首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Decomposition of leaf litter is a microbial mediated process that helps to transfer energy and nutrients from leaves to higher trophic levels in woodland streams. Generally, aquatic hyphomycetes are viewed as the major fungal group responsible for leaf litter decomposition. In this study, traditional microscopic examination (based on identification of released conidia) and phylogenetic analysis of 18S rRNA genes from cultivated fungi were used to compare fungal community composition on decomposing leaves of two species (sugar maple and white oak) from a NE Ohio stream. No significant differences were found in sporulation rates between maple and oak leaves and both had similar species diversity. From the 18S rRNA gene sequence data, identification was achieved for 12 isolates and taxonomic affiliation of 12 of the remaining 14 isolates could be obtained. A neighbor-joining tree (with bootstrap values) was constructed to examine the taxonomic distribution of the isolates relative to sequences of known operational taxonomic units (OTUs). Surprisingly, only 2 of the isolates obtained were aquatic hyphomycetes based on phylogenetic analysis. Overall, there were no differences between the two leaf types and a higher diversity was observed via culturing and subsequent 18S rRNA gene sequencing than by conidia staining. These differences resulted from the fact that traditional microscopy provides estimates of aquatic hyphomycete diversity while the other approach revealed the presence of both aquatic hyphomycete and non-aquatic hyphomycete taxa. The presence of this broad array of taxa suggests that the role of aquatic hyphomycetes relative to other fungi be re-evaluated. Even though the functional role of these non-aquatic hyphomycetes taxa is unknown, their presence and diversity demonstrates the need to delve further into fungal community structure on decomposing leaves.  相似文献   

2.
Autochthonous primary production is generally much reduced in forested headwater streams. Several hypotheses have been proposed for explaining this observation, among them, the low light intensity, or the strong constraints exerted by stream current. Allelopathic inhibition of competitors is a common ecological process in aquatic environments. Aquatic hyphomycetes are known to chemically inhibit bacteria and other fungi (including other aquatic hyphomycetes) but a possible allelopathic effect of aquatic hyphomycetes on primary producers has never been tested. The inhibitory effect of twelve aquatic hyphomycete species was tested on three diatom species. Nine aquatic hyphomycete species exhibited anti-diatom activity. Up to 100% diatom growth inhibition was observed. Our study reveals that such allelopathic interactions might be common in streams and probably involve an array of fungal compounds. We propose that the generally reduced primary production observed in forested headwater streams is, among other factors, due to the inhibition of primary producers by allelopathic compounds released by aquatic hyphomycetes.  相似文献   

3.
Similarly to plants from terrestrial ecosystems, aquatic species harbour wide spectra of root-associated fungi (RAF). However, comparably less is known about fungal diversity in submerged roots. We assessed the incidence and diversity of RAF in submerged aquatic plants using microscopy, culture-dependent and culture-independent techniques. We studied RAF of five submerged isoetid species collected in four oligotrophic freshwater lakes in Norway. Levels of dark septate endophytes (DSE) colonization differed among the lakes and were positively related to the organic matter content and negatively related to pH. In total, we identified 41 fungal OTUs using culture-dependent and culture-independent techniques, belonging to Mucoromycotina, Chytridiomycota, Glomeromycota, Ascomycota as well as Basidiomycota. Sequences corresponding to aquatic hyphomycetes (e.g. Nectria lugdunensis, Tetracladium furcatum and Varicosporium elodeae) were obtained. Eight arbuscular mycorrhizal taxa belonging to the orders Archaeosporales, Diversisporales and Glomerales were also detected. However, the vast majority of the fungal species detected (e.g. Ceratobasidium sp., Cryptosporiopsis rhizophila, Leptodontidium orchidicola, and Tuber sp.) have previously been known only from roots of terrestrial plants. The abundance and phylogenetic distribution of mycorrhizal as well as nonmycorrhizal fungi in the roots of submerged plants have reshaped our views on the fungal diversity in aquatic environment.  相似文献   

