首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A feather-degrading bacterium was isolated from the gut of the tarantula Chilobrachys guangxiensis, and was classified as Bacillus subtilis (named Bacillus subtilis CH-1) according to both the phenotypic characteristics and 16S rRNA profile. The improved culture conditions for feather-degrading were 10.0 g l−1 mannitol, 10.0 g l−1 tryptone, 0.1 g l−1 MgCl2, 0.4 g l−1 KH2PO4, 0.3 g l−1 K2HPO4, 0.5 g l−1 NaCl, and 2.0 g l−1 intact feather, with pH 8.5 and 37 °C. In the optimized medium, the intact black feather was completely degraded by Bacillus subtilis CH-1 in 24 h. Furthermore, four kinds of enzymes which include extracellular protease Vpr, peptidase T, γ-glutamyl transpeptidase and glyoxalmethylglyoxal reductase were identified as having principal roles. Simultaneously, the relationship between the disulfide bond reducing activity (DRT) and the keratinase activity (KT) in B. subtilis CH-1 fermentation system was discussed. This is the first report for a feather-degrading enteric bacterium from tarantula. The identification of the enzymes shines a light on further understanding the molecular mechanism of feather-degrading by microbes.  相似文献   

2.
We investigated the PCB-degrading abilities of four bacterial strains isolated from long-term PCB-contaminated soil (Alcaligenes xylosoxidans and Pseudomonas stutzeri) and sediments (Ochrobactrum anthropi and Pseudomonas veronii) that were co-metabolically grown on glucose plus biphenyl which is an inducer of the PCB catabolic pathway. The aim of study was to determine the respective contribution of biomass increase and expression of degrading enzymes on the PCB degrading abilities of each isolate. Growth on 5 g l−1 glucose alone resulted in the highest stimulation of the growth of bacterial strains, whereas grown on 10 mg l−1, 100 mg l−1, 1 g l−1, or 5 g l−1 biphenyl did not effected the bacterial growth. None of the strains used in this study was able to grow on PCBs as the sole carbon source. Cells grown on glucose exhibited enhanced degradation ability due to an increased biomass. Addition of biphenyl at concentrations of 1 or 5 g l−1 did not increase total PCB degradation, but stimulated the degradation of highly chlorinated congeners for some of the strains. The degradation of di- and tri-chlorobiphenyls was significantly lower for cells grown on 5 g l−1 biphenyl independently on glucose addition. The highest degradation of the PCBs was obtained for A. xylosoxidans grown in the presence of glucose. Thus A. xylosoxidans appears to be the most promising among the four bacterial isolates for the purpose of bioremediation.  相似文献   

3.
Salinity and drought stress, which combines a lack of water and sodium toxicity, are more of the problems faced by plants and agricultural crops in newly reclaimed lands. Therefore, the direction of our research is to produce salinity-tolerant plants to increase the productivity of crops under conditions of salt stress. Potato callus was studied using different concentrations of NaCl (0.0, 50, 75, 100, 125, 150 and 200 mM). Shoot induction was obtained from callus treated with MS medium containing 4.0 and 5.0 mg l?1 TDZ + 0.5 mg l?1 GA3 with NaCl up to 125 mM and 150 mM for Rosetta and Victoria, respectively. When plantlets were cultured on MS medium containing 3.0 mg l?1 kinetin and 1.0 mg l-1paclobutrazol (PBZ) with 80 or 90 g l?1 sucrose after two months gave a good microtuber per explant of Rosetta and Victoria cultivar which gave number of microtuber/plantlet (1.85) and (2.40) when plantlets treated with 125 mM and 150 mM NaCl of Rosetta and Victoria cultivar, respectively. In general, the results were shown in each treatment of NaCl and that amounts of proline at 125 and 150 mMNaCl were significantly more than 0.0, 50, 75 and 100 mM NaCl. This result is related to the role of proline in the osmotic adjustment of a higher concentration of salinity. The results showed that the amounts of sodium increased with increasing the salt concentration, but the amount of potassium decreased and also increased the Na+/K+ ratio with increasing the salt concentration. This research is important for in vitro potato plant regeneration, which requires optimization before genetic transformation can be achieved.  相似文献   

