共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholesteryl ester transfer protein biosynthesis and cellular cholesterol homeostasis are tightly interconnected 总被引:2,自引:0,他引:2
Cholesteryl ester transfer protein (CETP) mediates triglyceride and cholesteryl ester (CE) transfer between lipoproteins, and its activity is strongly modulated by dietary cholesterol. To better understand the regulation of CETP synthesis and the relationship between CETP levels and cellular lipid metabolism, we selected the SW872 adipocytic cell line as a model. These cells secrete CETP in a time-dependent manner at levels exceeding those observed for Caco-2 or HepG2 cells. The addition of LDL, 25OH-cholesterol, oleic acid, or acetylated LDL to SW872 cells increased CETP secretion (activity and mass) up to 6-fold. In contrast, CETP production was decreased by almost 60% after treatment with lipoprotein-deficient serum or beta-cyclodextrin. These effects, which were paralleled by changes in CETP mRNA, show that CETP biosynthesis in SW872 cells directly correlates with cellular lipid status. To investigate a possible, reciprocal relationship between CETP expression and cellular lipid homeostasis, CETP biosynthesis in SW872 cells was suppressed with CETP antisense oligonucleotides. Antisense oligonucleotides reduced CETP secretion (activity and mass) by 60% compared with sense-treated cells. When CETP synthesis was suppressed for 24 h, triglyceride synthesis was unchanged, but cholesterol biosynthesis was reduced by 20%, and acetate incorporation into CE increased 31%. After 3 days of suppressed CETP synthesis, acetate incorporation into the CE pool increased 3-fold over control. This mirrored a similar increase in CE mass. The efflux of free cholesterol to HDL was the same in sense and antisense-treated cells; however, HDL-induced CE hydrolysis in antisense-treated cells was diminished 2-fold even though neutral CE hydrolase activity was unchanged. Thus, CETP-compromised SW872 cells display a phenotype characterized by inefficient mobilization of CE stores leading to CE accumulation. These results strongly suggest that CETP expression levels contribute to normal cholesterol homeostasis in adipocytic cells. Overall, these studies demonstrate that lipid homeostasis and CETP expression are tightly coupled. 相似文献
2.
3.
Waterham HR 《FEBS letters》2006,580(23):5442-5449
Eight distinct inherited disorders have been linked to different enzyme defects in the isoprenoid/cholesterol biosynthetic pathway following the finding of abnormally increased levels of intermediate metabolites in patients and confirmed by the demonstration of disease-causing mutations in genes encoding the implicated enzymes. Patients afflicted with these disorders are characterized by multiple morphogenic and congenital anomalies including internal organ, skeletal and/or skin abnormalities underlining an important role for cholesterol in human embryogenesis and development. The etiology of the underlying pathophysiology may involve multiple affected processes due to lowered cholesterol and/or the elevated, teratogenic levels of the intermediate sterol precursors. 相似文献
4.
Cholesterol biosynthesis from DL-[2-14C]mevalonic acid ([14C]MVA) was demonstrated in ovine ovarian follicles and isolated thecal tissues and granulosal cells incubated in vitro. Thecal tissues more readily synthesized cholesterol than did granulosal cells when incubated separately, but in the intact follicle the newly synthesized cholesterol distributed evenly between the two tissue layers, indicating that the theca could act as a supplementary source of cholesterol for the granulosal cells. Human chorionic gonadotrophin (hCG) added to the incubation medium was found to inhibit cholesterol biosynthesis from [14C]MVA by intact follicles and isolated thecal tissues, but not granulosal cells. This hCG-induced inhibition was evident in whole follicles incubated for 12--48 h, but not at 3--6 h, and was demonstrated in thecal tissues incubated for 3 h. In all cases where inhibition of cholesterol biosynthesis was observed, 14C label accumulated in a product characterized by thin layer and vapour phase chromatography as lanosterol, implying that the hCG block lies between lanosterol and cholesterol. Treatment of follicles with hCG also reduced the amount of 14C label incorporated into the cholesteryl ester fraction. These changes were accompanied by a corresponding reduction in the tissue content of cholesteryl ester, but there were no changes in the specific activities to indicate that newly synthesized cholesteryl ester was used selectively as a substrate for progestin biosynthesis. 相似文献
5.
6.
