased attention has raised a number of questions about biosafety and biosecurity, both in the media and by policy makers who are concerned about safety and security lapses in “garage biology”. There are a number of challenges here though when it comes to policies to regulate DIY biology. For a start, the term itself escapes easy definition: synonyms or related terms abound, including garage biotechnology, bio‐hacking, self‐modification/grinding, citizen science, bio‐tinkering, bio‐punk, even transhumanism. Some accounts even use ‘DIY‐bio’ interchangeably with synthetic biology, even though these terms refer to different emerging trends in biology. Some of these terms are more charged than others but each carries its own connotations with regard to practice, norms and legality. As such, conversations about the risk, safety and regulation of DIY‐bio can be fraught.
Synonyms or related terms abound, including garage biotechnology, bio‐hacking, self‐modification/grinding, citizen science, bio‐tinkering, bio‐punk, even transhumanism.
Given the increasing policy discussions about DIY‐bio, it is crucial to consider prevailing practice thoughtfully, and accurately. Key questions that researchers, policy makers and the public need to contemplate include the following: “How do different DIY‐bio spaces exist within regulatory frameworks, and enact cultures of (bio)safety?”, “How are these influenced by norms and governance structures?”, “If something is unregulated, must it follow that it is unsafe?” and “What about the reverse: does regulatory oversight necessarily lead to safer practice?”.The DIY‐bio movement emerged from the convergence of two trends in science and technology. The first one is synthetic biology, which can broadly be defined as a conception of genetic engineering as systematic, modular and programmable. While engineering living organisms is obviously a complex endeavour, synthetic biology has sought to re‐frame it by treating genetic components as inherently modular pieces to be assembled, through rational design processes, into complex but predictable systems. This has prompted many “LEGO” metaphors and a widespread sense of democratisation, making genetic engineering accessible not only to trained geneticists, but also to anyone with an “engineering mindset”.The second, much older, trend stems from hacker‐ and makerspaces, which are – usually not‐for‐profit – community organisations that enable groups of enthusiasts to share expensive or technically complex infrastructure, such as 3D printers or woodworking tools, for their projects. These provide a model of community‐led initiatives based on the sharing of infrastructure, equipment and knowledge. Underpinning these two trends is an economic aspect. Many of the tools of synthetic biology – notably DNA sequencing and synthesis – have seen a dramatic drop in cost, and much of the necessary physical apparatus is available for purchase, often second‐hand, through auction sites.DIY‐bio labs are often set‐up under widely varying management schemes. While some present themselves as community outreach labs focusing on amateur users, others cater specifically to semi‐ or professional members with advanced degrees in the biosciences. Other such spaces act as incubators for biotech startups with an explicitly entrepreneurial culture. Membership agreements, IP arrangements, fees, access and the types of project that are encouraged in each of these spaces can have a profound effect on the science being done.  相似文献   

2.
Biosafety is a major challenge for developing for synthetic organisms. An early focus on application and their context could assist with the design of appropriate genetic safeguards. Subject Categories: Synthetic Biology & Biotechnology, S&S: Economics & Business

One of the goals of synthetic biology is the development of robust chassis cells for their application in medicine, agriculture, and the food, chemical and environmental industries. These cells can be streamlined by removing undesirable features and can be augmented with desirable functionalities to design an optimized organism. In a direct analogy with a car chassis, they provide the frame for different modules or “plug‐in” regulatory networks, metabolic pathways, or safety elements. In an effort to ensure a safe microbial chassis upfront, safety measures are implemented as genetic safeguards to limit risks such as unwanted cellular proliferation or horizontal gene transfer. Examples of this technology include complex genetic circuits, sophisticated metabolic dependencies (auxotrophies), and altered genomes (Schmidt & de Lorenzo, 2016; Asin‐Garcia et al, 2020). Much like seat belts or airbags in cars, these built‐in measures increase the safety of the chassis and of any organisms derived from it. Indeed, when it comes to safety, synthetic biology can still learn from a century‐old technology such as cars about the significance of context for the development of biosafety technologies.Every car today has seat belts installed by default. Yet, seat belts were not always a standard component; in fact, they were not even designed for cars to begin with. The original 2‐point belts were first used in aviation and only slowly introduced for motorized vehicles. Only after some redesign, the now‐common 3‐point car seat belts would become the life‐saving equipment that they are today. A proper understanding of the context of their application was therefore one of the crucial factors for their success and wide adoption. Context matters: It provides meaning for and defines what a technological application is best suited for. What was true for seat belts may be also true for biosafety technologies such as genetic safeguards.
… when it comes to safety, synthetic biology can still learn from a century‐old technology such as cars about the significance of context for the development of biosafety technologies.
Society has a much higher awareness of technology’s risks compared to the early days of cars. Society today requires that technological risks are anticipated and assessed before an innovation or its applications are widely deployed. In addition, society increasingly demands that research and innovation take into account societal needs and values. This has led to, among others, the Responsible Research and Innovation (RRI; von Schomberg, 2013) concept that has become prominent in European science policy. In a nutshell, RRI requires that innovative products and processes align with societal needs, expectations, and values in consultation with stakeholders. RRI and similar frameworks suggest that synthetic biology must anticipate and respond not only to risks, but also to societal views that frame its evaluation and risk assessment.  相似文献   

3.
The COVID‐19 pandemic highlights how our ancient fear response can be exploited for nefarious purposes with social media lending a helping hand. Subject Categories: S&S: Economics & Business, Ecology, Microbiology, Virology & Host Pathogen Interaction

The COVID‐19 pandemic has underscored more than any previous crisis how fear can be exploited by multiple actors from outright conspiracy theorists with pernicious agendas to governments seeking to maximise public compliance with lockdowns and social distancing. The crisis has also given new urgency to the debate over how to handle fake news and its rapid propagation over social media, as well as the part science should play in leading and supporting governments'' decisions.At a fundamental level, the pandemic has highlighted the balance evolution has struck between fear and its aversion, between risk taking and risk avoidance. Indeed, for many animals, fear is necessary to avoid predation or accidental death, but it must be kept in check to avoid starvation by never setting out to search for food.
At a fundamental level, the pandemic has highlighted the balance evolution has struck between fear and its aversion, between risk taking and risk avoidance.
  相似文献   

4.
Farmers’ opinions and concerns are rarely considered in public debates about the use of gene‐editing technologies to modify farm animals. Subject Categories: Synthetic Biology & Biotechnology, S&S: Economics & Business

CRISPR‐Cas9, a new method for precisely modifying DNA, has received significant public attention in recent years. Heralded as a breakthrough technology to genetically modify organisms with hitherto unknown ease, precision and at low cost, CRISPR‐Cas9 has reignited controversies in science and society about the kind of genetic modifications that can and should be achieved in animals, plants and humans. Historically, such public debates have been particularly heated in two areas: human germline modification and agricultural applications. This article focuses on the latter and explores how small‐ and medium‐scale farmers evaluate the possibility and the potential benefits of gene editing livestock. This article importantly adds their voices to the discussion – voices that are surprisingly often unheard or ignored in public debates about using genetic technologies in agriculture.
… CRISPR‐Cas9 has reignited controversies in science and society about the kind of genetic modifications that can and should be achieved in animals, plants and humans.
  相似文献   

