首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A rapid method for purifying glycogen synthase a from rat liver was developed and the enzyme was tested as a substrate for nine different protein kinases, six of which were isolated from rat liver. The enzyme was phosphorylated on a 17-kDa CNBr fragment to approximately 1 phosphate/87-kDa subunit by phosphorylase b kinase from muscle or liver with a decrease in the activity ratio (-Glc-6-P/+Glc-6-P) from 0.95 to 0.6. Calmodulin-dependent glycogen synthase kinase from rabbit liver produced a similar phosphorylation pattern, but a smaller activity change. The catalytic subunit of beef heart cAMP-dependent protein kinase incorporated greater than 1 phosphate/subunit initially into a 17-kDa CNBr peptide and then into a 27-30-kDa CNBr peptide, with an activity ratio decrease to 0.5. Glycogen synthase kinases 3, 4, and 5 and casein kinase 1 were purified from rat liver. Glycogen synthase kinase 3 rapidly phosphorylated liver glycogen synthase to 1.5 phosphate/subunit with incorporation of phosphate into 3 CNBr peptides and a decrease in the activity ratio to 0.3. Glycogen synthase kinase 4 produced a pattern of phosphorylation and inactivation of liver synthase which was very similar to that caused by phosphorylase b kinase. Glycogen synthase kinase 5 incorporated 1 phosphate/subunit into a 24-kDa CNBr peptide, but did not alter the activity of the synthase. Casein kinase 1 phosphorylated and inactivated liver synthase with incorporation of phosphate into a 24-kDa CNBr peptide. This kinase and glycogen synthase kinase 4 were more active against muscle glycogen synthase. Calcium-phospholipid-dependent protein kinase from brain phosphorylated liver and muscle glycogen synthase on 17- and 27-kDa CNBr peptides, respectively. However, there was no change in the activity ratio of either enzyme. The following conclusions are drawn. 1) Liver glycogen synthase a is subject to multiple site phosphorylation. 2) Phosphorylation of some sites does not per se control activity of the enzyme under the assay conditions used. 3) Liver contains most, if not all, of the protein kinases active on glycogen synthase previously identified in skeletal muscle.  相似文献   

2.
Glycogen synthase, a key enzyme in the regulation of glycogen synthesis by insulin, is controlled by multisite phosphorylation. Glycogen synthase kinase-3 (GSK-3) phosphorylates four serine residues in the COOH terminus of glycogen synthase. Phosphorylation of one of these residues, Ser(640) (site 3a), causes strong inactivation of glycogen synthase. In previous work, we demonstrated in cell models that site 3a can be phosphorylated by an as yet unidentified protein kinase (3a-kinase) distinct from GSK-3. In the present study, we purified the 3a-kinase from rabbit skeletal muscle and identified one constituent polypeptide as HAN11, a WD40 domain protein with unknown function. Another polypeptide was identified as DYRK1A, a member of the dual-specificity tyrosine phosphorylated and regulated protein kinase (DYRK) family. Two isoforms of DYRK, DYRK1A and DYRK1B, co-immunoprecipitate with HAN11 when coexpressed in COS cells indicating that the proteins interact in mammalian cells. Co-expression of DYRK1A, DYRK1B, or DYRK2 with a series of glycogen synthase mutants with Ser/Ala substitutions at the phosphorylation sites in COS cells revealed that protein kinases cause phosphorylation of site 3a in glycogen synthase. To confirm that DYRKs directly phosphorylate glycogen synthase, recombinant DYRK1A, DYRK2, and glycogen synthase were produced in bacterial cells. In the presence of Mg-ATP, both DYRKs inactivated glycogen synthase by more than 10-fold. The inactivation correlated with phosphorylation of site 3a in glycogen synthase. These results indicate that protein kinase(s) from the DYRK family may be involved in a new mechanism for the regulation of glycogen synthesis.  相似文献   