4.
We report a comparative analysis of the environmental conditions prevailing at each successful breeding event of the Chilean flamingo (Phoenicoptarus chilensis) during the 1969–2010 period in Mar Chiquita, a large salt lake near Córdoba, Argentina. Breeding was monitored annually by air. The following parameters were measured: rainfall, water level water salinity, availability of shoreline and offshore (islands) mudflats, presence of brine shrimp (Artemia franciscana), and presence of the Argentine silverside fish (Odonthotestes bonariensis). During the study period, Mar Chiquita underwent great variations in level, reaching the highest level in its geological history. Salinity ranged from 274 down to 22 g l−1. Artemia was present during the high-salinity periods and was absent when salinity dropped below 55 g l−1, and the lake was invaded by the silverside. Flamingos bred irregularly during both high- and low-salinity periods (11 successful attempts in 42 years). Comparison of breeding and non-breeding years showed that the only environmental factor always associated with breeding events was availability of mudflats, mostly bordering islands. Water level increases over 0.90 m during the breeding season may flood the nesting areas and affect breeding success. Rapid decreases in lake level may also affect breeding by favoring predation or via nutrient availability. Other factors (water level, water salinity, local rainfall, and presence of Artemia and silverside) were within similar ranges in breeding and non-breeding years. Our surveys provided indirect evidence suggesting that food availability may influence flamingo breeding in Mar Chiquita. Management implications of our study include: (a) habitat suitability analysis of wetlands like Mar Chiquita should consider that availability of offshore mudflats free of vertebrate predators is an essential requirement for flamingo conservation and (b) drastic and rapid increases or decreases in water level due to human control of river inflows may affect chances of successful flamingo breeding and therefore should be evaluated carefully.  相似文献   

5.
Members of the Chenopodiaceae are well adapted to both salt and drought stress and can serve as model species to understand the mechanisms of tolerance in plants. We grew Atriplex hortensis (ATHO), A. canescens (ATCA), and A. lentiformis (ATLE) along a NaCL salinity gradient under non-water-limited conditions and in drying soils in greenhouse experiments. The species differed in photosynthetic carbon fixation pathway, capacity for sodium uptake, and habitat preferences. Under non-water-limited conditions, ATLE (C4) maintained high growth rates up to 30 g L−1 NaCl. ATHO (C3) had lower growth than ATLE at high salinities, while ATCA (C4) grew more slowly than either ATLE or ATHO and showed no net growth above 20 g L−1 NaCl. ATHO and ATLE accumulated twice as much sodium in their shoots as ATCA, but all three species had increasing sodium levels at higher salinities. Potassium, magnesium and calcium levels were relatively constant over the salinity gradient. All three species showed marked accumulation of chloride across the salinity gradient, whereas nitrate, phosphorous and sulfate decreased with salinity. The effect of drought was simulated by growing plants in sealed pots with an initial charge of water plus NaCl, and allowing them to grow to the end point at which they no longer were able to extract water from the soil solution. Drought and salinity were not additive stress factors for Atriplex spp. in this experiment. NaCl increased their ability to extract water from the soil solution compared to fresh water controls. ATLE showed increased shoot dry matter production and increased water use efficiency (WUE) as initial salinity levels increased from 0 to 30 g L−1 NaCl, whereas dry matter production and WUE peaked at 5 g L−1 for ATHO and ATCA. Final soil moisture salinities tolerated by species were 85 g L−1, 55 g L−1 and 160 g L−1 NaCl for ATHO, ATCA and ATLE, respectively. C4 photosynthesis and sodium accumulation in shoots were associated with high drought and salt tolerance.  相似文献   