5.
6.
Many scientists, confined to home office by COVID‐19, have been gathering in online communities, which could become viable alternatives to physical meetings and conferences. Subject Categories: S&S: Careers & Training, Methods & Resources, S&S: Ethics

As COVID‐19 has brought work and travel to a grinding halt, scientists explored new ways to connect with each other. For the gene regulation community, this started with a Tweet that quickly expanded into the “Fragile Nucleosome” online forum, a popular seminar series, and many intimate discussions connecting scientists all over the world. More than 2,500 people from over 45 countries have attended our seminars so far and our forum currently has ~ 1,000 members who have kick‐started discussion groups and mentorship opportunities. Here we discuss our experience with setting up the Fragile Nucleosome seminars and online discussion forum, and present the tools to enable others to do the same.Too often, we forget the importance of social interactions in science. Indeed, many creative ideas originated from impromptu and fortuitous encounters with peers, in passing, over lunch, or during a conference coffee break. Now, the ongoing COVID‐19 crisis means prolonged isolation, odd working hours, and less social interactions for most scientists confined to home. This motivated us to create the “Fragile Nucleosome” virtual community for our colleagues in the chromatin and gene regulation field.
… the ongoing COVID‐19 crisis means prolonged isolation, odd working hours and less social interactions for most scientists confined to home.
While the need to address the void created by the COVID‐19 pandemic triggered our actions, a large part of the international community already has had limited access to research networks in our field. Our initiative offered new opportunities though, in particular for those who have not benefited from extensive networks, showing how virtual communities can address disparities in accessibility. This should not be a stop‐gap measure during the pandemic: Once we come out from our isolation, we still need to address the drawbacks of in‐person scientific conferences/seminars, such as economic disparities, travel inaccessibility, and overlapping family responsibilities (Sarabipour, 2020). Our virtual community offers some solutions to the standing challenges (Levine & Rathmell, 2020), and we hope our commentary can help start conversations about the advantages of virtual communities in a post‐pandemic world.
… once we come out from our isolation we still need to address the drawbacks of in‐person scientific conferences/seminars, such as economic disparities, travel inaccessibility and overlapping family responsibilities…
  相似文献   

7.
The response by the author. Subject Categories: S&S: Economics & Business, S&S: Ethics

I thank Michael Bronstein and Sophia Vinogradov for their interest and comments. I would like to respond to a few of their points.First, I agree with the authors that empirical studies should be conducted to validate any approaches to prevent the spread of misinformation before their implementation. Nonetheless, I think that the ideas I have proposed may be worth further discussion and inspire empirical studies to test their effectiveness.Second, the authors warn that informing about the imperfections of scientific research may undermine trust in science and scientists, which could result in higher vulnerability to online health misinformation (Roozenbeek et al, 2020; Bronstein & Vinogradov, 2021). I believe that transparency about limitations and problems in research does not necessarily have to diminish trust in science and scientists. On the contrary, as Veit et al put it, “such honesty… is a prerequisite for maintaining a trusting relationship between medical institutions (and practitioners) and the public” (Veit et al, 2021). Importantly, to give an honest picture of scientific research, information about its limitations should be put in adequate context. In particular, the public also should be aware that “good science” is being done by many researchers; we do have solid evidence of effectiveness of many medical interventions; and efforts are being taken to address the problems related to quality of research.Third, Bronstein and Vinogradov suggest that false and dangerous information should be censored. I agree with the authors that “[c]ensorship can prevent individuals from being exposed to false and potentially dangerous ideas” (Bronstein & Vinogradov, 2021). I also recognize that some information is false beyond any doubt and its spread may be harmful. What I am concerned about are, among others, the challenges related to defining what is dangerous and false information and limiting censorship only to this kind of information. For example, on what sources should decisions to censor be based and who should make such decisions? Anyone, whether an individual or an organization, with a responsibility to censor information will likely not only be prone to mistakes, but also to abuses of power to foster their interests. Do the benefits we want to achieve by censorship outweigh the potential risks?Fourth, we need rigorous empirical studies examining the actual impact of medical misinformation. What exactly are the harms we try to protect against and what is their scale? This information is necessary to choose proportionte and effective measures to reduce the harms. Bronstein and Vinogradov give an example of a harm which may be caused by misinformation—an increase in methanol poisoning in Iran. Yet, as noticed by the authors, misinformation is not the sole factor in this case; there are also cultural and other contexts (Arasteh et al, 2020; Bronstein & Vinogradov, 2021). Importantly, the methods of studies exploring the effects of misinformation should be carefully elaborated, especially when study participants are asked to self‐report. A recent study suggests that some claims about the prevalence of dangerous behaviors, such as drinking bleach, which may have been caused by misinformation are largely exaggerated due to the presence of problematic respondents in surveys (preprint: Litman et al, 2021).Last but not least, I would like to call attention to the importance of how veracity of information is determined in empirical studies on misinformation. For example, in a study of Roozenbeek et al, cited by Bronstein and Vinogradov, the World Health Organization (WHO) was used as reliable source of information, which raises questions. For instance, Roozenbeek et al (2020) used a statement “the coronavirus was bioengineered in a military lab in Wuhan” as an example of false information, relying on the judgment of the WHO found on its “mythbusters” website (Roozenbeek et al, 2020). Yet, is there a solid evidence to claim that this statement is false? At present, at least some scientists declare that we cannot rule out that the virus was genetically manipulated in a laboratory (Relman, 2020; Segreto & Deigin, 2020). Interestingly, the WHO also no longer excludes such a possibility and has launched an investigation on this issue (https://www.who.int/health‐topics/coronavirus/origins‐of‐the‐virus, https://www.who.int/emergencies/diseases/novel‐coronavirus‐2019/media‐resources/science‐in‐5/episode‐21‐‐‐covid‐19‐‐‐origins‐of‐the‐sars‐cov‐2‐virus); the information about the laboratory origin of the virus being false is no longer present on the WHO “mythbusters” website (https://www.who.int/emergencies/diseases/novel‐coronavirus‐2019/advice‐for‐public/myth‐busters). Against this backdrop, some results of the study by Roozenbeek et al (2020) seem misleading. In particular, the perception of the reliability of the statement about bioengineered virus by study participants in Roozenbeek et al (2020) does not reflect the susceptibility to misinformation, as intended by the researchers, but rather how the respondents perceive reliability of uncertain information.I hope that discussion and research on these and related issues will continue.  相似文献   

8.
9.
Regarding postdocs as disposable labour with limited contracts is damaging for science. Universities need to offer them better career perspectives. Subject Categories: Careers, Science Policy & Publishing

In many academic systems, permanent positions for scientists (“tenure”) are a rare exception. In Germany, 90% of the researchers employed in academia work on temporary contracts, often with less than a year’s duration. Most of the workforce on short‐term contracts are early‐career researchers (ECRs): PhD students, postdocs, or principal investigators aspiring to beome tenured professors. Given the short‐term perspectives and uncertain contract renewals, and because only a small fraction of the ECRs will eventually get a tenured position, planning the future is difficult or even impossible for them. This creates a toxic environment of hypercompetition, perverse incentives, and steep hierarchies underpinning this system, which discourages many highly competent and motivated young scientists who eventually leave in frustration. In the life sciences in particular, decisions about hiring or promotions are often based on indicators such as journal impact factor or the amount of third‐party funding. Such metrics purport to objectively quantify research quality and innovation, but instead, they foster a culture of questionable research practices, selective or non‐reporting, exaggerating the interpretation of results, and an emphasis on quantity over quality. Much has been written about this situation (Alberts et al, 2014), and there is a broad consensus among researchers, research administrators, funders, and learned societies on the need to reform the academic system.
Given the short‐term perspectives and uncertain contract renewals, and because only a small fraction of the ECRs will eventually get a tenured position, planning the future is difficult or even impossible for them.
  相似文献   