John Zhong Li Yao Lei Yue Wang Yinxin Zhang Jing Ye Xiayu Xia Xianming Pan Peng Li 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2010,1801(5):577-586
Cideb, a member of CIDE family proteins, has emerged as an important regulator in the development of obesity and diabetes by controlling fatty acid synthesis and VLDL secretion in hepatocytes. Here, we investigated the role of Cideb in cholesterol biosynthesis, uptake and storage in the liver by using Cideb-null mice as a model system. Cideb-null mice and wild-type mice were treated with normal diet (ND) or high cholesterol diet (HCD) for one month. The metabolic parameters of cholesterol metabolism and expression profiles of genes in cholesterol biosynthesis and storage were measured. Cideb-null mice had lower levels of plasma cholesterol and LDL when fed with both ND and HCD and increased rate of cholesterol absorption. Furthermore, the liver of Cideb-null mice has lower rates of cholesterol biosynthesis and reduced expression levels of sterol response element-binding protein (SREBP) cleavage-activation protein (SCAP), and lower levels of nuclear form of SREBP2 and its downstream target genes in cholesterol biosynthesis pathway under a normal diet treatment. On the contrary, hepatic cholesterol biosynthesis rate between wild-type and Cideb-null mice was similar after high cholesterol diet treatment. Interestingly, hepatic cholesterol storage in the liver of Cideb-null mice was significantly increased due to its increased LDL receptor (LDLR) and acyl-CoA cholesterol acyltransferase (ACAT) expression. Finally, we observed drastically reduced cholesterol levels in the heart of Cideb-null mice fed with a high cholesterol diet. Overall, our data suggest that Cideb is a novel regulator in controlling cholesterol homeostasis in the liver. Therefore, Cideb could serve as an important therapeutical target for the treatment of atherosclerosis and cardiovascular diseases. 相似文献
7.
Activities of enzymes responsible for steroid biosynthesis and cholesterol ester metabolism in rabbit ovarian interstitial tissue and corpora lutea. A comparison of enzyme activities with flow rates 总被引:2,自引:2,他引:0 下载免费PDF全文
A method involving the use of isolated cholesterol ester-storage granules as substrate is described for the assay of cholesterol esterase in rabbit ovarian tissues. Activities of cholesterol esterase 100-200-fold higher than those previously reported in ovarian tissues were measured by using this method. In addition to that of cholesterol esterase, activities of cholesterol ester synthetase, cholesterol side-chain cleavage enzyme and 3beta-hydroxy steroid dehydrogenase were determined in rabbit ovarian interstitial tissue and corpora lutea. Activities of these enzymes are in general compatible with the flows through them measured under a variety of conditions both in vivo and in vitro. It is concluded that, in the rabbit ovarian tissues investigated, these enzymes are capable of catalysing the conversions usually attributed to them. 相似文献
8.
9.
10.
We have examined the membrane topography of cholesterol biosynthesis in cultured human fibroblasts. We fed the cells with radioacetate and then interrupted the biosynthetic pathway so as to trap labeled intermediates in their subcellular locations. We analyzed homogenates of human fibroblasts labeled biosynthetically from radioacetate by centrifugation to equilibrium on sucrose gradients. The following two methods were used to interrupt cholesterol biosynthesis: incubation at 10 degrees C and treatment with 4,4,10 beta-trimethyl-trans-decal-3 beta-ol, a specific inhibitor of oxidosqualene cyclase. Incubation at 10 degrees C caused the accumulation of radiolanosterol at the expense of cholesterol. The lanosterol appeared predominantly at an unusually buoyant density (20% (w/w) sucrose; d = 1.08 g/cm3) as well as at the density normally labeled at 37 degrees C (30% sucrose; d = 1.13 g/cm3). 4,4,10 beta-Trimethyl-trans-decal-3 beta-ol treatment caused the accumulation of labeled squalene and squalene 2,3-oxide. Reversal of the block permitted the label to progress rapidly as a wave into lanosterol and ultimately into cholesterol. The profiles of the three precursors did not coincide, suggesting that they were mostly in different membranes. Squalene was uniquely confined to a density of 1.18 g/cm3 (40% sucrose) while squalene 2,3-oxide appeared in peaks of density 1.08 g/cm3 and 1.13 g/cm3 (20% and 30% sucrose). Lanosterol was in a peak of density 1.13 g/cm3. Pulse-chase experiments showed that lanosterol synthesized in the membranes at 20% sucrose moved rapidly to the membranes at 30% sucrose where it was converted to cholesterol. The density gradient profiles of the following organelle markers also were monitored: plasma membrane, cholesterol mass; Golgi apparatus, galactosyltransferase; endoplasmic reticulum, RNA, 3-hydroxy-3-methylglutaryl-coenzyme A reductase and cytochrome c reductase; peroxisomes, catalase. None of these markers appeared at the buoyant density of 1.08 g/cm3. We conclude that 1) cholesterol biosynthesis may be topographically heterogeneous and 2) newly synthesized squalene 2,3-oxide resides in a buoyant membrane fraction distinct from markers for the major organelles. 相似文献
11.
