首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
A M Edelman  E G Krebs 《FEBS letters》1982,138(2):293-298
Phosphatidylethanolamine (PE) was isolated from membranes of Bacillus megaterium. The organism was grown at 20°C and 55°C. The phase equilibria in PE/water systems were studied by 2H and 31P nuclear magnetic resonance, and by polarized light microscopy. PE isolated from B. megaterium grown at 20°C forms a lamellar liquid crystalline phase at the growth temperature, and at low water contents a cubic liquid crystalline phase at 58°C. The ratio iso/ante-iso acyl chains was 0.3 in this lipid. PE isolated from this organism grown at 55°C forms only a lamellar liquid crystalline phase up to at least 65°C. In this lipid the ratio iso/ante-iso acyl chains was 3.2.  相似文献   

2.
The catalytic subunit of cyclic AMP-dependent protein kinase catalyzes the phosphorylation of rabbit skeletal muscle phosphofructokinase. The reaction is inhibited by the specific inhibitor of protein kinase and proceeds at about 2% the rate observed with phosphorylase kinase but more rapidly than with rat liver fructose bisphosphatase as substrate. Maximum extent of incorporation (0.43 to 0.85 moles per mole of protomer) plus the covalently-bound phosphate present in the isolated enzyme (0.20 to 0.34 moles per mole) approaches one mole per mole.  相似文献   

3.
The catalytic subunit of cyclic AMP-dependent protein kinase stimulates the inactivation of acetyl-coenzyme A (CoA) carboxylase by acetyl-CoA carboxylase kinase. The stimulated inactivation of carboxylase is due to activation of carboxylase kinase by the catalytic subunit. Activation of carboxylase kinase activity is accompanied by the incorporation of 0.6 mol of phosphate per mole of carboxylase kinase. Addition of the regulatory subunit of cyclic AMP-dependent protein kinase prevents the activation of carboxylase kinase. Phosphorylation and activation of carboxylase kinase has no effect on the Km for ATP, but decreases the Km for acetyl-CoA carboxylase from 93 to 45 nm. Inactivation of carboxylase by the carboxylase kinase requires the presence of coenzyme A even when the activated carboxylase kinase is used. Acetyl-CoA carboxylase is not phosphorylated or inactivated by the catalytic subunit of cyclic AMP-dependent protein kinase.  相似文献   

4.
Turkey gizzard smooth muscle light chain kinase was purified by affinity chromatography on calcium dependent regulator weight of 125,000 +/- 5,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When myosin light chain kinase is incubated with the catalytic subunit of cyclic AMP-dependent protein kinase, 1 mol of phosphate is incorporated per mol of myosin kinase. Brief tryptic digestion of the 32P-labeled myosin kinase liberates a single radioactive peptide with a molecular weight of approximately 22,000. Phosphorylation of myosin kinase results in a 2-fold decrease in the rate at which the enzyme phosphorylates the 20,000-dalton light chain of smooth muscle myosin. These results suggest that cyclic AMP has a direct effect on actin-myosin interaction in smooth muscle.  相似文献   

5.
Smooth muscle myosin light chain kinase, purified to homogeneity, has a molecular weight of 130,000 +/- 5,000 in sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified enzyme has a specific activity under maximal conditions of 30 mumol Pi transferred to myosin light chain/mg kinase/min at 24 C and is totally dependent on calmodulin and calcium for activity. Incubation of myosin kinase with the catalytic subunit of cyclic adenosine 3':5'-monophosphate-dependent protein kinase results in the covalent incorporation of up to one mol of phosphate per mol of myosin kinase in the absence of bound calmodulin. Limited tryptic digestion of the radioactively labeled kinase indicates that all of the label has been incorporated into a single tryptic peptide (mol wt approximately 22,000), suggesting that a single site is being phosphorylated. Phosphorylation of myosin kinase lowers the rate at which the kinase phosphorylates myosin light chain. The lower rate of light chain phosphorylation is due to a weaker binding of calmodulin to the phosphorylated kinase than to the unphosphorylated kinase. Cyclic adenosine 3':5'-monophosphate-dependent phosphorylation of the kinase actin-myosin interaction represents a possible link between hormonal binding to smooth muscle receptors and muscle relaxation. A scheme for this sequence of events is presented.  相似文献   

6.
In intact rat adipocytes hormone-sensitive lipase has been shown to be phosphorylated on serine residues in two different phosphorylation sites: a regulatory site phosphorylated by cyclic AMP-dependent protein kinase and a basal site, which does not directly affect the enzyme activity, phosphorylated by cyclic AMP-independent protein kinase(s) [(1984) Proc. Natl. Acad. Sci USA 81, 3317-3321]. Cyclic GMP-dependent protein kinase catalyzed the phosphorylation of the same two phosphorylation sites on the isolated enzyme, at serine residues. Both sites were phosphorylated at about the same rate, with the hormone-sensitive lipase activity concomitantly enhanced.  相似文献   

