首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to determine in canine bronchi the effects produced by norepinephrine (released from adrenergic nerve terminals) on cholinergic neurotransmission. Electrical stimulation of canine bronchi activates cholinergic and adrenergic nerve fibers. The adrenergic neuronal blocker, bretylium tosylate, inhibited the increase in [3H]norepinephrine overflow evoked by electrical stimulation but did not prevent that caused by the indirect sympathomimetic tyramine. During blockade of the exocytotic release of norepinephrine with bretylium, the pharmacological displacement of the sympathetic neurotransmitter by tyramine significantly decreased the contractions evoked by electrical stimulation but did not affect contractions caused by exogenous acetylcholine. Metoprolol, a beta 1-adrenergic antagonist, abolished and propranolol significantly reduced the effect of tyramine during electrical stimulation. alpha 2-Adrenergic blockade, beta 2-adrenergic blockade, or removal of the epithelium did not significantly affect the response to tyramine. These results suggest that norepinephrine when released from sympathetic nerve endings can activate prejunctional inhibitory beta 1-adrenoceptors to depress cholinergic neurotransmission in the bronchial wall.  相似文献   

2.
The combined effect of a beta 2-antagonist and an alpha 2-agonist on the release of adrenal catecholamines was studied in the anaesthetized and vagotomized dog. The electrical stimulation of the splanchnic nerve (5-V pulses of 2 ms duration for 3 min at a frequency of 3 Hz) produced a significant rise in adrenal catecholamine release in the adrenal vein. Intravenous injection of a beta 2-antagonist significantly reduced this response and a subsequent injection of an alpha 2-agonist further reduced the release of catecholamines. However, if the alpha 2-agonist is injected first, the release is not different compared with the control stimulation, and the subsequent injection of the beta 2-antagonist also did not modify the release in response to electrical stimulation. These results suggest that the blockade of presynaptic beta 2-receptors reduces the release of adrenal catecholamines without interfering with the activation of the alpha 2-adrenoceptors. In contrast, the pretreatment with the alpha 2-agonist, which does not modify the release of catecholamine at 3 Hz, seems to interfere with the inhibitory effect of the beta 2-antagonist.  相似文献   

3.
The effect of beta-adrenergic blockade on torque output and leg blood flow was examined in seven healthy young men during repeated maximal isometric voluntary contractions of the triceps surae muscle group. Exercise was performed in either a bent- or straight-leg position during each of four drug treatments: placebo, propranolol, metoprolol, oxprenolol. Contractions were sustained for 5 s with 5 s relaxation for a total of 10 min followed by a 10-min recovery. Leg blood flow was measured during the 5 s relaxation separating contractions using strain gauge plethysmography. Torque output decreased during the 10-min contractions with no differences between the four drug treatments. Leg blood flow was lower with beta-blockade during the initial stages of exercise and recovery in the bent-leg position but no differences were observed after 3 min exercise or recovery. Leg blood flow in the straight-leg position was not different between any of the four drug treatments, but it was significantly less than in bent-leg exercise. The lower blood flows during the initial stages of exercise in the beta-blocked conditions probably reflect a slowing of the central cardiovascular response because of beta 1-receptor blockade of the heart rather than on the beta 2-receptors effects on peripheral vascular resistance. It is concluded that local vasodilator substances released from the working muscle may play a more important role than beta 2-receptor stimulation of smooth muscle in skeletal muscle resistance vessels in regulating local muscle blood flow during maximal exercise of the triceps surae muscle group.  相似文献   

4.
Isolated perfused dog hearts were made hypoxic by respiring the support dog with low oxygen (hypoxic hypoxia) or with carbon monoxide (CO hypoxia). Each heart was exposed to both types of hypoxia, separately. Effects on coronary flow (Qt), coronary vascular resistance, cardiac oxygen consumption (Vo2), and contractility (%deltadP/dt) were studied. Two series of experiments were done. Series I: At constant perfusion pressure. As oxygen content (Cao2) was lowered from 20 to 5 vol%, Qt doubled with hypoxic hypoxia and almost tripled with CO hypoxia (P less than 0.01). Vo2 and contractility increased with both types of hypoxia. Beta-adrenergic blockade eliminated the increase in VO2 and contractility but not the difference in Qt increase between hypoxic and CO hypoxia. Series II: At constant Qt (with beta-blockade), vascular resistance decreased more with CO than hypoxic hypoxia. Finally, alpha-blockade eliminated the difference in vascular resistance and thus with complete (alpha and beta) blockade, the two types of hypoxia have the same effect and are indistinguishable.  相似文献   