6.
Our study is focused on native spontaneous species of saline ecosystems Plantago maritima. Plants were cultivated at several salt concentrations (0, 50, 100, 200, 300, 400 and 500 mM NaCl) in a glass greenhouse under semi-controlled conditions. Growth parameters, water parameters and ionic status were determined and they were used as criteria to assess the response of P. maritima under a salinity gradient. Catalase, guaiacaol and ascobate peroxidase activities, total protein and proline were also determined. Our results show that P. maritima is a facultative halophyte capable of expressing its maximum growth potential at relatively low concentrations of salt (less than 3 g l−1 NaCl). At high doses of salt (concentrations > 200 mM), the decrease in the growth of P. maritima is associated to a decrease in the uptake of K+. There is a disruption of the water intake of their organs and therefore results an invasion of the cytoplasm by Na+ toxic ion. However, stressed plants use K+ more sparingly. They invest especially in the production of biomass expressed by the dry weight of the shoots, and they use Na+ and proline for osmotic adjustment. The halophyte studied is able to accumulate high levels of proline in response to increasing salt concentration. The accumulation of the amino compound, mainly in roots, is interpreted as an indicator of salt tolerance. Additionally, a significant correlation between the tolerance of the plants to salinity and the activity of several antioxidant enzymes has been observed. Hence, we suggest the possibility of using these activities as a biochemical indicator for salt tolerance in P. maritima. Our study points out two types of biomarkers of salt exposure: enzymatic biomarkers in the leaves and proline content in the roots. Both did show very good correlation with salt exposure, and thus may be considered good biomarkers of exposure with a very good dose–response relationship.  相似文献   

7.
Salt evaporation ponds have existed in San Francisco Bay, California, for more than a century. In the past decade, most of the salt ponds have been retired from production and purchased for resource conservation with a focus on tidal marsh restoration. However, large numbers of waterbirds are found in salt ponds, especially during migration and wintering periods. The value of these hypersaline wetlands for waterbirds is not well understood, including how different avian foraging guilds use invertebrate prey resources at different salinities and depths. The aim of this study was to investigate the dietary flexibility of waterbirds by examining the population number and diet of three feeding guilds across a salinity and depth gradient in former salt ponds of the Napa-Sonoma Marshes. Although total invertebrate biomass and species richness were greater in low than high salinity salt ponds, waterbirds fed in ponds that ranged from low (20 g l−1) to very high salinities (250 g l−1). American avocets (surface sweeper) foraged in shallow areas at pond edges and consumed a wide range of prey types (8) including seeds at low salinity, but preferred brine flies at mid salinity (40–80 g l−1). Western sandpipers (prober) focused on exposed edges and shoal habitats and consumed only a few prey types (2–4) at both low and mid salinities. Suitable depths for foraging were greatest for ruddy ducks (diving benthivore) that consumed a wide variety of invertebrate taxa (5) at low salinity, but focused on fewer prey (3) at mid salinity. We found few brine shrimp, common in higher salinity waters, in the digestive tracts of any of these species. Dietary flexibility allows different guilds to use ponds across a range of salinities, but their foraging extent is limited by available water depths. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

8.

Phenylethanoid glycosides (PeG) are a class of polyphenols found in some plants that have pharmaceutical effects as anti-inflammatories and anti-oxidants. The presence of PeG (acteoside) in the aerial parts of Scrophularia striata Boiss. has been demonstrated. Considerable progress has been made using plant cell cultures to stimulate formation and accumulation of secondary metabolites. The present study optimized phenylethanoid production from shake flasks to bioreactor using a cell culture of S. striata. The optimal conditions for production of cell biomass by scale-up to a bioreactor were determined to be a pH of 4.8, air flow rate of 0.5–1.5 l min−1, and mixing speed of 110–170 rpm at 25 ± 1 °C in darkness. Growth parameters and PeG production were measured and compared with the results from the shake flasks. The results showed that cell biomass was high in the bioreactor (15.64 g l−1 DW) and in the shake flasks (14.16 g l−1 DW). The acteoside content in the bioreactor was 1404.20 μg g−1 DW, which is threefold higher than in the shake flasks (459.71 μg g−1 DW). The echinacoside concentration in the bioreactor was 1449.39 μg g−1, 1.36-fold lower than in the shake flasks (1973.03 μg g−1 DW). This study established an efficient way for production of acteoside, the major PeG, in a bioreactor.