7.
8.
The catalytic subunit of rabbit muscle cyclic AMP-dependent protein kinase (EC 2.7.1.37; ATP:protein transferase) has been tested on a variety of caseins. The B variant of β-casein was phosphorylated at a much greater rate than other β-caseins, αs1-caseins, and κ-caseins. Whole casein homozygous for β-casein B was phosphorylated at 2.5 times the rate of commercial whole casein. Gel electrophoresis experiments indicate that β-casein is the predominant component phosphorylated in commerical casein. It is therefore suggested that phosphorylation of whole casein depends on its content of the specific genetic variant, β-casein B.  相似文献   

9.
Cyclic AMP-dependent and cyclic GMP-dependent protein kinases (protein kinases A and G, respectively) utilize the same phosphate acceptor proteins when assayed in in vitro systems. Nevertheless, protein kinase A phosphorylates preferentially free histone, whereas protein kinase G greatly favors the histone which is associated with polydeoxyribonucleotide. On the other hand, when cytoplasmic soluble substrates such as phosphorylase kinase are used, the reactions are always more favorable for protein kinase A rather than for protein kinase G. Available evidence implies that the topographic relationship between enzyme and substrate may be an important determining factor for the functional specificities of these two classes of protein kinases.  相似文献   

10.
11.
Atrial natriuretic peptide (ANP) stimulates the phosphorylation of three cyclic GMP-dependent protein kinase substrate proteins of 225, 132, and 11 kDa (P225, P132 and P11 respectively) in the particulate fraction of cultured rat aortic smooth muscle cells [Sarcevic, Brookes, Martin, Kemp & Robinson (1989) J. Biol. Chem. 264, 20648-20654]. Vrolix, Raeymaekers, Wuytack, Hofmann & Casteels [(1988) Biochem. J. 255, 855-863] have reported the presence of a 130 kDa cyclic GMP-dependent protein kinase substrate protein in the membrane fraction of pig aorta or stomach, and suggested that it may be myosin light chain kinase (MLCK). The aim of the present study was to determine whether P132 from rat aorta was MLCK or caldesmon. Although P132 co-migrates with purified chicken gizzard MLCK on SDS/polyacrylamide gels, it is distinct from rat aortic MLCK. Partially purified MLCK from rat aorta migrated as a 145 kDa protein on SDS/polyacrylamide gels. Immunoblotting the partially purified rat aortic MLCK with antibody to bovine tracheal MLCK identified rat aortic MLCK (145 kDa) and a corresponding 145 kDa protein in the particulate fraction of cultured rat aortic smooth muscle cells, but did not detect the 132 kDa protein. Phosphopeptide maps of purified rat aortic MLCK prepared by digestion with Staphylococcus aureus V8 protease were distinct from those of P132. P132 was not caldesmon, since antibodies to caldesmon cross-reacted with 136 and 76 kDa proteins in the particulate fraction of rat aortic cells, but not with P132. Furthermore, caldesmon was partially extracted from the particulate into the soluble fraction by heating at 90 degrees C, whereas P132 was not. These results demonstrate that the ANP-responsive cyclic GMP-dependent protein kinase substrate of 132 kDa from rat aortic smooth muscle cells is not MLCK or caldesmon.  相似文献   

12.
Summary Ca2+-dependent protein kinase (CDPK) has been proposed to mediate inhibition by Ca2+ of cytoplasmic streaming in the green algaChara. We have identified the in vivo substrate(s) of CDPK inChara by using vacuolar perfusion of individual internodal cells with [-32P]ATP. Phosphorylation of several polypeptides is enhanced when perfusions are performed at 10–4M free Ca2+ compared to <10–9M free Ca2+. The Ca2+-stimulated phosphorylation of these proteins is inhibited by the presence of a monoclonal antibody to soybean CDPK. One of these proteins is 16 to 18kDa and is recognized by an antibody against gizzard myosin light chains. These results demonstrate that inChara, several polypeptides are phophorylated by CDPK and one of these proteins has been tentatively identified as a myosin light chain. These observations support the hypothesis that Ca2+-regulated phosphorylation of myosin is involved in the regulation of cytoplasmic streaming.Abbreviations CDPK calcium-dependent protein kinase - mAb monoclonal antibody  相似文献   