5.
Catecholamines stimulate cardiac contractility through beta(1)-adrenergic receptors (beta(1)-ARs), which in humans are polymorphic at amino acid residue 389 (Arg/Gly). We used cardiac-targeted transgenesis in a mouse model to delineate mechanisms accounting for the association of Arg389 with human heart failure phenotypes. Hearts from young Arg389 mice had enhanced receptor function and contractility compared with Gly389 hearts. Older Arg389 mice displayed a phenotypic switch, with decreased beta-agonist signaling to adenylyl cyclase and decreased cardiac contractility compared with Gly 389 hearts. Arg389 hearts had abnormal expression of fetal and hypertrophy genes and calcium-cycling proteins, decreased adenylyl cyclase and G alpha(s) expression, and fibrosis with heart failure This phenotype was recapitulated in homozygous, end-stage, failing human hearts. In addition, hemodynamic responses to beta-receptor blockade were greater in Arg389 mice, and homozygosity for Arg389 was associated with improvement in ventricular function during carvedilol treatment in heart failure patients. Thus the human Arg389 variant predisposes to heart failure by instigating hyperactive signaling programs leading to depressed receptor coupling and ventricular dysfunction, and influences the therapeutic response to beta-receptor blockade.  相似文献   

6.
The effect of the acetylcholinesterase inhibitor soman on tracheal smooth muscle (TSM) from the dog and pig was studied. In response to soman, tracheal ring preparations contract more and the resting tension for TSM preparations is higher for the dog compared with the pig. Tension induced by electrical field stimulation (EFS) and the half-time of EFS-train induced contractions have a similar dependence on soman exposure in both dog and pig TSM. These results suggest that the basal acetylcholine secretion or leakage within the TSM nerve terminal is probably higher for the dog compared with the pig.  相似文献   

7.
P T Horn  J D Kohli 《Life sciences》1992,51(10):757-764
Inhibitory alpha-adrenoceptors were studied in cardiac ganglia of pentobarbital-anesthetized dogs. Blockade of alpha 1- or alpha 2-adrenoceptors augmented preganglionic nerve stimulation induced tachycardia without altering the response to postganglionic nerve stimulation. The effect produced by blockade of ganglionic alpha 1-adrenoceptors with terazosin had different frequency-response characteristics from, was of smaller magnitude than, and was additive with the effect produced by blockade of ganglionic alpha 2-adrenoceptors with rauwolscine. The response to activation of ganglionic nicotinic cholinergic receptors in the absence of electrical stimulation of the preganglionic nerve was not affected by blockade of either alpha 1- or alpha 2-adrenoceptors. The response to nicotinic cholinergic receptor activation during periods of continuous preganglionic nerve stimulation was augmented following blockade of alpha 2-adrenoceptors but unaffected by alpha 1-adrenoceptor blockade. These results suggest that there are two different inhibitory pathways involving alpha-adrenoceptors in mammalian sympathetic ganglia and provide evidence that these inhibitory pathways are operative under the experimental conditions of ganglionic transmission.  相似文献   

8.
The purpose of the study was to determine whether catecholamines modulate cholinergic neurotransmission in isolated human airway smooth muscle. Bronchial rings were suspended in organ baths for isometric measurement of tension, and contractions were induced by either electrical field stimulation (EFS) or exogenous acetylcholine (ACh). Isoproterenol, epinephrine, and norepinephrine in that order of potency produced concentration-dependent inhibition of comparable responses to EFS and ACh. However a potency difference of 100-fold for isoproterenol (IC50 = 4.80 X 10(-8) M for EFS and 3.70 X 10(-6) M for ACh) and 10-fold for both epinephrine and norepinephrine was observed for inhibition of responses to EFS compared with responses to ACh. The inhibitory effects of isoproterenol on responses to EFS were prevented by propranolol and ICI 118551 (a beta 2-antagonist) but not by betaxolol (a beta 1-antagonist). Tyramine had no effect on contractions elicited by EFS. These experiments demonstrate that beta-agonists inhibit cholinergic nerve-induced contractions of human bronchi more potently than contractions induced by exogenous ACh, suggesting modulation of cholinergic neurotransmission by prejunctional beta 2-receptors.  相似文献   

9.
The influence of lipid peroxidation (LPO) inductor H2O2 on spontaneous contractility and electrical activity of the right atrium was studied. LPO induction caused positive inotropic catecholamine-like effect, followed by brady-arrhythmia with the action of potential prolongation, blockade of electrical activity and atrial arrest. Electrical pacing during atrial arrest caused regular contractions of the same force as before electrical activity blockade. The results suggest that the arrest of spontaneous atrial activity under the influence of LPO inductor is due to the impairment of sinus node automaticity.  相似文献   