  相似文献   

9.
The lowest 50% lethal (effective) concentration, L(E)C50, of phenol in a battery of seven microbiotests with species representing different trophic levels was 1–10 mg l−1, classifying it as “toxic”. A phenol-degrading microorganism was isolated from soil samples of the salt mine of Clona in Portugal, after enrichment in the presence of phenol and high salt concentration. Based on cultural and morphological characteristics, the strain CLONA2 was identified as belonging to Penicillium chrysogenum. It was found to be a halotolerant fungus able to grow in a nutrient-rich medium with 5.8% NaCl. It degraded at least 300 mg l−1 phenol as sole source of carbon and energy, without accumulation of intermediates. The samples were also tested for toxicity using the Microtox® assay. Data showed that P. chrysogenum CLONA2 could be effectively utilized to reduce phenol toxicity. The results suggest also that phenol under saline conditions can be successfully mineralized by P. chrysogenum CLONA2.  相似文献   

10.
Two wheat (Triticum aestivum L.) cultivars, Sids 1 and Giza 168, were grown under non-saline or saline conditions (4.7 and 9.4 dS m−1) and were sprayed with 0.00, 0.05 and 0.10 mg l−1 24-epibrassinolide (EBL). Salt stress considerably decreased plant productivity, membrane stability index, photochemical reactions of photosynthesis, the content of relative water, chlorophyll and nitrate, the activity of nitrate reductase and carbonic anhydrase and the level of carbohydrate and protein. The reduction was more pronounced in Giza 168. The follow-up treatment with 0.1 mg l−1 EBL detoxified the stress generated by salinity and significantly improved the above parameters, especially in Sids 1. Glycinebetaine concentration was sharply elevated by salt stress and/or EBL treatments, particularly in Sids 1. Salinity increased putrescine level in Sids 1 and Giza 168, however, spermidine and spermine increased in Sids 1 and decreased in Giza 168. Exogenously applied EBL had a varying effect on polyamines pool under saline condition, an increase in putrescine level associated with low contents of spermidine and spermine in Giza 168 was observed, while Sids 1 showed a decrease in putrescine and high increase in spermidine and spermine. EBL prevented diamine oxidase and polyamine oxidase inhibition, indicating a positive correlation between salt tolerance and polyamines accumulation. Obviously, EBL can be a practical strategy toward generating high-yielding plants under saline condition by enhancing carbon and nitrogen metabolisms. This is the first report dealing with EBL effect on polyamines pool under salt stress.  相似文献   

11.
Microbial production of trans-4-hydroxy-l -proline (Hyp) offers significant advantages over conventional chemical extraction. However, it is still challenging for industrial production of Hyp due to its low production efficiency. Here, chassis engineering was used for tailoring Escherichia coli cellular metabolism to enhance enzymatic production of Hyp. Specifically, four proline 4-hydroxylases (P4H) were selected to convert l -proline to Hyp, and the recombinant strain overexpressing DsP4H produced 32.5 g l−1 Hyp with α-ketoglutarate addition. To produce Hyp without α-ketoglutarate addition, α-ketoglutarate supply was enhanced by rewiring the TCA cycle and l -proline degradation pathway, and oxygen transfer was improved by fine-tuning heterologous haemoglobin expression. In a 5-l fermenter, the engineered strain E. coliΔsucCDΔputA-VHb(L)-DsP4H showed a significant increase in Hyp titre, conversion rate and productivity up to 49.8 g l−1, 87.4% and 1.38 g l−1 h−1 respectively. This strategy described here provides an efficient method for production of Hyp, and it has a great potential in industrial application.  相似文献   