13.
Phosphorylation of whole histones from calf thymus by the catalytic subunit of cyclic AMP-dependent protein kinase was markedly reduced when the histones were ADP-ribosylated. NAD, nicotinamide or free ADP-ribose molecule did not suppress the phosphorylation. Urea gel electrophoretic analyses of the phosphorylated histones which had already been ADP-ribosylated revealed that the suppression of phosphorylation occurred in both H1 and core histones. Therefore, the possibility that ADP-ribosylation may regulate the phosphorylation of histones phosphorylation in nuclei warrants further investigation.  相似文献   

14.
The autophosphorylation reaction of purified cGMP-dependent protein kinase has been studied. Apparent initial rates of autophosphorylation in the absence of cyclic nucleotides and in the presence of cGMP and cAMP are 0.006, 0.04, 0.4 mol Pi incorp./min-1. mol cGMP-kinase subunit-1. In the presence of cGMP and cAMP approximately 1 and 2 mol Pi are incorporated/mol enzyme subunit. These values are independent of the enzyme concentration. Stimulation of autophosphorylation by cAMP is not due to activation of a contaminating cAMP-dependent protein kinase since: (a) addition of the heatstable inhibitor protein of cAMP-kinase does not inhibit autophosphorylation; and (b) catalytic subunit of cAMP-kinase added at a 10-fold excess over cGMP-kinase does not phosphorylate cGMP-kinase.  相似文献   

15.
Purified lamb thymus high-mobility-group (HMG) proteins 1, 2, and 17 have been investigated as potential substrates for the Ca2+-phospholipid-dependent protein kinase and the cAMP-dependent protein kinase. HMG proteins 1, 2, and 17 are phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the reactions are totally Ca2+ and lipid dependent and are not inhibited by the inhibitor protein of the cAMP-dependent protein kinase. HMG 17 is phosphorylated predominantly in a single seryl residue, Ser 24 in the sequence Gln-Arg-Arg-Ser 24-Ala-Arg-Leu-Ser 28-Ala-Lys, with the second seryl moiety, Ser 28, modified to a markedly lesser degree. HMGs 1 and 2 are also phosphorylated in only seryl residues but with each there are multiple phosphorylation sites. HMG 17, but not HMG 1 or 2, is also phosphorylated by the cAMP-dependent protein kinase with the site phosphorylated being the minor of the two phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the Km for phosphorylation by the cAMP-dependent enzyme is 50-fold higher than that by the Ca2+-phospholipid-dependent enzyme. HMG 17 is an equally effective substrate for the Ca2+-phospholipid-dependent protein kinase either as the pure protein or bound to nucleosomes. Preliminary evidence has indicated that lamb thymus HMG 14 is also a substrate for the Ca2+-phospholipid-dependent enzyme. It is phosphorylated with a Km similar to that of HMG 17 (4-6 microM), and a comparison of tryptic peptides suggests that it is phosphorylated in a site that is homologous with Ser 24 of HMG 17 and distinct from the sites phosphorylated by the cAMP-dependent protein kinase.  相似文献   

16.
The peptide Arg-Lys-Arg-Ala-Arg-Lys-Glu was synthesized and tested as an inhibitor of cyclic GMP-dependent protein kinase. This synthetic peptide is a non-phosphorylatable analogue of a substrate peptide corresponding to a phosphorylation site (serine-32) in histone H2B. The peptide was a competitive inhibitor of cyclic GMP-dependent protein kinase with respect to synthetic peptide substrates, with a Ki value of 86 microM. However, it did not inhibit phosphorylation of intact histones by cyclic GMP-dependent protein kinase under any conditions tested. Arg-Lys-Arg-Ala-Arg-Lys-Glu competitively inhibited the phosphorylation of either peptides or histones by the catalytic subunit of cyclic AMP-dependent protein kinase, with similar Ki values (550 microM) for both of these substrates. The peptide Leu-Arg-Arg-Ala-Ala-Leu-Gly, which was previously reported to be a selective inhibitor of both peptide and histone phosphorylation by cyclic AMP-dependent protein kinase, was a poor inhibitor of cyclic GMP-dependent protein kinase acting on peptide substrates (Ki = 800 microM), but did not inhibit phosphorylation of histones by cyclic GMP-dependent protein kinase. The selectivity of these synthetic peptide inhibitors toward either cyclic GMP-dependent or cyclic AMP-dependent protein kinases is probably based on differences in the determinants of substrate specificity recognized by these two enzymes. It is concluded that histones interact differently with cyclic GMP-dependent protein kinase from the way they do with the catalytic subunit of cyclic AMP-dependent protein kinase.  相似文献   