3.
Phosphorylation of rat liver glycogen synthase by phosphorylase kinase   总被引:2,自引:0,他引:2  
Phosphorylation of rat liver glycogen synthase by rabbit skeletal muscle phosphorylase kinase results in the incorporation of approximately 0.8-1.2 mol of PO4/subunit. Analyses of the tryptic peptides by isoelectric focusing and thin layer chromatography reveal the presence of two major 32P-labeled peptides. Similar results were obtained when the synthase was phosphorylated by rat liver phosphorylase kinase. This extent of phosphorylation does not result in a significant change in the synthase activity ratio. In contrast, rabbit muscle glycogen synthase is readily inactivated by rabbit muscle phosphorylase kinase; this inactivation is further augmented by the addition of rabbit muscle cAMP-dependent protein kinase or cAMP-independent synthase (casein) kinase-1. Addition of cAMP-dependent protein kinase after initial phosphorylation of liver synthase with phosphorylase kinase, however, does not result in an inactivation or additional phosphorylation. The lack of additive phosphorylation under this condition appears to result from the phosphorylation of a common site by these two kinases. Partial inactivation of liver synthase can be achieved by sequential phosphorylation with phosphorylase kinase followed by synthase (casein) kinase-1. Under this assay condition, the phosphate incorporation into the synthase is additively increased and the synthase activity ratio (-glucose-6-P/+glucose-6-P) is reduced from 0.95 to 0.6. Nevertheless, if the order of the addition of these two kinases is reversed, neither additive phosphorylation nor inactivation of the synthase is observed. Prior phosphorylation of the synthase by phosphorylase kinase transforms the synthase such that it becomes a better substrate for synthase (casein) kinase-1 as evidenced by a 2- to 4-fold increase in the rate of phosphorylation. This increased rate of phosphorylation of the synthase appears to result from the rapid phosphorylation of a site neighboring that previously phosphorylated by phosphorylase kinase.  相似文献   

4.
Specific antibodies were used to purify glycogen synthase from isolated rabbit hepatocytes that had been incubated in a medium containing [32P]phosphate. The enzyme gave rise to two main 32P-labeled CNBr fragments of electrophoretic mobilities similar to those obtained after phosphorylation of the enzyme by individual protein kinases in vitro.  相似文献   

5.
Rat liver glycogen synthase bound to the glycogen particle was partially purified by repeated high-speed centrifugation. This synthase preparation was labeled with 32P by incubations with cAMP-dependent protein kinase and cAMP-independent synthase (casein) kinase-1 in the presence of [γ-32P]ATP. The phosphorylated synthase was separated from other proteins in the glycogen pellet by immunoprecipitation with rabbit anti-rat liver glycogen synthase serum. Analysis of the immunoprecipitates by sodium dodecyl sulfate-gel electrophoresis showed that synthase subunits of Mr 85,000 and 80,000 were present in varying proportions. The 32P-labeled synthase in the immunoprecipitate was digested with trypsin, and the resulting peptides were analyzed by isoelectric focusing. Synthase bound to the glycogen particle was phosphorylated by cAMP-dependent protein kinase at more sites and by cAMP-independent synthase (casein) kinase-1 at less sites than when the homogeneous synthase was incubated with these kinases. Phosphorylation of synthase in the glycogen pellet by either cAMP-dependent protein kinase or cAMP-independent synthase (casein) kinase-1 did not cause a significant inactivation as has been observed when the homogeneous synthase was incubated with these kinases. Inactivation of synthase in the glycogen pellet, however, can be achieved by the combination of both kinases. This inactivation appears to result from the phosphorylation of a new site by cAMP-independent synthase (casein) kinase-1 neighboring a site previously phosphorylated by cAMP-dependent protein kinase.  相似文献   

6.
Glycogen synthase kinase-3 (ATP:protein phosphotransferase, EC 2.7.1.37) phosphorylated K-casein 20-fold more rapidly than beta-casein, while alpha S1-casein was not a substrate. This distinguished it from casein kinase-I and casein kinase-II, which phosphorylate the beta-casein variant preferentially. Glycogen synthase kinase-3 phosphorylated a serine residue(s) in the C-terminal cyanogen bromide fragment on K-casein. In contrast, cyclic AMP-dependent protein kinase phosphorylated the N-terminal fragment, and phosphorylase kinase the N-terminal and intermediate cyanogen bromide fragments. The results emphasize the potential value of casein phosphorylation as a means of classifying protein kinases.  相似文献   