12.
Weinhofer I Kunze M Stangl H Porter FD Berger J 《Biochemical and biophysical research communications》2006,345(1):205-209
Smith-Lemli-Opitz syndrome (SLOS), caused by 7-dehydrocholesterol-reductase (DHCR7) deficiency, shows variable severity independent of DHCR7 genotype. To test whether peroxisomes are involved in alternative cholesterol synthesis, we used [1-(14)C]C24:0 for peroxisomal beta-oxidation to generate [1-(14)C]acetyl-CoA as cholesterol precursor inside peroxisomes. The HMG-CoA reductase inhibitor lovastatin suppressed cholesterol synthesis from [2-(14)C]acetate and [1-(14)C]C8:0 but not from [1-(14)C]C24:0, implicating a peroxisomal, lovastatin-resistant HMG-CoA reductase. In SLOS fibroblasts lacking DHCR7 activity, no cholesterol was formed from [1-(14)C]C24:0-derived [1-(14)C]acetyl-CoA, indicating that the alternative peroxisomal pathway also requires this enzyme. Our results implicate peroxisomes in cholesterol biosynthesis but provide no link to phenotypic variation in SLOS. 相似文献
13.
Sites of control of hepatic cholesterol biosynthesis 总被引:9,自引:0,他引:9
An inhibition in the conversion of mevalonate to cholesterol has been demonstrated in liver of cholesterol-fed rats by both in vitro and in vivo methods. Synthesis decreased to 30% of the control value after 1 week and 20% after 1 month on a 1% cholesterol diet. After a year, synthesis from mevalonate was almost completely inhibited. The rate of conversion of squalene to cholesterol was not consistently decreased but that of farnesyl pyrophosphate to cholesterol was decreased considerably. The rate of conversion of mevalonate to farnesyl pyrophosphate by a soluble liver enzyme preparation was also decreased in cholesterol-fed animals. Sites of inhibition of cholesterol synthesis were detected before mevalonate, between mevalonate and farnesyl pyrophosphate, and after farnesyl pyrophosphate, probably at the conversion of farnesyl pyrophosphate to squalene. The inhibition of mevalonate conversion to cholesterol developed more slowly than that of acetate and appeared to be secondary to it. The maximum capacities of normal liver homogenates and slices to synthesize cholesterol from mevalonate were shown to be far greater than from acetate. Consequently, sites of inhibition after mevalonate probably do not have a significant effect on the over-all rate of cholesterol synthesis in the intact cholesterol-fed animal. 相似文献
14.
Inhibition of cholesterol biosynthesis by BM 15.766 总被引:2,自引:0,他引:2
BM 15.766 (4-[2-[1-(4-chlorocinnamyl)piperazin-4-yl]ethyl]benzoic acid) showed a dose dependent action on 14C-acetate incorporation in cholesterol and intermediates including squalene by adult rat hepatocytes in primary monolayer culture. The biosynthesis of cholesterol could be reduced by more than 90%. Simultaneously, the 7-dehydrocholesterol level rose in the cells and, to a less marked extent, in the culture medium. 相似文献
15.
16.
17.
Cholesterol biosynthesis occurs in the endoplasmic reticulum (ER). Its lego-like construction from water-soluble small metabolites via intermediates of increasing complexity to water-insoluble cholesterol requires numerous distinct enzymes. Dysfunction of the involved enzymes can cause several human inborn defects and diseases. Here, we review recent structures of three key cholesterol biosynthetic enzymes: Squalene epoxidase (SQLE), NAD(P)-dependent steroid dehydrogenase-like (NSDHL), and 3β-hydroxysteroid Δ8-Δ7 isomerase termed EBP. Moreover, we discuss structures of acyl-CoA:cholesterol acyltransferase (ACAT) enzymes, which are responsible for forming cholesteryl esters from cholesterol to maintain cholesterol homeostasis in the ER. The structures of these enzymes reveal their catalytic mechanism and provide a molecular basis to develop drugs for treating diseases linked to their dysregulation. 相似文献
18.