17.
The autophosphorylation of the catalytic subunit of cAMP-dependent protein kinase was stimulated by the acidic phospholipids phosphatidic acid, phosphatidylserine and phosphatidylinositol. Other phospholipids (phosphatidylethanolamine, phosphatidylcholine, sphingomyelin), acidic compounds (dextran sulfate, polyglutamic acid, chondroitin sulfate, hyaluronic acid) and calciumcalmodulin were essentially inactive. Sodium dodecyl sulfate also stimulated the catalytic subunit autophosphorylation, but other detergents (Triton X-100 and deoxycholic acid) did not. The combination of phosphatidic acid and sodium dodecyl sulfate was as effective as each agent alone, suggesting similar stimulation mechanisms. The data suggest that acidic membrane phospholipids might have a role in regulating the autophosphorylation of the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

18.
Atrial natriuretic peptides refer to a family of related peptides secreted by atria that appear to have an important role in the control of blood pressure. The structure of these peptides shows the amino acid sequence Arg101-Arg102-Ser103-Ser104, which is a typical recognition sequence (Arg-Arg-X-Ser) for phosphorylation by cyclic AMP-dependent protein kinase. With this background, we tested two synthetic atrial natriuretic peptides (Arg101-Tyr126 and Gly96-Tyr126) as substrates for in vitro phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase. The tested atrial natriuretic peptides were found to be substrates for the reaction. Sequence studies demonstrated that the site of phosphorylation was located, as expected, at Ser104. Kinetic studies demonstrate that both atrial natriuretic peptides are excellent substrates for cyclic AMP-dependent protein kinase. In particular, the longer peptide Gly96-Tyr126 exhibited an apparent Km value of about 0.5 microM, to our knowledge the lowest reported Km for a cyclic AMP-dependent protein kinase substrate. Preliminary studies to measure the biological activity of the in vitro phosphorylated atrial peptides indicate that these compounds are more effective than the corresponding dephospho forms in stimulating Na/K/Cl cotransport in cultured vascular smooth muscle cells.  相似文献   

19.
Substrate determinants for rabbit and chicken skeletal muscle myosin light chain kinases were examined with synthetic peptides. Both skeletal muscle myosin light chain kinases had similar phosphorylation kinetics with synthetic peptide substrates. Average kinetic constants for skeletal muscle myosin light chain heptadecapeptide, (formula; see text) where S(P) is phosphoserine, were Km, 2.3 microM and Vmax, 0.9 mumol/min/mg of enzyme. Km values were 122 and 162 microM for skeletal muscle peptides containing A-A for basic residues at positions 2-3 and 6-7, respectively. Average kinetic constants for smooth muscle myosin light chain peptide, (formula; see text), were Km, 1.4 microM and Vmax 27 mumol/min/mg of enzyme. Average Km values for the smooth muscle peptide, residues 11-23, were 10 microM which increased 6- and 11-fold with substitutions of alanine at residues 12 and 13, respectively. Vmax values decreased and Km values increased markedly by substitution of residue 16 with glutamate in the 11-23 smooth muscle tridecapeptide. Basic residues located 3 and 6-7 residues toward the NH2 terminus from phosphoserine in smooth muscle myosin light chain and 6-8 and 10-11 residues toward the NH2 terminus from phosphoserine in skeletal muscle myosin light chain appear to be important substrate determinants for skeletal muscle myosin light chain kinases. These properties are different from myosin light chain kinase from smooth muscle.  相似文献   

20.
The catalytic subunit of cAMP-dependent protein kinase from rat adipose tissue was purified to apparent homogeneity by making use of the differential binding of the holoenzyme and the free catalytic subunit to CM-Sephadex and by gel chromatography. Stability and yield was improved by inclusion of nonionic detergent in all steps after dissociation of the holoenzyme. Isoelectric focusing separated enzyme species with pI values of 7.8 and 8.6–8.8. The amino acid composition was similar to the enzyme purified from other tissues. Enzyme activity was markedly unstable in dilute solutions (<5 μg/ml). Additions of nonionic detergent, glycerol, bovine serum albumin and, especially, histones stabilized the enzyme. With protamine, the catalytic subunit had an apparent Km of 60 μM and Vmax of 20 μmol·min−1·mg−1, corresponding values with mixed histones were 12 μM and 1.2 μmol·min−1·mg−1. With both protein substrates the apparent Km for ATP was 11 μM. Concentrations of Mg2+ above 10 mM were inhibitory. Histone phosphorylation was inhibited by NaCl (50% at 0.5 M NaCl) while protamine phosphorylation was stimulated (4-fold at 1 M NaCl). Inorganic phosphate inhibited both substrates (histones: 50% at 0.3 M, and protamine: 50% at 0.5 M). pH optimum was around pH 9 with both substrates. The catalytic subunit contained 2.0 (range of three determinations, 1.7–2.3) mol phosphate/mol protein. It was autophosphorylated and incorporated 32Pi from [γ-32P]ATP in a time-dependent process, reaching saturation when approx. 0.1 mol phosphate/mol catalytic subunit was incorporated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号