7.
8.
A rabbit liver protein kinase (PC0.7), able to phosphorylate glycogen synthase and phosvitin, has been extensively purified. The enzyme had apparent Mr = 170,000-190,000 as judged by gel filtration and was associated with two major polypeptide species, alpha (Mr = 43,000) and beta (Mr = 25,000). Two other polypeptides, Mr = 38,000 and Mr = 35,000, were also detected. Treatment with trypsin led to an enzyme composed only of polypeptides of Mr = 35,000 and Mr = 25,000. The beta-polypeptide underwent autophosphorylation when incubated with Mg2+ and ATP or GTP. The protein kinase was effective in utilizing both ATP and GTP as the phosphoryl donor (apparent Km values 5-11 microM and 9-19 microM, respectively). The enzyme phosphorylated phosvitin, casein, and glycogen synthase but not histone or phosphorylase and was inhibited by heparin. Phosphorylation of glycogen synthase proceeded to approximately 0.5 phosphate/subunit with little inactivation of the glycogen synthase. The phosphorylation occurred predominantly in a 21,000-dalton CNBr fragment of glycogen synthase that had been previously shown to reside toward the COOH terminus of the molecule. The liver PC0.7 appeared very similar to an analogous enzyme isolated from rabbit muscle (DePaoli-Roach, A. A., Ahmad, Z., and Roach, P. J. (1981) J. Biol. Chem. 256, 8955-8962). The present work, therefore, provides a point of contact between the Ca2+ and cyclic nucleotide-independent glycogen synthase kinases of rabbit liver and muscle.  相似文献   

9.
A method is described which separates the various phosphorylation sites in glycogen synthase based on reverse phase high-performance liquid chromatography (HPLC) of tryptic 32P-peptides. Using this method we studied the phosphorylation site specificities of the kinases which act on glycogen synthase. The cAMP-dependent protein kinase phosphorylated sites 1a, 1b, and 2, whereas casein kinase II phosphorylated only site 5. Two calcium, calmodulin-dependent kinases, phosphorylase kinase and liver calmodulin-dependent synthase kinase, both phosphorylated site 2, and the latter enzyme also phosphorylated site 1b. A cAMP-independent kinase (kinase 4) purified from liver also specifically phosphorylated site 2. Synthase kinase 3 catalyzed the phosphorylation of only site 3. This HPLC method was also used to establish that all of these sites were subject to phosphorylation in vivo.  相似文献   

10.
11.
12.
Glycogen synthase I, purified from bovine heart, had a specific activity of 33 units/mg and gave a single band on sodium dodecyl sulfate gel electrophoresis with a subunit molecular weight of 86,000. The enzyme was phosphorylated with cAMP-dependent protein kinase catalytic subunit, also isolated from heart. With 10 microM ATP, only one phosphate group was incorporated per subunit of glycogen synthase. The phosphorylation decreased the per cent of glycogen synthase I from 0.95 to 0.50 when activity was determined by assays with Na2SO4 and glucose 6-phosphate. Glycogen synthase containing one phosphate per subunit was designated GS-1. One additional phosphate was incorporated per synthase subunit when ATP was increased to 0.5 mM and the percent glycogen synthase I decreased from 0.50 to < 0.05. This enzyme form was designated GS-1,2. Conversion of GS-1 to Gs-1,2 gave cooperative kinetics with ATP concentration and a half-maximal stimulation at approximately 40 microM. Phosphorylation of GS-1 could also be achieved by adding other non-substrate nucleotide triphosphates such as ITP and UTP along with 10 microM ATP. Glucose-6-P and Na2SO4 were without effect on this phosphorylation reaction. Two separate peptides were obtained after CNBr cleavage of 32P-labeled GS-1,2 and only one from GS-1. Both enzyme forms contained a single phosphorylated peptide in common. Thus, heart glycogen synthase may be phosphorylated specifically in either of two different sites using appropriate concentrations of ATP. ATP acts as a substrate for the protein kinase and also affects the availability of a second site to phosphorylation by cAMP-dependent protein kinase.  相似文献   