4.
In 1942, Ingold documented an ecologically defined group of fungi, aquatic hyphomycetes, on autumn-shed leaves decaying in streams. They were shown to be vital intermediaries between the nutritionally poor leaf substratum and leaf-eating invertebrates. Research has subsequently emphasized functional aspects such as leaf decomposition and nutritional conditioning by fungi. Structural aspects (community composition) have attracted less attention, partly because of the difficulties of identifying fungal mycelia in situ. Extraction, amplification (PCR, qPCR) and characterization of DNA and RNA, and, more recently, of proteins, allow much greater insights into the presence of fungal taxa, their metabolic status (dead, dormant or active), and their potential and actual participation in decomposition processes. This approach can yield huge amounts of data, and major challenges today are the development and application of suitable bioinformatics techniques. The complexity of data collection and evaluation favour interdisciplinary teams of researchers. Fungi are major players in most ecosystems and are increasingly affected by human impacts. Changing land use, eutrophication/pollution and climate change are among the major factors that affect diversity and ecological functions of aquatic hyphomycetes.  相似文献   

5.
Fungi in freshwaters: ecology, physiology and biochemical potential   总被引:1,自引:0,他引:1  
Research on freshwater fungi has concentrated on their role in plant litter decomposition in streams. Higher fungi dominate over bacteria in terms of biomass, production and enzymatic substrate degradation. Microscopy-based studies suggest the prevalence of aquatic hyphomycetes, characterized by tetraradiate or sigmoid spores. Molecular studies have consistently demonstrated the presence of other fungal groups, whose contributions to decomposition are largely unknown. Molecular methods will allow quantification of these and other microorganisms. The ability of aquatic hyphomycetes to withstand or mitigate anthropogenic stresses is becoming increasingly important. Metal avoidance and tolerance in freshwater fungi implicate a sophisticated network of mechanisms involving external and intracellular detoxification. Examining adaptive responses under metal stress will unravel the dynamics of biochemical processes and their ecological consequences. Freshwater fungi can metabolize organic xenobiotics. For many such compounds, terrestrial fungal activity is characterized by cometabolic biotransformations involving initial attack by intracellular and extracellular oxidative enzymes, further metabolization of the primary oxidation products via conjugate formation and a considerable versatility as to the range of metabolized pollutants. The same capabilities occur in freshwater fungi. This suggests a largely ignored role of these organisms in attenuating pollutant loads in freshwaters and their potential use in environmental biotechnology.  相似文献   

6.
本文回顾了自1942年水生丝孢菌发现以来,该类群的研究进展。世界范围内已有约80属、200种的水生丝孢菌被报道。中国发现20属、28种。12属中的15种水生丝孢菌的有性阶段已发现,它们大多数是子囊菌,少数为担子菌。生理学研究证实,该类真菌普遍地可以分泌胞外多糖酶,从而能较好地利用多种碳源。其它生理特性,如氮源和矿物的需求等,本文也作了综述。一些植物寄生性水生丝孢菌也有报道。生态学研究表明,秋季和冬季是水生丝孢菌大发生季节。它们在水环境中的重要作用,文中也作了较详细的讨论。最后涉及的是水生丝孢菌的传布和陆生情况的发现。本文还对该类群真菌的研究前景作了展望。  相似文献   