10.
Ethical challenges should be addressed before gene editing is made available to improve the immune response against emerging viruses. Subject Categories: S&S: Economics & Business, Genetics, Gene Therapy & Genetic Disease, Immunology

In 1881, Louis Pasteur proved the “germ theory of disease”, namely that microorganisms are responsible for causing a range of diseases. Following Pasteur’s and Robert Koch’s groundbreaking work on pathogens, further research during the 20th century elucidated how the immune system fends off disease‐causing microorganisms from a molecular perspective.The COVID‐19 pandemic has again focused scientific and public attention on immunology not the least owing to the race of employing vaccines to halt the spread of the virus. Although most countries have now started vaccination programs to immunize a large part of the world''s population, the process will take time, vaccines may not be available to everyone, and a number of unresolved issues remain including the potential contagiousness of vaccinated individuals and the duration of protection (Polack et al, 2020).It would therefore be extremely helpful from a public health perspective—and indeed lifesaving for those with elevated risk of developing severe course of the disease—if we could boost the human immune system by other means to better fight off SARS‐CoV‐2 and possibly other viruses. Recent studies showing that some individuals may be less susceptible to contract severe COVID‐19 depending on their genetic status support such visions (COVID‐19 Host Genetics Initiative, 2020). This could eventually inspire research projects on gene therapy with the aim of generally enhancing immunity against viral infections.
It would therefore be extremely helpful from a public health perspective […] if we could boost the human immune system by other means to better fight off SARS‐CoV‐2 …
The idea of genetically enhancing the human immune response is not new and spread from academic circles to policymakers and the general public even before the pandemic, when He Jiankui announced in November 2018 the birth of genetically edited twins who, he claimed, were resistant to HIV. The public outcry was massive, not only because He violated standards of methodological rigor and research ethics, but also because of fundamental doubts about the wisdom and legitimacy of human germline manipulation (Schleidgen et al, 2020).Somatic gene therapy has been met with a less categorical rejection, but it has also been confronted with skepticism when major setbacks or untoward events occurred, such as the death of Jesse Gelsinger during an early clinical trial for gene therapy in 1999. Nonetheless, given the drastic impact the current pandemic has on so many lives, there may be a motivation to put concerns aside. In fact, even if we managed to get rid of COVID‐19 owing to vaccines—or at least to keep its infectiousness and mortality low—another virus will appear sooner or later; an improved resistance to viral pathogens—including coronaviruses—would be an important asset.Interventions to boost the immune system could in fact make use of either germline gene editing, as has been the case of the Chinese twins, or through somatic gene editing. The first requires time and only the next generation would potentially benefit while the latter could be immediately applied and theoretically used to deal with the ongoing COVID‐19 pandemic.
Interventions to boost the immune system could in fact make use of either germline gene editing, as has been the case of the Chinese twins, or through somatic gene editing.
  相似文献   

11.
Most people agree that ethnic minorities are generally under‐represented in science. But is there anything that can be done to correct this injustice and who should do it? Subject Categories: S&S: Economics & Business, S&S: History & Philosophy of Science

The mid‐year eruption of anger and grief over the ill‐treatment of Black Americans by police has focussed attention on the injustices of racial inequality. Although the movement was sparked by an horrific murder, it made us all aware of countless instances of discrimination, abuse and ignorance affecting almost every country on earth, and targeting a huge range of ethnic and other minorities, not just African‐Americans. Unfortunately, the world of science is no exception.The under‐representation of minorities in the higher echelons of academia and at all levels of the scientific career ladder is well attested, both by statistics and by our everyday experience. This is not just a legacy of slavery and colonization. The underlying causes lie very deep in our social structures. And despite the supposed role of universities as bastions of free thought, they have also entrenched the privileges of elites and abetted the suppression of their perceived enemies. In Nazi Germany, the universities were amongst the first institutions to purge their Jewish employees and burn "degenerate" literature. In the American South, many colleges supported or enshrined the exclusion of African‐Americans long after the Civil War, with Black physicians forced to train in separate, much less well‐equipped medical facilities. Even in multi‐ethnic New Zealand, Māori and Pacific Islanders still make up only a tiny proportion of senior academics, despite representing more than 20% of the population. But institutional racism cannot be addressed solely by non‐discrimination clauses in university hiring procedures.I recently watched an item on a French TV channel, based around a documentary film about the lives of disadvantaged youths in the Paris suburbs, most of them Black (Comme un Loup, 2017). One of the protagonists had been discouraged from academic studies in high school and was instead counselled to opt for vocational training. His advisors may have been motivated by a desire to help the student achieve a satisfying career rather than face a lifetime of rejection, but their advice was nevertheless cowardly and disrespectful. However, the student, confident in his abilities, and determined to surmount his invisible prison walls, ignored their advice. He finally achieved excellent graduation scores and qualified for university. Unfortunately, his achievement contrasts with the experiences of the majority of his peers, including many from working‐class backgrounds irrespective of ethnicity, who are steered away from even this basic opportunity, let alone the possibility to join the ranks of professional scholars and researchers.In the name of fairness and upholding basic human rights, all of us scientists and educators, whatever our own ethnicity, nationality, gender or physical ability, should strive in all our professional activity to redress the balance and promote genuinely equal treatment of everyone, including aspiring Black scientists, of course. To do so we must take due account of all of the social pressures that may impair the careers of our students and colleagues because of the colour of their skin, their socio‐economic status, peer‐pressure, gender or any other irrelevant denominators. We obviously cannot undo the history of our societies or correct all of its injustices on our own. But the practitioners of science, the common property of humanity, have a special responsibility to be inclusive. Minority scientists also have a unique role here as pioneers, ambassadors and mentors (Hinton et al, 2020).This is not just a matter of respect and of righting historical injustices. It is also about mobilizing all of the human talent that we can, to improve our understanding of the universe at a time when humanity is facing multiple existential threats.There are many small steps that we can take individually, to empower minority scientists and those from disadvantaged families.For example, schools outreach and recruitment of interns can be targeted on ethnically diverse and economically disadvantaged communities. Those running fellowship or grant programmes in Europe and Asia could follow the example of NIH and NSF and apportion some of the funding specifically to support students, postdocs or young faculty from minority backgrounds. Those of us working in relatively mono‐cultural settings, such as Finland where I am currently located, can contribute by making strenuous efforts at recruiting internationally, thus helping to create role models for currently marginalized groups in the local environment. It is obviously to the good for host communities to learn that some of the dark‐skinned faces amongst them are not refugees fleeing from some war‐ravaged land, but are highly trained scientific experts (whilst some, of course, could be both, deserving of our respect on both counts). Just giving pride of place to minority postdocs to represent the lab at international meetings can also make an impact.Positive discrimination (affirmative action) seems to many just to replace one set of unfair practices with another. But a moment''s thought and actual evidence teaches the opposite. To quote one well‐documented example from the UK, with its highly stratified education system, the performance of those recruited to universities from elite schools is actually lower than that of those with the same grades, who are recruited from the broader state‐education sector (Crawford, 2014). In other words, in order to defeat injustice it is not sufficient simply to "not add to the injustice": active steps to reverse it are also needed. Although a raw quota system is too blunt an instrument and in many jurisdictions may be considered illegal or unconstitutional, a properly targeted system of redress seems, to me, essential.In preparing this op‐ed, I asked several colleagues for their comments. One of them pointed out that this was a plea for equality for Black scientists, but from a white PI addressing other white PIs. Thus, in some ways it embodies the problem, not the solution. Scientists with a minority background should assert their rights, not wait for others in a privileged position to grant them. Whilst I understand this argument, I nevertheless feel that striving for equality is not the preserve of those who are denied it. It is an obligation upon all of us, regardless of our skin colour, socio‐economic status or any other position in the academic or social hierarchy. If all humans are not treated fairly, we are collectively at fault and bear the damaging consequences.Moreover, skin colour, and the specific case of being Black in a still largely white society, is not the only injustice that needs correction in the world of science, just one of the most obvious.  相似文献   