13.
14.
A rabbit liver cAMP-independent glycogen synthase kinase has been purified 4500-fold to a specific activity of 2.23 mumol of 32P incorporated per min per mg of protein using ion exchange chromatography on DEAE-Sephacel and phosphocellulose, gel filtration chromatography on Sepharose 6B, and affinity chromatography on calmodulin-Sepharose. This synthase kinase, which was completely dependent on the presence of calmodulin (apparent K0.5 = 0.1 microM) and calcium for activity, also catalyzed the phosphorylation of purified smooth muscle myosin light chain but not of smooth muscle myosin. Using 0.5 mM ATP, a maximal rate of phosphorylation of glycogen synthase was achieved in the presence of 10 mM magnesium acetate with a pH optimum of 7.8. Gel filtration experiments indicated a Stokes radius of about 70 A and sucrose density gradient centrifugation data gave a sedimentation coefficient of 10.6 S. A molecular weight of approximately 300,000 was calculated. A definitive subunit structure was not determined, but major bands observed after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate corresponded to a doublet at 50,000 to 53,000. The calmodulin-dependent glycogen synthase kinase incorporated about 1 mol of 32P per mol of synthase subunit into sites 2 and 1b associated with a decrease in the synthase activity ratio from 0.8 to about 0.4. The calmodulin-dependent glycogen synthase kinase may mediate the effects of alpha-adrenergic agonists, vasopressin, and/or angiotensin II on glycogen synthase in liver.  相似文献   

15.
The influence of phosphorylation on the properties of lactate dehydrogenase (LDH) has been studied. Data obtained using the immobilization approach support the assumption that the autophosphorylation of LDH discovered previously in the presence of ATP has no relation to protein kinase activity of the enzyme. Phosphorylation of native LDH by tyrosine kinases was shown to be inefficient. However, the efficiency of the phosphorylation considerably increased after the dissociation of LDH into non-native forms of the enzyme. Ca2+/calmodulin-dependent protein kinase catalyzes incorporation of 0.8-0.9 mole phosphate per mole of LDH tetramer. The phosphorylation results in an increase in activity by 25-30% and increases markedly the stability of the enzyme during cold inactivation. Phosphorylation of LDH by Ca2+/calmodulin-dependent protein kinase, unlike the phosphorylation on tyrosine residues, is supposed to be of importance for the control of cell metabolism.  相似文献   

16.
17.
18.
A protein kinase, able to phosphorylate casein, phosvitin, and glycogen synthase, was purified approximately 9000-fold from rabbit liver, and appeared analogous to an enzyme studied by Itarte and Huang (Itarte, E., and Huang, K.-P. (1979) J. Biol. Chem. 254, 4052-4057). This enzyme, designated here casein kinase-1, was shown to be a distinct glycogen synthase kinase and in particular to be different from the protein kinase GSK-3 (Hemmings, B.A., Yellowlees, D., Kernohan, J.C., and Cohen, P. (1981) Eur. J. Biochem. 119, 443-451). Casein kinase-1 had native molecular weight of 30,000 as judged by gel filtration. The enzyme phosphorylated beta-casein A or B better than kappa-casein or alpha s1-casein, and modified only serine residues in beta-casein B and phosvitin. The apparent Km for ATP was 11 microM, and GTP was ineffective as a phosphoryl donor. The phosphorylation of glycogen synthase by casein kinase-1 was inhibited by glycogen, half-maximally at 2 mg/ml, and by heparin, half-maximally at 0.5-1.0 microgram/ml, but was unaffected by Ca2+ and/or calmodulin, or by cyclic AMP. Phosphorylation of muscle glycogen synthase proceeded to a stoichiometry of at least 6 phosphates/subunit with reduction in the +/- glucose-6-P activity ratio to less than 0.4. Phosphate was introduced into both a COOH-terminal CNBr fragment (CB-2) as well as a NH2-terminal fragment (CB-1). At a phosphorylation stoichiometry of 6 phosphates/subunit, 84% of the phosphate was associated with CB-2 and 6.5% with CB-1. The remainder of the phosphate was introduced into another CNBr fragment of apparent molecular weight 16,500. Phosphorylation by casein kinase-1 correlated with reduced electrophoretic mobilities, as analyzed on polyacrylamide gels in the presence of sodium dodecyl sulfate, of the intact glycogen synthase subunit, as well as the CNBr fragments CB-1 and CB-2.  相似文献   