7.
Although the terrestrial and temperate orchids–fungal biology have been largely explored, knowledge of tropical epiphytic orchids–fungus relationships, especially on the ecological roles imparted by non-mycorrhizal fungal endophytes, is less known. Exploitation of the endophytic fungal mycobiota residing in epiphytic orchid plants may be of great importance to further elucidate the fungal ecology in this special habitat as well as developing new approaches for orchid conversations. The composition of fungal endophytes associated with leaves, stems and roots of an epiphytic orchid (Dendrobium nobile), a famous Chinese traditional medicinal plant, was investigated. Microscopic imaging, culture-dependant method and molecular phylogeny were used to estimate their entity and diversity. Totally, there were 172 isolates, at least 14 fungal genera and 33 different morphospecies recovered from 288 samples. Ascomycetes, coelomycetes and hyphomycetes were three major fungal groups. There were higher overall colonization and isolation rates of endophytic fungi from leaves than from other tissues. Guignardia mangiferae was the dominant fungal species within leaves; while the endophytic Xylariaceae were frequently observed in all plant tissues; Colletotrichum, Phomopsis and Fusarium were also frequently observed. Phylogenetic analysis based on ITS gene revealed the high diversity of Xylariacea fungi and relatively diverse of non-Xylariacea fungi. Some potentially promising beneficial fungi such as Clonostachys rosea and Trichoderma chlorosporum were found in roots. This is the first report concerning above-ground and below-ground endophytic fungi community of an epiphytic medicinal orchid, suggesting the ubiquitous distribution of non-mycorrhizal fungal endophytes in orchid plants together with heterogeneity and tissue specificity of the endophyte assemblage. Possible physiological functions played by these fungal endophytes and their potential applications are also discussed briefly. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
1. We investigated the effect of moderate eutrophication on leaf litter decomposition and associated invertebrates in five reference and five eutrophied streams in central Portugal. Fungal parameters and litter N and P dynamics were followed in one pair of streams. Benthic invertebrate parameters that are considered useful in bioassessment were estimated in all streams. Finally, we evaluated the utility of decomposition as a tool to assess stream ecosystem functional integrity. 2. Decomposition of alder and oak leaves in coarse mesh bags was on average 2.3–2.7× faster in eutrophied than in reference streams. This was attributed to stimulation of fungal activity (fungal biomass accrual and sporulation of aquatic hyphomycetes) by dissolved nutrients. These effects were more pronounced for oak litter (lower quality substrate) than alder. N content of leaf litter did not differ between stream types, while P accrual was higher in the eutrophied than in the reference stream. Total invertebrate abundances and richness associated with oak litter, but not with alder, were higher in eutrophied streams. 3. We found only positive correlations between stream nutrients (DIN and SRP) and leaf litter decomposition rates in both fine and coarse mesh bags, associated sporulation rates of aquatic hyphomycetes and, in some cases, total invertebrate abundances and richness. 4. Some metrics based on benthic invertebrate community data (e.g. % shredders, % shredder taxa) were significantly lower in eutrophied than in reference streams, whereas the IBMWP index that is specifically designed for the Iberian peninsula classified all 10 streams in the highest possible class as having ‘very good’ ecological conditions. 5. Leaf litter decomposition was sufficiently sensitive to respond to low levels of eutrophication and could be a useful functional measure to complement assessment programmes based on structural parameters.  相似文献   

9.
1. Stream conditions have been evaluated using leaf breakdown, and aquatic hyphomycetes are a diverse group of fungal decomposers which contribute to this process. 2. In field surveys of three pairs of impact‐control stream sites we assessed the effect of eutrophication, mine pollution and modification of riparian vegetation on alder leaf breakdown rate in coarse and fine mesh bags and on mycelial biomass, spore production and species diversity of leaf‐colonizing fungi. 3. In addition, we gathered published information on the response of leaf‐colonizing fungi to these three types of perturbations. We conducted a meta‐analysis of 23 published papers to look for consistent patterns across studies and to determine the relevance of four fungal‐based metrics (microbial breakdown rate, maximum spore production, maximum mycelial biomass and total species richness) to detect stream impairment. 4. In our field surveys, leaf breakdown rates in coarse mesh bags were lower at impact than at paired control sites regardless of perturbation type. A similar trend was observed for leaf breakdown rates in fine mesh bags. Mycelial biomass and spore production were higher in the eutrophied stream than in the control stream. Spore production was depressed in the mine polluted stream, while it was slightly enhanced in the stream affected by forestry. Fungal diversity tended to be lower at impact than at paired control sites, though the mean and cumulative species richness values were often inconsistent. 5. Results of the meta‐analysis confirmed that mine pollution reduces fungal diversity and performance. Eutrophication was not found to affect microbial breakdown rate, maximum spore production and maximum mycelial biomass in a predictable manner because both positive and negative effects were reported in the literature. However, fungal species richness was consistently reduced in eutrophied streams. Modification of riparian vegetation had at most a small stimulating effect on maximum spore production. Among the four fungal‐based metrics included in the meta‐analysis, maximum spore production emerged as the most sensitive indicator of human impact on streams. 6. Taken together, our findings indicate that human activities can affect the diversity and functions of aquatic hyphomycetes in streams. We also show that leaf breakdown rate and simple fungal‐based metrics, such as spore production, are relevant to assess stream condition.  相似文献   