10.
We compared the contributions of impaired neuromuscular transmission (transmission fatigue) and impaired muscle contractility (contractile fatigue) to fatigue of the isolated rat diaphragm. To make this comparison, we measured the differences in active tension elicited by direct muscle stimulation and by indirect (phrenic nerve) stimulation before and after fatigue induced by indirect supramaximal stimulation at varying frequencies and durations. Transmission fatigue was observed after all experimental protocols. Although significant contractile fatigue was not demonstrated after brief periods of low-frequency stimulation (6 min, 15 Hz, 25% duty cycle), it was present after longer or higher frequency stimulation. We repeated the direct stimulation in the presence of neuromuscular blockade with 6 microM d-tubocurarine to demonstrate that a reduced response to stimulation of intramuscular branches of the phrenic nerve during direct stimulation was not responsible for the apparent contractile fatigue. Since we found significant decreases in the response to direct stimulation even after neuromuscular blockade, we could verify the presence of contractile fatigue. We conclude that both contractile and transmission fatigue can occur in the isolated rat diaphragm and that transmission fatigue is a much more important factor after brief periods of fatiguing contractions.  相似文献   

11.
Overactive bladder syndrome is frequently associated with increased detrusor smooth muscle (DSM) contractility. We tested the hypothesis that pharmacological activation of the large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel with NS-1619, a selective BK channel opener, reduces the excitability and contractility of human DSM. We used the amphotericin-perforated whole cell patch-clamp technique on freshly isolated human DSM cells, live-cell Ca(2+) imaging, and isometric DSM tension recordings of human DSM strips obtained from open bladder surgeries. NS-1619 (30 μM) significantly increased the amplitude of the voltage step-induced whole cell BK currents, and this effect was abolished by pretreatment with 200 nM iberiotoxin (IBTX), a selective BK channel inhibitor. In current-clamp mode, NS-1619 (30 μM) significantly hyperpolarized the resting membrane potential, and the hyperpolarization was reversed by IBTX (200 nM). NS-1619 (30 μM) significantly decreased the intracellular Ca(2+) level in isolated human DSM cells. BK channel activation with NS-1619 (30 μM) significantly inhibited the amplitude, muscle force, frequency, duration, and tone of the spontaneous phasic and pharmacologically induced DSM contractions from human DSM isolated strips. IBTX (200 nM) suppressed the inhibitory effects of NS-1619 on spontaneous contractions. The amplitude of electrical field stimulation (0.5-50 Hz)-induced contractions was significantly reduced by NS-1619 (30 μM). Our data suggest that pharmacological activation of BK channels could represent a novel treatment option to control bladder dysfunction in humans.  相似文献   

12.
Cell generated contractility is a major driver of morphogenesis during processes such as epithelial bending and epithelial-to-mesenchymal transitions. Previous studies of contraction in embryos have relied on developmentally programmed cell shape changes such as those that accompany ventral furrow formation in Drosophila, bottle cell formation in Xenopus, ingression in amniote embryos, and neurulation in vertebrate embryos. We have identified three methods to reproducibly and acutely induce contraction in embryonic epithelial sheets: laser activation, electrical stimulation, and nano-perfusion with chemicals released by wounding. Contractions induced by all three methods occur over a similar time-scale (1 to 2 min) and lead to reorganization of the F-actin cytoskeleton. By combining induced contractions with micro-aspiration we can simultaneously measure the stiffness of the tissue and the force and work done by contractions. Laser activation allows real-time visualization of F-actin remodeling during contraction. Perfusion with cell lysate suggests that these three stimuli activate physiologically relevant pathways that maintain epithelial tension or trigger epithelial morphogenesis. Our methods provide the means to control and study cellular contractility and will allow dissection of molecular mechanisms and biomechanics of cellular contractility.  相似文献   