12.
Debates about the source of antibodies and their use are confusing two different issues. A ban on life immunization would have no repercussions on the quality of antibodies. Subject Categories: S&S: Economics & Business, Methods & Resources, Chemical Biology

There is an ongoing debate on how antibodies are being generated, produced and used (Gray, 2020; Marx, 2020). Or rather, there are two debates, which are not necessarily related to each other. The first one concerns the quality of antibodies used in scientific research and the repercussions for the validity of results (Bradbury & Pluckthun, 2015). The second debate is about the use of animals to generate and produce antibodies. Although these are two different issues, we observe that the debates have become entangled with arguments for one topic incorrectly being used to motivate the other and vice versa. This is not helpful, and we should disentangle the knot.Polyclonal antibodies are being criticized because they suffer from cross‐reactivity, high background and batch‐to‐batch variation (Bradbury & Pluckthun, 2015). Monoclonal antibodies produced from hybridomas are criticized because they often lack specificity owing to genetic heterogeneity introduced during hybridoma generation that impairs the quality of the monoclonals (Bradbury et al, 2018). These are valid criticisms and producing antibodies in a recombinant manner will, indeed, help to improve quality and specificity. But a mediocre antibody will remain a mediocre antibody, no matter how it is produced. Recombinant methods will just produce a mediocre antibody more consistently.Getting a good antibody is not easy and much depends on the nature and complexity of the antigen. And low‐quality antibodies are often the result of poor screening, poor quality control, incomplete characterization and the lack of international standards. Nevertheless, the technologies to ensure good selection and to guarantee consistent quality are much more advanced than a decade ago, and scientists and antibody producers should implement these to deliver high‐quality antibodies. Whether antibodies are generated by animal immunization or from naïve or synthetic antibody libraries is less relevant; they can all be produced recombinantly, and screening and characterization are needed in all cases to determine quality, and if the antibody is fit for purpose.But criticisms on the quality of many antibodies and pleas for switching to recombinant production of antibodies cannot be mixed up with a call to ban animal immunization. The EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) recently published a recommendation to stop using animals for generating and producing antibodies for scientific, diagnostic and even therapeutic applications (EURL ECVAM, 2020). This recommendation is mainly supported by scientists who seem to be biased towards synthetic antibody technology for various reasons. Their main argument is that antibodies derived from naïve or synthetic libraries are a valid (and exclusive) alternative. But are they?One can certainly select antibodies from non‐immune libraries, and, depending on the antigen and the type of application, these antibodies can be fit for purpose. In fact, a few of such antibodies have made it to the market as therapeutics, Adalimumab (Humira®) being a well‐known example. But up to now, the vast majority of antibodies continues to come from animal immunization (Lu et al, 2020). And there is a good reason for that. It is generally possible to generate a few positive hits in a naïve/synthetic library; and the more diverse the library, the more hits one is likely to get. But many decades of experience with immunization of animals—especially when they are outbred—shows that they generate larger amounts of antibodies with superior properties. And the more complex your antigen is, the more the balance swings towards animal immunization if you want to have a guarantee for success.There are different factors at work here. First, the immune system of mammals has evolved over millions of years to efficiently produce excellent antibodies against a very diverse range of antigens. Second, presenting the antigen multiple times in its desired (native) conformation to the animal immune system exploits the natural maturation process to fine‐tune the immune response against particular qualities. Another factor is that in vivo maturation seems to select against negative properties such as self‐recognition and aggregation. It also helps to select for important properties that go beyond mere molecular recognition (Jain et al, 2017). In industrial parlance, antibodies from animal immunization are more “developable” and have favourable biophysical properties (Lonberg, 2005). Indeed, the failure rate for antibodies selected from naïve or synthetic libraries is significantly higher.Of course, the properties of synthetic antibodies selected from non‐immune libraries can be further matured in vitro, for example by light chain shuffling or targeted mutagenesis of the complementarity determining region (CDR). While this method has become more sophisticated over the years, it remains a very complex and iterative process without guarantee that it produces a high‐quality antibody.Antibodies are an ever more important tool in scientific research and a growing area in human and veterinary therapeutics. Major therapeutic breakthroughs in immunology and oncology in the past decades are based on antibodies (Lu et al, 2020). The vast majority of these therapeutic antibodies were derived from animals. An identical picture appears when you look at the antibodies in fast‐track development to combat the current COVID‐19 crisis: again, the vast majority are either derived from patients or from animal immunizations. The same holds true for antibodies that are used in diagnostics and epidemiologic studies for COVID‐19.It is for that reason that we need the tools and methods that guarantee antibodies of the highest quality and provide the best chance for success. The COVID‐19 pandemic is only one illustration of this need. If we block access to these tools, both scientific research and society at large will be negatively impacted. We therefore should not limit ourselves to naïve and synthetic libraries. Animal immunization remains an inevitable method that needs to stay. But we all agree that these immunizations must be performed under best practice to further reduce the harm to animals.  相似文献   

13.
The implementation of the EU General Data Protection Regulation (GDPR) has had significant impacts on biomedical research, often complicating data sharing among researchers. The recently announced proposal for a new EU Data Governance Act is a promising step towards facilitating data sharing, if it can interplay well with the GDPR.Subject Categories: S&S: Ethics

The EU General Data Protection Regulation (GDPR) has affected biomedical research, often complicating data sharing. The recently announced proposal for a new EU Data Governance Act, is a promising step towards facilitating data sharing.