12.
Heavy metals may interact with ecological factors such as temperature, food level and salinity, causing both mortality and reduced reproduction in organisms. Among different heavy metals, copper compounds are commonly used for eliminating algal blooms in aquaculture tanks. At certain concentrations, copper is toxic to rotifers. In the present work, we evaluated the combined effects of salt concentrations (2.5 and 5.0 g l−1 NaCl), copper levels (0, 0.03125, 0.0625, 0.125 and 0.25 mg l−1 as CuCl2) and two temperatures (20 and 25 °C) on the population growth of B. rotundiformis using Chlorella as the algal food (at 0.5 × 106 cells ml−1 for every 24 h). Regardless of salinity and temperature, copper at concentrations as low as 0.03 mg l−1 had an adverse effect on the population growth of rotifers and above 0.125 mg l−1, the populations did not grow. The effect of the toxicant on B. rotundiformis was more severe at 25° than at 20 °C at lower salinity. In general, we observed peak densities of rotifers around day 12 at 20 °C but 6–8 days earlier at 25 °C. Peak population densities of B. rotundiformis in the controls at the salinity of 2.5 g l−1 ranged from 90 to 180 ind. ml−1, depending on temperature; at a salinity of 5.0 g l−1, these were lower. The population growth rates, r, in our study varied from +0.31 to –0.12 depending on the test conditions. There was a significant impact of temperature, salinity and toxicity level on the population growth rate of B. rotundiformis. Our results suggested that even narrow changes in salinity could negatively influence the toxicity of heavy metal on the population growth rates of B. rotundiformis.  相似文献   

13.
Cheese whey powder (CWP) solution with different CWP or sugar concentrations was fermented to ethanol in a continuous fermenter using pure culture of Kluyveromyces marxianus (DSMZ 7239). Sugar concentration of the feed CWP solution varied between 55 and 200 g l−1 while the hydraulic residence time (HRT) was kept constant at 54 h. Ethanol formation, sugar utilization and biomass formation were investigated as functions of the feed sugar concentration. Percent sugar utilization and biomass concentrations decreased and the effluent sugar concentration increased with increasing feed sugar concentrations especially for the feed sugar contents above 100 g l−1. Ethanol concentration and productivity (DP) increased with increasing feed sugar up to 100 g l−1 and then decreased with further increases in the feed sugar content. The highest ethanol concentration (3.7%, v v−1) and productivity (0.54 gE l−1 h−1) were obtained with the feed sugar content of 100 g l−1 or 125 g l−1. The ethanol yield coefficient (YP/S) was also maximum (0.49 gE gS−1) when the feed sugar was between 100 and 125 g l−1. The growth yield coefficient (YX/S) decreased steadily from 0.123 to 0.063 gX gS−1 when the feed sugar increased from 55 to 200 g l−1 due to adverse effects of high sugar contents on yeast growth. The optimal feed sugar concentration maximizing the ethanol productivity and sugar utilization was between 100 and 125 g l−1 under the specified experimental conditions.  相似文献   

14.
Arbutus unedo seedlings were grown in a greenhouse and submitted to three irrigation treatments (salinity period) using solutions with an EC of 0.85 dS m?1 (control treatment), 5.45 dS m?1 (S1) and 9.45 dS m?1 (S2). After 16 weeks, growth and ornamental characters, leaf water potentials, gas exchange and ion concentrations were determined. After the salinity period, plants were exposed to a relief period for 1 month, whereby half of the plants were transplanted to field conditions and the other half into 24 cm diameter plastic pots. Salinity induced a significant decrease in shoot biomass and leaf area but root/shoot ratio was increased. Plant height was significantly inhibited by salinity. The ornamental characters were affected in the treated plants, with symptoms of salt injury, such as burning of leaf margin. Leaf water potentials decreased with increasing salinity, more significantly at predawn than at midday. The relationship between net photosynthesis (Pn) and leaf conductance (gl) was linear for all treatments and the same values of Pn are associated with lower values of gl for the saline treatments than for control treatment. The concentration of Cl? in leaves increased with increasing salinity and was higher than the corresponding concentration of Na+. Na+ and Cl? contents were higher in the leaves than in the roots in both saline treatments. The K+ and Ca2+ levels were lower in the treated plants than in control plants and applied salinity reduced the K+/Na+ ratio in leaves, stems and roots, the decrease being much greater for leaves than for roots. The Ca2+/Na+ ratio fell with salinity in all parts of the plants. At the end of the relief period leaf water potentials were recovered mainly in field conditions. S2 treatment showed lower values of Pn and gl than control and S1 treatments in pot conditions and in field conditions S1 showed the lowest values for Pn and gl.  相似文献   