13.
Stellate ganglion stimulation (SGS) can alter lung lipids and reduce static lung compliance, although the mechanisms remain unclear. Phentolamine and propranolol were administered to anesthetized cats prior to stimulation in order to investigate SGS effects on lung lipids and compliance mediated via alpha and beta adrenergic pathways. Analysis of lung lavage revealed that SGS alone decreased cholesterol and the cholesterol/DSPC ratio which might be expected to decrease lung compliance. Alpha and beta blockade alone resulted in no changes from control in cholesterol or DSPC. Alpha blockade plus SGS yielded increased rather than decreased cholesterol and DSPC, while beta blockade prevented any change. A reduction in both static and dynamic lung compliance caused by SGS also was blocked by both alpha and beta blockade. Thus both the alpha and beta blockade prevented the SGS-induced decreases in cholesterol, cholesterol/DSPC ratio, and lung compliance. Furthermore, alpha blockade plus SGS resulted in increased TPL as well as cholesterol and DSPC. The data are consistent with the view that DSPC and cholesterol are released into the subphase by beta adrenergic mechanisms, and that their relative amounts may influence surface properties.  相似文献   

14.
It is very well known that progesterone induces uterine relaxation on myometrium contractile activity. However, little attention has been paid to the effect induced by its metabolites on human uterine contractility. Therefore, we set out to analyze the potential relaxing effect of some 5alpha- and 5beta-reduced progesterone derivatives on the spontaneous contractility of myometrium from pregnant women. Samples were obtained by caesarian section at 38-40 weeks of pregnancy. Spontaneous uterine contractions were recorded in vitro in the presence of progesterone, or progestins independently, at different non-cumulative microM concentrations. The progestins elicited an immediate relaxing effect that was concentration-dependent. With the exception of two 5alpha-reduced progestins (5alpha and 3beta,5alpha), the remaining progestins used in the present study were more potent than progesterone. The potency order with respect to their IC50 values was: 3alpha,5alpha (35 microM) > 5beta (81 microM) > 3beta,5beta (156 microM) > 3alpha,5beta (205 microM) > P4 (225 microM) > 5alpha (19 mM) > 3beta,5alpha (28 mM). When tissues were washed, the contractile activity was recovered. This rapid and reversible relaxing effect was not blocking by antiprogestin RU 486, suggesting that is not through receptor-mediated genomic action. The metabolites from progesterone may also determine the pattern of motility, ensuring the necessary quiescent environment to prevent abortion during gestation.  相似文献   

15.
Zhang LM  Wang YK  Hui N  Sha JY  Chen X  Guan R  Dai L  Gao L  Yuan WJ  Ni X 《Life sciences》2008,83(17-18):620-624
AIMS: Corticotropin-releasing hormone (CRH) has been implicated in the mechanisms controlling human parturition. The aims of the present study were to explore effects of CRH on contractility of human term myometrium and compare these effects in labouring and non-labouring myometrial strips. MAIN METHODS: The cumulative effects of CRH (10(-10) to 10(-7) mol/l) on the spontaneous contractility of labouring and non-labouring myometrial samples were evaluated using isometric tension recordings. KEY FINDINGS: CRH exhibited a concentration-dependent relaxant effect on spontaneous contractions in non-labouring term myometrium. This effect was mediated principally via a reduction in the amplitude rather than any changes in the frequency of contractions. The CRH-induced inhibitory effect on contractility could be blocked by pre-treatment with a CRH-R1 antagonist antalarmin, but not by pre-treatment with the CRH-R2 antagonist astressin 2B. CRH had no effect on spontaneous contractions in the labouring myometrium, as no change in either the amplitude or the frequency was observed. SIGNIFICANCE: Our findings indicate that CRH acts on CRH-R1 to inhibit spontaneous contractions in term myometrium from women who were not undergoing labour, but not those who were undergoing labour, supporting the hypothesis that CRH exerts dual effect on myometrium during pregnancy.  相似文献   

16.
The changes in the response of adrenergic receptors alpha and beta in the blood vessels in the working muscles in a hindlimb in cats were studied after intra-arterial administration of noradrenaline, isoprenaline and during electric stimulation of the sympathetic trunk. The experiments were carried out during alpha-adrenergic receptors blockade with dihydroergotamine (0.3 mg/kg) beta-adrenergic receptors blockade with propranolol (1 mg/kg) and blockade of acetylcholine M receptors with atropine (0.5 mg/kg). The investigations were performed at rest, during exercise (electric stimulation of the sciatic nerve) and after the exercise. The following results deserve attention: 1) beta-adrenergic receptors blockade reduced significantly the alpha-adrenolytic effect of exercise restoring the ability of blood vessel to constriction in response to noradrenaline; 2) the vasodilator effect of isoprenaline evident in resting state and maintained to some extent during exercise was abolished completely by preceding alpha-adrenergic blockade. The changes in the reactivity of resistance vessels in working skeletal muscles to noradrenaline, with abolition of its vasoconstrictor effect, have been shown by Rein [7] and others authors [2, 5]. Similarly, it is well known that the resistance vessels contain two types of adrenergic receptors alpha and beta, and that the response of the vessels to stimulation of these receptors are different [1]. In view of the recently published observations of Jarhult and Lundvall suggesting that the beta-adrenergic receptors play an important physiological role [6] in the arterial part of the microcirculation [6] and in view of the hypothesis put forward by Kunos and Szentivanyj that alpha and beta receptors can be transformed depending on the intensity of tissue metabolism [8] it seemed worth while to study more systematically the changes of the reactivity of alpha and beta adrenergic receptors in the vascular bed of the skeletal muscles during and after muscle exercise.  相似文献   