In an attempt to improve and increase data sharing in the EU and to optimize the re‐use of personal and non‐personal data, the European Commission has recently announced the proposal for a new EU Data Governance Act (https://ec.europa.eu/digital‐single‐market/en/news/proposal‐regulation‐european‐data‐governance‐data‐governance‐act). If approved, it will enable the creation and regulation of “secure spaces” where various types of data, including health data, can be shared and re‐used for both commercial and altruistic purposes, including scientific research. The Data Governance Act, within the framework of a European Strategy for Data, (https://ec.europa.eu/info/sites/info/files/communication‐european‐strategy‐dat‐19feb2020_en.pdf), would address some of the shortcomings and drawbacks of the current regulatory framework which holds back sharing and re‐using data for biomedical research purposes.While the proposed Act would apply to all types of personal and non‐personal data, the increasing demand for sharing health data has most likely been a major rationale for this new legislation of data governance. Notably, sharing health and genetic data for scientific research entails an extra layer of complexity, owing to concerns over data protection and privacy when sharing sensitive personal data. Vice versa, there are also concerns in the scientific community over the negative impact of regulatory restrictions on sharing health data in data‐driven biomedical research. The pressing question here is how far the EU’s proposed legislative and policy framework can offset either concerns?  相似文献   

14.
The COVID‐19 pandemic has triggered a new bout of anti‐vaccination propaganda. These are often grounded in pseudoscience and misinterpretation of evolutionary biology. Subject Categories: Economics, Law & Politics, Microbiology, Virology & Host Pathogen Interaction, Science Policy & Publishing

Towards the end of summer of 2021, there seemed cause for cautious optimism for putting this pandemic behind us. It was clear that the route of viral transmission was airborne and not via surfaces (Goldman, 2021a), which means that masks are very efficient at reducing the spread of SARS‐CoV‐2. The number of cases in the United States and Europe were declining, and the first vaccines became available with many people lining up to get their jabs. But not all. A significant portion of the population have been refusing to get vaccinated, some of whom were fooled or encouraged by pseudoscientific misinformation propagated on the Internet.  相似文献   

15.
16.
The Japanese government has enacted measures to increase the representation of women in research; the situation is improving but there is still much to do. Subject Categories: S&S: Careers & Training, S&S: History & Philosophy of Science, S&S: Ethics

Japanese parents are understandably proud that their 15‐year‐old boys and girls do equally well in the Programme for International Student Assessment (PISA). In 2018, Japanese girls ranked second and third in Science and Mathematics, respectively, among the 40 participating countries, and Japanese boys ranked first in both subjects (https://data.oecd.org/japan.htm). However, Japanese boys and girls face different expectations and take different career paths as they grow up. In this commentary, we discuss how this affects the situation of female scientists in Japan. We start with the proportion of women in academic research and describe the problems they currently face. We underscore the tremendous measures developed and administered by the Japanese government to increase the participation and proportion of women in research. Finally, we mention an emerging grassroots initiative that is currently being implemented. We suggest that female empowerment may be one of the most promising strategies to improve the situation of women in the Japanese scientific community.  相似文献   

17.
Despite its limited resources, Portugal has gained a prominent position in research on malaria. Several historical and personal factors have contributed to this achievement. Subject Categories: S&S: Economics & Business, S&S: History & Philosophy of Science, Microbiology, Virology & Host Pathogen Interaction