15.
The effect of temperature and moist period on the onset of sporangia production by Phytophthora ramorum on Rhododendron ‘Cunningham's White’ was examined with misted detached leaves held in humid chambers. Following wound inoculation with sporangia, leaves were pre‐incubated at 20°C for either 24 or 72 h prior to placement at six different temperatures (4, 10, 15, 20, 25 and 30°C). The overall mean moist period required for first occurrence of sporulation over all six temperatures was 3.24 days with the 24‐h pre‐incubation time, compared with 1.49 days for the 72‐h pre‐incubation time. Following 24 h pre‐incubation at 20°C and at an incubation temperature of 15°C, sporangia were first collected from leaves following a 24 h incubation. At 10 and 20°C, sporangia were first collected after 48 h, whereas at 4, 25 and 30°C, sporangia were first collected after 3 days. Following 72 h pre‐incubation at 20°C, sporulation generally occurred within 1 day, even at temperatures such at 4 and 30°C that are suboptimal for sporulation. The highest levels of P. ramorum sporulation were observed at 20°C. P. ramorum formed sporangia on host tissue under moist conditions within the same time frame reported for P. phaseoli, P. palmivora and P. nicotianae, but substantially more slowly than certain other species such as P. infestans. Quantifying moisture and temperature conditions for initiation of sporangia production provides knowledge which leads to a greater understanding of the epidemic potential of P. ramorum.  相似文献   

16.
A yeast strain Kluyveromyces sp. IIPE453 (MTCC 5314), isolated from soil samples collected from dumping sites of crushed sugarcane bagasse in Sugar Mill, showed growth and fermentation efficiency at high temperatures ranging from 45°C to 50°C. The yeast strain was able to use a wide range of substrates, such as glucose, xylose, mannose, galactose, arabinose, sucrose, and cellobiose, either for growth or fermentation to ethanol. The strain also showed xylitol production from xylose. In batch fermentation, the strain showed maximum ethanol concentration of 82 ± 0.5 g l−1 (10.4% v/v) on initial glucose concentration of 200 g l−1, and ethanol concentration of 1.75 ± 0.05 g l−1 as well as xylitol concentration of 11.5 ± 0.4 g l−1 on initial xylose concentration of 20 g l−1 at 50°C. The strain was capable of simultaneously using glucose and xylose in a mixture of glucose concentration of 75 g l−1 and xylose concentration of 25 g l−1, achieving maximum ethanol concentration of 38 ± 0.5 g l−1 and xylitol concentration of 14.5 ± 0.2 g l−1 in batch fermentation. High stability of the strain was observed in a continuous fermentation by feeding the mixture of glucose concentration of 75 g l−1 and xylose concentration of 25 g l−1 by recycling the cells, achieving maximum ethanol concentration of 30.8 ± 6.2 g l−1 and xylitol concentration of 7.35 ± 3.3 g l−1 with ethanol productivity of 3.1 ± 0.6 g l−1 h−1 and xylitol productivity of 0.75 ± 0.35 g l−1 h−1, respectively.  相似文献   

17.
Salvia mirzayanii is a medicinal and aromatic plant belonging to the Lamiaceae family, which is an endemic plant in Iran. In this study, the effects of different salt concentrations on total phenolic content, antioxidant activities and volatile components of the aerial parts of S. mirzayanii were studied. The results showed that total phenolic content increased with the increase in salt concentration. The increase was more pronounced under moderate salinity (3.8 mg GAE g 1 DW at 6.8 dS m 1 NaCl). Plants grown at 6.8 dS m 1 NaCl displayed the highest DPPH˚ scavenging activity with the lowest IC50 value (2.13 mg ml 1) compared to the control. The volatile components were identified and analyzed by HS (headspace)-GC–MS using the Combi PAL System technique. The main components of control plants were α-terpinyl acetate, 1,8-cineole and bicyclogermacrene. The proportions of these main compounds were differently affected by salinity stress. The results showed that the synthesis of both total phenolic and some important volatile components was induced by moderate salinity.  相似文献   