10.
Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in lentic waters in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales.  相似文献   

11.
Biodiversity of freshwater fungi   总被引:5,自引:0,他引:5  
There are more than 600 species of freshwater fungi with more known from temperate, as compared to tropical regions. These includeca 340 ascomycetes, 300 deuteromycetes, and a number of lower fungi which are not discussed here.Aniptodera, Annulatascus, Massarina, Ophioceras andPseudohalonectria are common freshwater ascomycetes, which appear to be well adapted for this lifestyle either in their ascospore types or their competitive-degradative characters. The most common genera of wood-inhabiting deuteromycetes includeCancellidium, Dactylaria, Dictyosporium andHelicomyces. They are categorized into four groups depending on their form and life style: the ingoldian hyphomycetes; the aero-aquatic hyphomycetes; the terrestrial-aquatic hyphomycetes; and the submerged-aquatic hyphomycetes. The adaptations of aquatic fungi for their dispersal and subsequent attachment to new substrates are discussed.  相似文献   

12.
In woodland streams, the decomposition of allochthonous organic matter constitutes a fundamental ecosystem process, where aquatic hyphomycetes play a pivotal role. It is therefore greatly affected by water temperature and nutrient concentrations. The individual effects of these factors on the decomposition of litter have been studied previously. However, in the climate warming scenario predicted for this century, water temperature and nutrient concentrations are expected to increase simultaneously, and their combined effects on litter decomposition and associated biological activity remains unevaluated. In this study, we addressed the individual and combined effects of water temperature (three levels) and nutrient concentrations (two levels) on the decomposition of alder leaves and associated aquatic hyphomycetes in microcosms. Decomposition rates across treatments varied between 0.0041 day?1 at 5 °C and low nutrient level and 0.0100 day?1 at 15 °C and high nutrient level. The stimulation of biological variables at high nutrients and temperatures indicates that nutrient enrichment of streams might have a higher stimulatory effect on fungal performance and decomposition rates under a warming scenario than at present. The stimulation of fungal biomass and sporulation with increasing temperature at both nutrient levels shows that increases in water temperature might enhance fungal growth and reproduction in both oligotrophic and eutrophic streams. The stimulation of fungal respiration and litter decomposition with increasing temperature at high nutrients indicates that stimulation of carbon mineralization will probably occur at eutrophied streams, while oligotrophic conditions seem to be ‘protected’ from warming. All biological variables were stimulated when both factors increased, as a result of synergistic interactions between factors. Increased water temperature and nutrient level also affected the structure of aquatic hyphomycete assemblages. It is plausible that if water quality of presently eutrophied streams is improved, the potential stimulatory effects of future increases in water temperature on aquatic biota and processes might be mitigated.  相似文献   

13.
Information about the global distribution of aquatic hyphomycetes is scarce, despite the primary importance of these fungi in stream ecosystem functioning. In particular, the relationship between their diversity and latitude remains unclear, due to a lack of coordinated surveys across broad latitudinal ranges. This study is a first report on latitudinal patterns of aquatic hyphomycete diversity associated with native leaf-litter species in five streams located along a gradient extending from the subarctic to the tropics. Exposure of leaf litter in mesh bags of three different mesh sizes facilitated assessing the effects of including or excluding different size-classes of litter-consuming invertebrates. Aquatic hyphomycete evenness was notably constant across all sites, whereas species richness and diversity, expressed as the Hill number, reached a maximum at mid-latitudes (Mediterranean and temperate streams). These latitudinal patterns were consistent across litter species, despite a notable influence of litter identity on fungal communities at the local scale. As a result, the bell-shaped distribution of species richness and Hill diversity deviated markedly from the latitudinal patterns of most other groups of organisms. Differences in the body-size distribution of invertebrate communities colonizing the leaves had no effect on aquatic hyphomycete species richness, Hill diversity or evenness, but invertebrates could still influence fungal communities by depleting litter, an effect that was not captured by the design of our experiment.  相似文献   