Despite a significant increase that started during the 1990s, Portugal’s scientific production remains rather modest compared with the overall research output in the European Union (EU). However, the country’s achievements in malaria research are truly remarkable and, in relative terms, far above its EU neighbors in most relevant accounts. The factors to explain this accomplishment include the fact that malaria was autochthonous in Portugal until 1973; the country’s colonial history and its close ties with its former colonies; and several outstanding scientists who each inspired generations of malariologists.For most of the 20th century, research in Portugal was underfunded, and the country’s overall contribution to science was modest at best. This started to change when Portugal joined the European Union (then the European Economic Community) in 1985 and gained further momentum in the 1990s with the creation of a dedicated Ministry of Science. As a consequence, the Portuguese scientific production increased significantly in terms of the number of scientific articles published. Nevertheless, public funding for research has remained well below that of many other EU countries, and far from the target of 3% of the country’s GDP, which limits Portugal’s overall scientific output. Yet, there is one field of research where Portugal has been making significant contributions, even long before 1985: malaria.
… there is one field of research where Portugal has been making significant contributions, even long before 1985: malaria.
Among many other achievements, Portuguese laboratories have delivered important contributions to malaria research in areas as diverse as drug development, discovery and repurposing, genetic diversity of Plasmodium parasites, mechanisms of drug resistance, co‐infection between Plasmodium and other parasites, host–Plasmodium interactions, nutrient sensing and acquisition by malaria parasites, modulation of Plasmodium liver infection, immune and inflammatory responses to Plasmodium infection, diagnosis, vaccines, the role of microbiota on malaria transmission, pathogenesis of placental and cerebral malaria and acute lung injury, mechanisms of tolerance to malaria, malaria epidemiology, and vector genetics (see Further Reading for examples). Portugal’s percentage of scientific papers published in the field of malaria during the past decade relative to the total number of published articles is the highest in the EU (Fig 1A). Naturally, Portugal cannot compete with larger or more affluent countries in terms of the absolute numbers of articles published on malaria. Yet, the country ranks 5th in this regard, closely following the Netherlands, Belgium, Sweden, and Denmark, four countries that have been investing much more and much longer in scientific research (Fig 1B). In fact, if one takes into account the funding for R&D in the EU nations, Portugal ranks ahead of every other country in terms of the number of malaria papers published relative to the investment made in science at the national level (Fig 1C).Open in a separate windowFigure 1Malaria research in Portugal and in the EU(A) Percentage of papers on the subject of malaria relative to the total number of papers from each of the indicated countries from 2009 to present. (B) Number of malaria research articles per 1,000 researchers in each of the indicated countries. (C) Number of malaria research articles per 100,000 Euros of gross domestic expenditure on R&D in each of the indicated countries. Total R&D personnel and intramural R&D expenditure data are from 2017. Papers were quantified through searches of PubMed for articles with affiliation to each of the indicated countries, published from 2009 to present, by use of the terms “malaria” or “Plasmodium”. Data on R&D investments from Eurostat.This raises the question of why Portugal, a rather small country with only a few decades of research history and an overall moderate scientific performance, fares relatively so well when it comes to research on malaria. I argue that there are three independent, albeit interrelated factors to explain this feat.A lasting reality demanding an appropriate responseThe first factor was the presence of autochthonous malaria in Portugal until the second half of the 20th century and the establishment of research institutions largely dedicated to studying and fighting the disease. Until the end of the World War II, malaria was endemic throughout much of Southern Europe; Italy, Greece, and Portugal were particularly affected. From 1955 to 1969, the WHO conducted its Global Malaria Eradication Programme, which successfully eliminated malaria in several regions of the world, including Southern Europe. The specific history of malaria eradication in Portugal is described in great detail by Bruce‐Chwatt (Bruce‐Chwatt, 1977) and highlights the intense efforts by multiple state‐sponsored institutions dedicated to studying and combating the disease.Even before the war, in 1931, the Malaria Research Station (Estação Experimental de Combate ao Sezonismo, EECS) was created in Benavente, the goals of which included the collection and analysis of blood samples from infected individuals, treatment of malaria patients, identification of mosquito populations, and malaria prophylaxis. In 1938, the Malaria Institute (Instituto de Malariologia, iMal) was founded in Águas de Moura to investigate the epidemiology of the disease, promoting adequate treatment and implementing vector control measures (Saavedra, 2010). Nonetheless, it was not until 1973 that malaria was eventually eliminated in Portugal, three years after Italy, and only one year before Greece.
… it was not until 1973 that malaria was eventually eliminated in Portugal, three years after Italy, and only one year before Greece.
Yet, the threat of malaria reemergence meant ongoing vigilance, and iMal paved the way for the creation of the Centre for the Study of Malaria and Parasitology (Centro de Estudos de Malária e Parasitologia), in 1973, later to become the Centre for the Study of Zoonoses (Centro de Estudos de Zoonoses) in 1987, and the Centre for Vector and Infectious Disease Studies (Centro de Estudos de Vetores e Doenças Infeciosas) in 1993. In addition, the Portuguese School of Tropical Medicine (later called National School of Public Health and Tropical Medicine, ENSPMT, now the Institute of Tropical Medicine and Hygiene, IHMT), founded in 1902, was one of only four institution of its kind in the world (Amaral, 2008). Since its inception, its mission has been the teaching and research in tropical medicine, biomedical sciences, and international health and, to this day, a significant part of its research continues to focus on malaria.A close bond with AfricaAnother major factor for Portugal’s prominent position in malaria research is its colonial past and the country’s close ties with its former colonies. During its period of maritime expansion in the 15th and 16th centuries, Portugal colonized many territories from Asia to the Americas and Africa. Most, if not all, of these territories were, and for a large part still are, endemic for malaria. Former colonies, such as Brazil or the Portuguese territories in India, gained their independence during the 19th century, but maintained close ties with Portugal.However, several African countries, specifically Angola, Cape Verde, Guinea‐Bissau, Mozambique, and S. Tomé & Príncipe, remained under Portuguese rule until well into the second half of the 20th century (Miller, 1975). In fact, while most African nations gained their independence from European countries during the 1950s and 1960s, Portugal’s dictatorship held on to and suppressed its African overseas territories, which led to armed uprisings in Angola and Guinea‐Bissau in 1961, and in Mozambique in 1964 (Miller, 1975). During the ensuing colonial wars, thousands of Portuguese soldiers were sent to these countries, where they were exposed not only to the horrors of war, but also to malaria (Campos, 2017). The Portuguese military actions in Africa finally came to an end in 1974 after the peaceful Carnation Revolution, which established democracy in Portugal and ended the colonization of all Portuguese‐held African territories.Over the next few years, hundreds of thousands of military personnel and former residents of the ex‐colonies, known as “retornados”, moved back to Portugal, leading to an increase in the number of imported malaria cases (Bruce‐Chwatt, 1977). Since then, these numbers have subsided, but the close ties that Portugal maintains with its former colonies mean that travel to and from malaria‐endemic regions remains high, contributing to the prevalence of imported malaria cases (Piperaki, 2018). It also means that malaria is not such a distant threat for most Portuguese; even today, many younger people have direct contact with family members or friends who have experienced malaria, bringing the reality of this scourge closer to home than in many other EU countries.
… even today, many younger people have direct contact with family members or friends who have experienced malaria, bringing the reality of this scourge closer to home than in many other EU countries.
Remarkable and inspiring figuresThe third and final factor is the enormous and lasting influence of various uniquely inspiring figures from several generations of malaria researchers. Indeed, the history of Portuguese malaria research is rich in prominent scientists who shaped the national research landscape. Attempting to highlight specific names among the many doctors, epidemiologists, and scientists from the past and present is a naturally risky exercise that runs the risk of overlooking important figures. Nevertheless, the crucial contribution of a few representatives of four generations of Portuguese scientists is beyond dispute.Ricardo Jorge (1858–1939) was a renowned epidemiologist responsible for the 1899–1901 National Sanitary Plan, which marked the introduction of modern sanitary concepts in Portugal and changed national public health. In 1903, Jorge was the first to collect reliable and extensive data on the incidence of malaria and its seasonal distribution (JORGE, 1903). He was Portugal’s Health Inspector‐General from 1899 to 1926, succeeded by José Alberto de Faria (1888–1958), another key figure who, with the support of the Rockefeller Foundation (Saavedra, 2014), created the EECS in Benavente, the first step for advancing knowledge about malaria in Portugal (Bruce‐Chwatt, 1977).Well within the 20th century, Francisco Cambournac (1903–1994) and Fausto Landeiro (1896–1949) were arguably the most important contributors to Portuguese malariology during that period. Following extensive training in some of the most reputed parasitology schools in Europe, Cambournac became Director of Benavente’s EECS in 1933, and Landeiro occupied that position from 1938 to 1949. Cambournac founded the iMal in Águas de Moura, serving as its Director from 1939 to 1954, and became Director of the WHO’s African region from 1954 to 1964 (Lobo, 2012).Cambournac and Landeiro published extensively on the epidemiology, entomology, and control of malaria during the 1930s and 1940s, and gave a comprehensive account of the status of the disease in Portugal during that period. Cambournac’s 237‐page long review (Cambournac, 1942) provided all the epidemiological and other data needed for future planning of control and eradication of malaria in the country, the success of which