18.
Cardiac activity of two Mediterranean limpets was tested at different salinities. Patella caerulea inhabits the lower midlittoral where it is exposed to variations in salinity, while P. aspera experiences more stable salinity conditions in the infralittoral fringe. When exposed to moderate hypo- and hypersalinity (23 g l−1 and 43 g l−1) for 24 min, P. caerulea showed no significant variation in heart rate with respect to the control salinity (33 g l−1), while P. aspera exhibited a significant increase in heart rate in both conditions. This suggests a rise in metabolic rate due to activation of behavioural responses or physiological regulation. When exposed to extremely low salinity (3 g l−1) for 24 min, heart contractions ceased in most specimens of P. caerulea. A smaller number of specimens also displayed cessation of heart beat when exposed to extremely high salinity (63 g l−1). The heart beat resumed quickly in all specimens when they were returned to control salinity conditions. In contrast, cardiac activity was not interrupted in any of the P. aspera specimens at the 3 g l−1 and 63 g l−1 salinity levels, but strong bradycardia was evident. Contractile activity of the heart ceased in all specimens of P. caerulea and P. aspera when they were exposed to prolonged hypo-osmotic stress (3 g l−1 for 24 h). This acardia was largely reversible in P. caerulea, but most specimens of P. aspera did not recover from the treatment. Accepted: 3 July 1999  相似文献   

19.
Duckweeds, as a group, are important early warning indicators for the assessment of contaminated ecosystems due to their propensity to accumulate pollutants. In the present study, we investigated the potential use of Lemna gibba L. (Lemnaceae) as an ecological indicator for boron (B) mine effluent containing B concentration above 10 mg l−1. For this purpose, L. gibba fronds were grown for 7 days in simulated water contaminated with B mine effluent. The important note is that this study was carried out in Kırka (Eskişehir, Turkey) B reserve area, which is the largest borax reserve in all over the world, under natural climatic conditions in the field. The results demonstrated that accumulations of B by L. gibba gradually increased based on the initial B concentrations (10, 25, 50, 100, and 150 mg l−1) of the mine effluent. B concentration in the dry weight of the plant reached 639 mg kg−1 when the minimum initial dosage (10 mg l−1) was applied and 2711 mg kg−1 when the maximum initial dosage (150 mg l−1) was applied during the study. However, significant reductions in their relative growth rates occurred in 50, 100 and 150 mg l−1 initial B concentrations. Results suggest that 25 mg l−1 B concentration in water seemed to be a sensitive endpoint for L. gibba that could be used as a critical bioindicator level of B contaminated water. Following our data, we also constructed a simple growth model under the climatic conditions in this region of Turkey, but in instructive as a worldwide model. L. gibba is, therefore, suggested to be able to use as both an indicator and a phytoremediation tool because of its high accumulation capacity for B contaminated water.  相似文献   

20.
Chlamydospores of Phytophthora ramorum were used to infest field soil at densities ranging from 0.2 to 42 chlamydospores/cm3 soil. Recovery was determined by baiting with rhododendron leaf discs and dilution plating at time 0 and after 30 days of storage at 4°C, as recommended by USDA‐APHIS. Baiting was slightly more sensitive than dilution plating in recovering P. ramorum immediately following infestation of soil and allowed detection from samples infested with as little as 0.2 chlamydospores/cm3 compared with 1 chlamydospore/cm3 for dilution plating. After 30 days of infested soil storage at 4°C, P. ramorum was detected at significantly (P = 0.05) higher levels than at time 0 with both recovery methods. The results indicate that storage of P. ramorum‐infested soil at 4°C may allow for pathogen activity, such as sporangia production, which may enhance recovery from soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号