19.
TIMAP (TGF-beta1 inhibited, membrane-associated protein) is a prenylated, endothelial cell-predominant protein phosphatase 1 (PP1c) regulatory subunit that localizes to the plasma membrane of filopodia. Here, we determined whether phosphorylation regulates TIMAP-associated PP1c function. Phosphorylation of TIMAP was observed in cells metabolically labeled with [32P]orthophosphate and was reduced by inhibitors of protein kinase A (PKA) and glycogen synthase kinase-3 (GSK-3). In cell-free assays, immunopurified TIMAP was phosphorylated by PKA and, after PKA priming, by GSK-3beta. Site-specific Ser to Ala substitution identified amino acid residues Ser333/Ser337 as the likely PKA/GSK-3beta phosphorylation site. Substitution of Ala for Val and Phe in the KVSF motif of TIMAP (TIMAPV64A/F66A) abolished PP1c binding and TIMAP-associated PP1c activity. TIMAPV64A/F66A was hyper-phosphorylated in cells, indicating that TIMAP-associated PP1c auto-dephosphorylates TIMAP. Constitutively active GSK-3beta stimulated phosphorylation of TIMAPV64A/F66A, but not wild-type TIMAP, suggesting that the PKA/GSK-3beta site may be subject to dephosphorylation by TIMAP-associated PP1c. Substitution of Asp or Glu for Ser at amino acid residues 333 and 337 to mimic phosphorylation reduced the PP1c association with TIMAP. Conversely, GSK-3 inhibitors augmented PP1c association with TIMAP-PP1c in cells. The 333/337 phosphomimic mutations also increased TIMAP-associated PP1c activity in vitro and against the non-integrin laminin receptor 1 in cells. Finally, TIMAP mutants with reduced PP1c activity strongly stimulated endothelial cell filopodia formation, an effect mimicked by the GSK-3 inhibitor LiCl. We conclude that TIMAP is a target for PKA-primed GSK-3beta-mediated phosphorylation. This phosphorylation controls TIMAP association and activity of PP1c, in turn regulating extension of filopodia in endothelial cells.  相似文献   

20.
A highly purified preparation of protein kinase FA (where FA is the activating factor for phosphatase 1)/glycogen synthase kinase 3 from rabbit muscle readily phosphorylated bovine neurofilaments. All three neurofilament proteins, the high, middle, and low molecular proteins (NF-H, NF-M, and NF-L), were phosphorylated when intact filaments were incubated with the kinase. Experiments with individual proteins showed that NF-M was the best substrate. At protein concentrations of 0.13 mg/ml, the initial rate of NF-M phosphorylation was 30% of that observed for glycogen synthase. Km values were 0.24 mg/ml (7 x 10(-7) M tetramer) for glycogen synthase and 0.10 mg/ml (5 x 10(-7) M dimer) for NF-M. Vmax values were 0.36 mumol/min/mg for glycogen synthase and 0.035 mumol/min/mg for NF-M. Dephosphorylated NF-M was phosphorylated only half as much as native NF-M; this is consistent with the known substrate specificity of the kinase. The possible involvement of FA/GSK-3 in the phosphorylation of neurofilaments in vivo is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号