is widely acknowledged to his immense work (Bruce‐Chwatt, 1977).During the 1960s and early 1970s, the National School of Public Health and Tropical Medicine, ENSPMT, now the Institute of Tropical Medicine and Hygiene, IHMT, played an important role not only in Portuguese research on malaria and other tropical diseases, but also in the cooperation with Portugal’s overseas territories at the time. The 1974 revolution and the decolonization in Africa led to a reshaping of this cooperation, which became increasingly centered on reinforcing the newly independent countries’ health systems, on their capacity to carry out research on endemic diseases, and on training programs in tropical and preventive medicine (Havik, 2015). Virgílio do Rosário, professor at the IHMT and, later, head of the Institute’s Centre for Malaria and Other Tropical Diseases (CMDT), played a pivotal role in this process. Do Rosário was the founder of several national and international networks for studying malaria and neglected diseases in various regions around the world. He inspired a whole generation of future malaria researchers, making him an inescapable figure among Portuguese malariologists in the second half of the 20th century.At the dawn of the 21st century, many Portuguese scientists, who had benefitted from the country’s investment in science in the 1980s and 1990s to acquire international training, came back home to set up their own research groups. Among them was Maria Mota, who returned from New York University to Portugal in 2002 to become a group leader, initially at the Instituto Gulbenkian de Ciência (IGC), and subsequently at the Instituto de Medicina Molecular (iMM). Mota’s research on the liver stage of infection by Plasmodium parasites has had an enormous impact and yielded a plethora of outstanding publications. She became Director of iMM in 2014, and commonly features among the most influential women in Portugal. Mota is also a gifted and engaging communicator, who has helped to garner public attention to malaria research and to the fight against the disease. As a great scientist and public advocate for malaria research, Mota has inspired numerous scientists, several of whom have become independent malaria researchers themselves, both in Portugal and internationally.
As a great scientist and public advocate for malaria research, Mota has inspired numerous scientists, several of whom have become independent malaria researchers themselves…
These historical, epidemiological, and humane factors have made Portugal an important player in malaria research, from the basic science of the parasite to the pathology of the disease, and from epidemiology to clinical research and drug development. However, these great achievements, and the role played by individual inspiring scientists, should not be taken for granted, but rather serve as an argument for nurturing and supporting research on malaria by future generations of scientists and political decision‐makers. A small country with fairly limited financial and human resources cannot reasonably aspire to excel in every area of research, but it can efficiently direct and focus its investment on those that are more likely to generate success. The history of Portuguese malaria research clearly demonstrates this and warrants its continued support as a top priority for national science policies.Further ReadingImportant contributions to malaria research by Portuguese laboratories during the past decade Drug development, discovery and repurposing Oliveira R, Guedes RC, Meireles P, Albuquerque IS, Goncalves LM, Pires E, Bronze MR, Gut J, Rosenthal PJ, Prudencio M, Moreira R, O''Neill PM, Lopes F (2014) Tetraoxane‐pyrimidine nitrile hybrids as dual stage antimalarials. J Med Chem 57: 4916–4923da Cruz FP, Martin C, Buchholz K, Lafuente‐Monasterio MJ, Rodrigues T, Sonnichsen B, Moreira R, Gamo FJ, Marti M, Mota MM, Hannus M, Prudencio M (2012) Drug screen targeted at Plasmodium liver stages identifies a potent multistage antimalarial drug. J Infect Dis 205: 1278–1286Hanson KK, Ressurreicao AS, Buchholz K, Prudencio M, Herman‐Ornelas JD, Rebelo M, Beatty WL, Wirth DF, Hanscheid T, Moreira R, Marti M, Mota MM (2013) Torins are potent antimalarials that block replenishment of Plasmodium liver stage parasitophorous vacuole membrane proteins. Proc Natl Acad Sci USA 110: E2838–E2847Machado M, Sanches‐Vaz M, Cruz JP, Mendes AM, Prudencio M (2017) Inhibition of Plasmodium Hepatic Infection by Antiretroviral Compounds. Front Cell Infect Microbiol 7: 329 Genetic diversity of Plasmodium parasites Guerra M, Neres R, Salgueiro P, Mendes C, Ndong‐Mabale N, Berzosa P, de Sousa B, Arez AP (2017) Plasmodium falciparum Genetic Diversity in Continental Equatorial Guinea before and after Introduction of Artemisinin‐Based Combination Therapy. Antimicrob Agents Chemother 61Mendes C, Salgueiro P, Gonzalez V, Berzosa P, Benito A, do Rosario VE, de Sousa B, Cano J, Arez AP (2013) Genetic diversity and signatures of selection of drug resistance in Plasmodium populations from both human and mosquito hosts in continental Equatorial Guinea. Malar J 12: 114 Mechanisms of drug resistance Escobar C, Pateira S, Lobo E, Lobo L, Teodosio R, Dias F, Fernandes N, Arez AP, Varandas L, Nogueira F (2015) Polymorphisms in Plasmodium falciparum K13‐propeller in Angola and Mozambique after the introduction of the ACTs. PLoS One 10: e0119215Ferreira A, Marguti I, Bechmann I, Jeney V, Chora A, Palha NR, Rebelo S, Henri A, Beuzard Y, Soares MP (2011) Sickle hemoglobin confers tolerance to Plasmodium infection. Cell 145: 398–409Veiga MI, Osorio NS, Ferreira PE, Franzen O, Dahlstrom S, Lum JK, Nosten F, Gil JP (2014) Complex polymorphisms in the Plasmodium falciparum multidrug resistance protein 2 gene and its contribution to antimalarial response. Antimicrob Agents Chemother 58: 7390–7397 Host‐Plasmodium interactions Portugal S, Carret C, Recker M, Armitage AE, Goncalves LA, Epiphanio S, Sullivan D, Roy C, Newbold CI, Drakesmith H, Mota MM (2011) Host‐mediated regulation of superinfection in malaria. Nat Med 17: 732–737Real E, Rodrigues L, Cabal GG, Enguita FJ, Mancio‐Silva L, Mello‐Vieira J, Beatty W, Vera IM, Zuzarte‐Luis V, Figueira TN, Mair GR, Mota MM (2018) Plasmodium UIS3 sequesters host LC3 to avoid elimination by autophagy in hepatocytes. Nat Microbiol 3: 17–25Sa ECC, Nyboer B, Heiss K, Sanches‐Vaz M, Fontinha D, Wiedtke E, Grimm D, Przyborski JM, Mota MM, Prudencio M, Mueller AK (2017) Plasmodium berghei EXP‐1 interacts with host Apolipoprotein H during Plasmodium liver‐stage development. Proc Natl Acad Sci USA 114: E1138–E1147 Nutrient sensing and acquisition Itoe MA, Sampaio JL, Cabal GG, Real E, Zuzarte‐Luis V, March S, Bhatia SN, Frischknecht F, Thiele C, Shevchenko A, Mota MM (2014) Host cell phosphatidylcholine is a key mediator of malaria parasite survival during liver stage infection. Cell Host Microbe 16: 778–786Mancio‐Silva L, Slavic K, Grilo Ruivo MT, Grosso AR, Modrzynska KK, Vera IM, Sales‐Dias J, Gomes AR, MacPherson CR, Crozet P, Adamo M, Baena‐Gonzalez E, Tewari R, Llinas M, Billker O, Mota MM (2017) Nutrient sensing modulates malaria parasite virulence. Nature 547: 213–216Meireles P, Mendes AM, Aroeira RI, Mounce BC, Vignuzzi M, Staines HM, Prudencio M (2017) Uptake and metabolism of arginine impact Plasmodium development in the liver. Sci Rep 7: 4072 Modulation of Plasmodium liver infection Ruivo MTG, Vera IM, Sales‐Dias J, Meireles P, Gural N, Bhatia SN, Mota MM, Mancio‐Silva L (2016) Host AMPK Is a Modulator of Plasmodium Liver Infection. Cell Rep 16: 2539–2545Zuzarte‐Luis V, Mello‐Vieira J, Marreiros IM, Liehl P, Chora AF, Carret CK, Carvalho T, Mota MM (2017) Dietary alterations modulate susceptibility to Plasmodium infection. Nat Microbiol 2: 1600–1607 Immune and inflammatory responses to Plasmodium infection Liehl P, Zuzarte‐Luis V, Chan J, Zillinger T, Baptista F, Carapau D, Konert M, Hanson KK, Carret C, Lassnig C, Muller M, Kalinke U, Saeed M, Chora AF, Golenbock DT, Strobl B, Prudencio M, Coelho LP, Kappe SH, Superti‐Furga G et al (2014) Host‐cell sensors for Plasmodium activate innate immunity against liver‐stage infection. Nat Med 20: 47–53Munoz‐Ruiz M, Ribot JC, Grosso AR, Goncalves‐Sousa N, Pamplona A, Pennington DJ, Regueiro JR, Fernandez‐Malave E, Silva‐Santos B (2016) TCR signal strength controls thymic differentiation of discrete proinflammatory gammadelta T cell subsets. Nat Immunol 17: 721–727Seixas E, Gozzelino R, Chora A, Ferreira A, Silva G, Larsen R, Rebelo S, Penido C, Smith NR, Coutinho A, Soares MP (2009) Heme oxygenase‐1 affords protection against noncerebral forms of severe malaria. Proc Natl Acad Sci USA 106: 15837–15842 Diagnosis Frita R, Rebelo M, Pamplona A, Vigario AM, Mota MM, Grobusch MP, Hanscheid T (2011) Simple flow cytometric detection of haemozoin containing leukocytes and erythrocytes for research on diagnosis, immunology and drug sensitivity testing. Malar J 10: 74 Vaccines Reuling IJ, Mendes AM, de Jong GM, Fabra‐Garcia A, Nunes‐Cabaco H, van Gemert GJ, Graumans W, Coffeng LE, de Vlas SJ, Yang ASP, Lee C, Wu Y, Birkett AJ, Ockenhouse CF, Koelewijn R, van Hellemond JJ, van Genderen PJJ, Sauerwein RW, Prudencio M (2020) An open‐label phase 1/2a trial of a genetically modified rodent malaria parasite for immunization against Plasmodium falciparum malaria. Sci Transl Med 12 Pathogenesis of placental and cerebral malaria de Moraes LV, Tadokoro CE, Gomez‐Conde I, Olivieri DN, Penha‐Goncalves C (2013) Intravital placenta imaging reveals microcirculatory dynamics impact on sequestration and phagocytosis of Plasmodium‐infected erythrocytes. PLoS Pathog 9: e1003154Ribot JC, Neres R, Zuzarte‐Luis V, Gomes AQ, Mancio‐Silva L, Mensurado S, Pinto‐Neves D, Santos MM, Carvalho T, Landry JJM, Rolo EA, Malik A, Silva DV, Mota MM, Silva‐Santos B, Pamplona A (2019) gammadelta‐T cells promote IFN‐gamma‐dependent Plasmodium pathogenesis upon liver‐stage infection. Proc Natl Acad Sci USA 116: 9979–9988 Mechanisms of tolerance to malaria Gozzelino R, Andrade BB, Larsen R, Luz NF, Vanoaica L, Seixas E, Coutinho A, Cardoso S, Rebelo S, Poli M, Barral‐Netto M, Darshan D, Kuhn LC, Soares MP (2012) Metabolic adaptation to tissue iron overload confers tolerance to malaria. Cell Host Microbe 12: 693–704Jeney V, Ramos S, Bergman ML, Bechmann I, Tischer J, Ferreira A, Oliveira‐Marques V, Janse CJ, Rebelo S, Cardoso S, Soares MP (2014) Control of disease tolerance to malaria by nitric oxide and carbon monoxide. Cell Rep 8: 126–136 Epidemiology Corder RM, Ferreira MU, Gomes MGM (2020) Modelling the epidemiology of residual Plasmodium vivax malaria in a heterogeneous host population: A case study in the Amazon Basin. PLoS Comput Biol 16: e1007377 Vector genetics Salgueiro P, Moreno M, Simard F, O''Brochta D, Pinto J (2013) New insights into the population structure of Anopheles gambiae s.s. in the Gulf of Guinea Islands revealed by Herves transposable elements. PLoS One 8: e62964Vicente JL, Sousa CA, Alten B, Caglar SS, Falcuta E, Latorre JM, Toty C, Barre H, Demirci B, Di Luca M, Toma L, Alves R, Salgueiro P, Silva TL, Bargues MD, Mas‐Coma S, Boccolini D, Romi R, Nicolescu G, do Rosario VE et al (2011) Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe. Malar J 10: 5Early Portuguese institutions dedicated to malaria investigation and researchLandeiro F (1932) Relatório do primeiro ano de luta antisezonática na estação de BenaventeLandeiro F (1934) Organização do Serviço Antisezonático em Portugal  相似文献   