14.
Diversity and activity of aquatic fungi under low oxygen conditions   总被引:1,自引:0,他引:1  
1. The objective was to test whether a decrease in oxygen concentration in streams affects the diversity and activity of aquatic hyphomycetes and consequently leaf litter decomposition. 2. Senescent leaves of Alnus glutinosa were immersed for 7 days in a reference stream, for fungal colonization, and then incubated for 18 days in microcosms at five oxygen concentrations (4%, 26%, 54%, 76% and 94% saturation). Leaf decomposition (as loss of leaf toughness), fungal diversity, reproduction (as spore production) and biomass (ergosterol content) were determined. 3. Leaf toughness decreased by 70% in leaves exposed to the highest O2 concentration, whereas the decrease was substantially less (from 25% to 45%) in treatments with lower O2. Fungal biomass decreased from 99 to 12 mg fungi g−1 ash‐free dry mass on exposure to 94% and 4% O2 respectively. Sporulation was strongly inhibited by reduction of dissolved O2 in water (3.1 × 104 versus 1.3 × 103 spores per microcosms) for 94% and 4% saturation respectively. 4. A total of 20 species of aquatic hyphomycetes were identified on leaves exposed to 94% O2, whereas only 12 species were found in the treatment with 4% O2 saturation. Multidimensional scaling revealed that fungal assemblages exposed to 4% O2 were separated from all the others. Articulospora tetracladia, Cylindrocarpon sp. and Flagellospora curta were the dominant species in microcosms with 4% O2, while Flagellospora curvula and Anguillospora filiformis were dominant at higher O2 concentrations. 5. Overall results suggest that the functional role of aquatic hyphomycetes as decomposers of leaf litter is limited when the concentration of dissolved oxygen in streams is low.  相似文献   

15.
Endolichenic fungi live in close association with algal photobionts inside asymptomatic lichen thalli and resemble fungal endophytes of plants in terms of taxonomy, diversity, transmission mode, and evolutionary history. This similarity has led to uncertainty regarding the distinctiveness of endolichenic fungi compared with endophytes. Here, we evaluate whether these fungi represent distinct ecological guilds or a single guild of flexible symbiotrophs capable of colonizing plants or lichens indiscriminately. Culturable fungi were sampled exhaustively from replicate sets of phylogenetically diverse plants and lichens in three microsites in a montane forest in southeastern Arizona (USA). Intensive sampling combined with a small spatial scale permitted us to decouple spatial heterogeneity from host association and to sample communities from living leaves, dead leaves, and lichen thalli to statistical completion. Characterization using data from the nuclear ribosomal internal transcribed spacer and partial large subunit (ITS-LSU rDNA) provided a first estimation of host and substrate use for 960 isolates representing five classes and approximately 16 orders, 32 families, and 65 genera of Pezizomycotina. We found that fungal communities differ at a broad taxonomic level as a function of the phylogenetic placement of their plant or lichen hosts. Endolichenic fungal assemblages differed as a function of lichen taxonomy, rather than substrate, growth form, or photobiont. In plants, fungal communities were structured more by plant lineage than by the living vs. senescent status of the leaf. We found no evidence that endolichenic fungi are saprotrophic fungi that have been “entrapped” by lichen thalli. Instead, our study reveals the distinctiveness of endolichenic communities relative to those in living and dead plant tissues, with one notable exception: we identify, for the first time, an ecologically flexible group of symbionts that occurs both as endolichenic fungi and as endophytes of mosses.  相似文献   

16.
Nanosized plastics are an emerging concern in freshwater ecosystems, raising the question whether they put freshwater ecological processes at risk. Litter decomposition is a major ecological function in forested streams which is mainly driven by aquatic hyphomycetes. Here we investigated whether increasing concentrations (up to 102.4 mg/L) of nanosized polystyrene plastics (NPPs; 100nm) affect litter decomposition by five widely distributed species of aquatic hyphomycetes. Results showed that average litter decomposition decreased by 8% relative to the control when exposed to 102.4 mg/L NPPs. Aquatic hyphomycete species differed in their sensitivity to NPPs. The greatest inhibition of litter decomposition was found with Tetracladium marchalianum, where it dropped from 37 (control) to 16% (102.4 mg/L of NPP). Overall our study highlights the emerging risks and potential dangers of NPPs to freshwater ecosystem functioning. It also indicates that the impact of NPPs may be species specific.  相似文献   