Selectivity and contribution of lecithin: cholesterol acyltransferase to plasma cholesterol ester formation 总被引:1,自引:0,他引:1
Selectivity factors (Vm/Km) for human and rat lecithin: cholesterol acyltransferases (LCAT) for the transfer of various acyl groups from the 2-position of phosphatidylcholine were determined. By multiplying these values by the proportions of acyl groups at the 2-position of phosphatidylcholine, one can predict the proportions of molecular species of cholesterol ester which will be synthesized by LCAT. In human subjects fasted overnight, the molecular composition of plasma cholesterol ester was found to reflect the LCAT selectivity relatively accurately. This result supports the concepts that hepatic acyl-CoA:cholesterol acyltransferase (ACAT) does not contribute significantly to the synthesis of plasma cholesterol ester and that removal of cholesterol ester from plasma is not selective with respect to molecular species under these conditions. In contrast to the results with humans, the molecular composition of plasma cholesterol ester formed in spontaneously hypertensive rats fed a high-cholesterol diet and then fasted overnight differs from that which is predicted from LCAT selectivity and the proportion of various fatty acids at the 2-position of phosphatidylcholine: these results suggest that cholesterol ester is formed mainly via the ACAT reaction. 相似文献
19.
L Lagrost P Gambert 《Comptes rendus des séances de la Société de biologie et de ses filiales》1992,186(4):405-413
As most of peripheral cells are not able to catabolize cholesterol, the transport of cholesterol excess from peripheral tissues back to the liver, namely "reverse cholesterol transport", is the only way by which cholesterol homeostasis is maintained in vivo. Reverse cholesterol transport pathway can be divided in three major steps: 1) uptake of cellular cholesterol by the high density lipoproteins (HDL), 2) esterification of HDL cholesterol by the lecithin: cholesterol acyltransferase and 3) captation of HDL cholesteryl esters by the liver where cholesterol can be metabolized and excreted in the bile. In several species, including man, cholesteryl esters in HDL can also follow an alternative pathway which consists in their transfer from HDL to very low density (VLDL) and low density (LDL) lipoproteins. The transfer of cholesteryl esters to LDL, catalyzed by the Cholesteryl Ester Transfer Protein (CETP), might affect either favorably or unfavorably the reverse cholesterol transport pathway, depending on whether LDL are finally taken up by the liver or by peripheral tissues, respectively. In order to understand precisely the implication of CETP in reverse cholesterol transport, it is essential to determine its role in HDL metabolism, to know the potential regulation of its activity and to identify the mechanism by which it interacts with lipoprotein substrates. Results from recent studies have demonstrated that CETP can promote the size redistribution of HDL particles. This may be an important process in the reverse cholesterol transport pathway as HDL particles with various sizes have been shown to differ in their ability to promote cholesterol efflux from peripheral cells and to interact with lecithin: cholesterol acyltransferase.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
The ability of cholesterol esterase to catalyze the synthesis of cholesterol esters has been considered to be of limited physiological significance because of its bile salt requirements for activity, though detailed kinetic studies have not been reported. This study was performed to determine the taurocholate, pH, and substrate requirements for optimal cholesterol ester synthesis catalyzed by various pancreatic lipolytic enzymes, including the bovine 67- and 72-kDa cholesterol esterases, human 100-kDa cholesterol esterase, and human 52-kDa triglyceride lipase. In contrast to current beliefs, cholesterol esterase exhibits a bile salt independent as well as a bile salt dependent synthetic pathway. For the bovine pancreatic 67- and 72-kDa cholesterol esterases, the bile salt independent pathway is optimal at pH 6.0-6.5 and is stimulated by micromolar concentrations of taurocholate. For the bile salt dependent synthetic reaction for the 67-kDa enzyme, increasing the taurocholate concentration from 0 to 1.0 mM results in a progressive shift in the pH optimum from pH 6.0-6.5 to pH 4.5 or lower. In contrast, cholesterol ester hydrolysis by the 67-, 72-, and 100-kDa enzymes was characterized by pH optima from 5.5 to 6.5 at all taurocholate concentrations. Optimum hydrolytic activity for these three enzyme forms occurred with 10 mM taurocholate. Since hydrolysis is minimal at low taurocholate concentrations, the rate of synthesis actually exceeds hydrolysis when the taurocholate concentration is less than 1.0 mM. The 52-kDa enzyme exhibits very low cholesterol ester synthetic and hydrolytic activities, and for this enzyme both activities are bile salt independent. Thus, our data show that cholesterol esterase has both bile salt independent and bile salt dependent cholesterol ester synthetic activities and that it may catalyze the net synthesis of cholesterol esters under physiological conditions. 相似文献