18.
Even if the predominant model of science communication with the public is now based on dialogue, many experts still adhere to the outdated deficit model of informing the public. Subject Categories: Genetics, Gene Therapy & Genetic Disease, S&S: History & Philosophy of Science, S&S: Ethics

During the past decades, public communication of science has undergone profound changes: from policy‐driven to policy‐informing, from promoting science to interpreting science, and from dissemination to interaction (Burgess, 2014). These shifts in communication paradigms have an impact on what is expected from scientists who engage in public communication: they should be seen as fellow citizens rather than experts whose task is to increase scientific literacy of the lay public. Many scientists engage in science communication, because they see this as their responsibility toward society (Loroño‐Leturiondo & Davies, 2018). Yet, a significant proportion of researchers still “view public engagement as an activity of talking to rather than with the public” (Hamlyn et al, 2015). The highly criticized “deficit model” that sees the role of experts as educating the public to mitigate skepticism still persists (Simis et al, 2016; Suldovsky, 2016).Indeed, a survey we conducted among experts in training seems to corroborate the persistence of the deficit model even among younger scientists. Based on these results and our own experience with organizing public dialogues about human germline gene editing (Box 1), we discuss the implications of this outdated science communication model and an alternative model of public engagement, that aims to align science with the needs and values of the public.Box 1

The DNA‐dialogue project

The Dutch DNA‐dialogue project invited citizens to discuss and form opinions about human germline gene editing. During 2019 and 2020, this project organized twenty‐seven dialogues with professionals, such as embryologists and midwives, and various lay audiences. Different scenarios of a world in 2039 (https://www.rathenau.nl/en/making‐perfect‐lives/discussing‐modification‐heritable‐dna‐embryos) served as the starting point. Participants expressed their initial reactions to these scenarios with emotion‐cards and thereby explored the values they themselves and other participants deemed important as they elaborated further. Starting each dialogue in this way provides a context that enables everyone to participate in dialogue about complex topics such as human germline gene editing and demonstrates that scientific knowledge should not be a prerequisite to participate.An important example of “different” relevant knowledge surfaced during a dialogue with children between 8 and 12 years in the Sophia Children’s Hospital in Rotterdam (Fig 1). Most adults in the DNA‐dialogues accepted human germline gene modification for severe genetic diseases, as they wished the best possible care and outcome for their children. The children at Sophia, however, stated that they would find it terrible if their parents had altered something about them before they had been born; their parents would not even have known them. Some children went so far to say they would no longer be themselves without their genetic condition, and that their condition had also given them experiences they would rather not have missed.Open in a separate windowFigure 1 Children participating in a DNA‐dialogue meeting. Photographed by Levien Willemse.  相似文献   

19.
Since COVID‐19 hit last year, lecturers and professors have been exploring digital and other tools to teach and instruct their students. Subject Categories: S&S: Careers & Training, Methods & Resources

As Director of the Digital Pedagogy Lab at the University of Colorado in Denver, USA, Michael Sean Morris’ work took on new significance as the COVID19 pandemic hit campuses around the world. “What happened with the pandemic was a lot of people who weren''t accustomed to teaching online, or dealing with distance learning, or remote learning in any way, shape, or form, really tried to create a live classroom situation on their screen, mostly using Zoom or other similar technologies”, Morris said. “With technology now, we can do things which make us feel closer. So, we can do a Zoom; there can be synchronous chat in technologies like Slack, or discussion forums or what‐have‐you to make you feel like you''re closer, to make you feel like you''re sort of together at the same time. But the majority of online learning actually has been asynchronous, it''s been everyone coming in when they can and doing their work when they can”.Educators have been divided over the use of online learning. But this changed when a deadly pandemic forced everyone from kindergarten to university into digital spaces. Luckily, many digital tools, such as Zoom, Slack, Blackboard Collaborate, or WhatsApp, were available to enable the migration. Nonetheless, teachers, lecturers, and professors struggle to educate their students with knowledge and the hands‐on training that is paramount for teaching biology.
… teachers, lecturers and professors struggle to educate their students with knowledge and the hands‐on training that is paramount for teaching biology.
  相似文献   

20.
Giving undergraduate students an opportunity to partake in a research project pays back for both students and the lab. Subject Categories: S&S: Careers & Training

Participating hands‐on in an academic research project can be a fascinating and valuable educational experience for undergraduate students. It not just teaches them additional and transferable skills—such as written and oral communication, critical thinking, or information literacy—but also could be an important factor for deciding on an academic research career. Even if the level of involvement in research projects varies between labs and institutions, students still gain such valuable experience, much more than they gain from the standard laboratory courses that usually perform only pre‐tested experiments with expected outcomes. On the other end, the research labs that accommodate undergraduate students also benefit from overall research progress and mentoring experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号