17.
Steralized leaf pieces of eight plants (Eucalyptus rostrata, Phoenix dactylifera, Phragmites australis, Musa nana, Salix subserrata, Cyperus alopecuroides, Ricinus communis and Eichhornia crassipes) were submerged in the Nile stream. Thirty-nine species of aquatic hyphomycetes were colonized on the plant leaves. Eucalyptus was the best substratum (30 species) for colonization by aquatic hyphomycetes. Phoenix (14 species), Phragmites (11 species), Salix (9 species), Musa (8 species), Ricinus and Cyperus (6 species) were also good substrata for aquatic hyphomycetes colonization. Echhornia (aquatic plant) was not suitable for aquatic hyphomycetes colonization. Alatospora acuminata, Triscelophorus monosporus and Tetracladium marchalianum were found to be the major colonizers on all leaf materials. Temperature and dissolved oxygen were the highest physico-chemical parameters affecting the aquatic hyphomycetes colonization. These results indicate that aquatic hyphomycetes have been shown to be successful colonizers on plants leaf in river Nile in Egypt as subtropical region. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Aquatic hyphomycetes play a key role in decomposition of submerged organic matter and stream ecosystem functioning. We examined the phylogenetic relationships among various genera of aquatic hyphomycetes belonging to the Leotiomycetes (Ascomycota) using sequences of internal transcribed spacer (ITS) and large subunit (LSU) regions of rDNA generated from 42 pure cultures including 19 ex-types. These new sequence data were analyzed together with additional sequences from 36 aquatic hyphomycetes and 60 related fungi obtained from GenBank. Aquatic hyphomycetes, characterized by their tetraradiate or sigmoid conidia, were scattered in nine supported clades within the Helotiales (Leotiomycetes). Tricladium, Lemonniera, Articulospora, Anguillospora, Varicosporium, Filosporella, and Flagellospora are not monophyletic, with species from the same genus distributed among several major clades. The Gyoerffyella clade and the Hymenoscyphus clade accommodated species from eight and six different genera, respectively. Thirteen aquatic hyphomycete taxa were grouped in the Leotia-Bulgaria clade while twelve species clustered within the Hymenoscyphus clade along with several amphibious ascomycetes. Species of Filosporella and some species from four other aquatic genera were placed in the Ascocoryne-Hydrocina clade. It is evident that many aquatic hyphomycetes have relatives of terrestrial origin. Adaptation to colonize the aquatic environment has evolved independently in multiple phylogenetic lineages within the Leotiomycetes.  相似文献   

19.
Role of fungi in freshwater ecosystems   总被引:7,自引:0,他引:7  
There are more than 600 species of freshwater fungi with a greater number known from temperate, as compared to tropical, regions. Three main groups can be considered which include Ingoldian fungi, aquatic ascomycetes and non-Ingoldian hyphomycetes, chytrids and, oomycetes. The fungi occurring in lentic habitats mostly differ from those occurring in lotic habitats. Although there is no comprehensive work dealing with the biogeography of all groups of freshwater fungi, their distribution probably follows that of Ingoldian fungi, which are either cosmopolitan, restricted to pantemperate or pantropical regions, or in a few cases, have a restricted distribution. Freshwater fungi are thought to have evolved from terrestrial ancestors. Many species are clearly adapted to life in freshwater as their propagules have specialised aquatic dispersal abilities. Freshwater fungi are involved in the decay of wood and leafy material and also cause diseases of plants and animals. These areas are briefly reviewed. Gaps in our knowledge of freshwater fungi are discussed and areas in need of research are suggested.  相似文献   

20.
1. We characterised the fungal communities of eight streams in Portugal, four bordered by native deciduous forest and four bordered by pure stands of Eucalyptus globulus .
2. Aquatic hyphomycete species richness and evenness, but not numbers of water-borne conidia, of aquatic hyphomycetes were significantly lower in eucalypt bordered streams.
3. Multivariate analyses subdivided the fungal communities into two distinct groups corresponding to riparian vegetation.
4. Despite these differences in the dominant decomposer community, decay rates of eucalypt leaves (accounting for ≥98% of naturally occurring leaves in eucalypt bordered streams, absent in native forest) and chestnut leaves (occurring naturally in native forests) did not differ between the two groups of streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号