17.
Effect of noradrenaline on renal function and renin secretion was studied during infusion into the renal artery of anaesthetized dogs. Experiments were performed with or without alpha or beta receptor blockade. Noradrenaline infusion resulted in a significant elevation of renin secretion associated with marked vasoconstriction. Urine flow rate, the filtered and excreted amounts of sodium were diminished due to the decreased GFR. Alpha receptor blockade suppressed renin secretion in the presence of changes in renal haemodynamics. The simultaneous infusion of noradrenaline enhanced renin release without affecting renal haemodynamics or reducing Na-excretion. Following simultaneous inhibition of alpha and beta receptors renin secretion dropped markedly; there were no further changes in either renin secretion or renal haemodynamics upon the simultaneous administration of noradrenaline. Based on the present findings it is suggested that renin secretion is controlled by both alpha and beta receptors. Beta receptor simulation exerts a direct action, whereas alpha stimulation appears to be mediated in part by indirect mechanisms such as renal haemodynamics.  相似文献   

18.
Protein kinase C (PKC) plays an important role in the regulation of uterine artery contractility and its adaptation to pregnancy. The present study tested the hypothesis that PKC differentially regulates alpha(1)-adrenoceptor-mediated contractions of uterine arteries isolated from nonpregnant (NPUA) and near-term pregnant (PUA) sheep. Phenylephrine-induced contractions of NPUA and PUA sheep were determined in the absence or presence of the PKC activator phorbol 12,13-dibutyrate (PDBu). In NPUA sheep, PDBu produced a concentration-dependent potentiation of phenylephrine-induced contractions and shifted the dose-response curve to the left. In contrast, in PUA sheep, PDBu significantly inhibited phenylephrine-induced contractions and decreased their maximum response. Simultaneous measurement of contractions and intracellular free Ca(2+) concentrations ([Ca(2+)](i)) in the same tissues revealed that PDBu inhibited phenylephrine-induced [Ca(2+)](i) and contractions in PUA sheep. In NPUA sheep, PDBu increased phenylephrine-induced contractions without changing [Ca(2+)](i). Western blot analysis showed six PKC isozymes, alpha, beta(I), beta(II), delta, epsilon, and zeta, in uterine arteries, among which beta(I), beta(II), and zeta isozymes were significantly increased in PUA sheep. In contrast, PKC-alpha was decreased in PUA sheep. In addition, analysis of subcellular distribution revealed a significant decrease in the particulate-to-cytosolic ratio of PKC-epsilon in PUA compared with that in NPUA sheep. The results suggest that pregnancy induces a reversal of PKC regulatory role on alpha(1)-adrenoceptor-mediated contractions from a potentiation in NPUA sheep to an inhibition in PUA sheep. The differential expression of PKC isozymes and their subcellular distribution in uterine arteries appears to play an important role in the regulation of Ca(2+) mobilization and Ca(2+) sensitivity in alpha(1)-adrenoceptor-mediated contractions and their adaptation to pregnancy.  相似文献   

19.
Electrical and mechanical changes in immobilized human muscle   总被引:5,自引:0,他引:5  
After forearm fracture, the human thumb was unilaterally immobilized in eight subjects for 6 wk in a standard plaster cast. Changes of contraction properties were studied in the adductor pollicis muscle. The contralateral muscle remained unrestrained and served as control. After immobilization, the maximal voluntary contraction was reduced by 55% (P less than 0.05), and the electrically evoked maximal tetanic contraction (Po) was reduced by 33% (P less than 0.05). The decrease of Po was associated with increased maximal rate of tension development (10%) and decreased maximal rate of tension relaxation (22%). The twitch times to peak and to half relaxation were increased by 16 and 14%, respectively, but the twitch tension (Pt) was not significantly changed and the Pt/Po ratio was increased by 43% after immobilization. The muscle surface action potential presented an increase of its duration (19%) and a decrease of the amplitude and the total area (15 and 26%, respectively). The comparison of the electrical and mechanical alterations recorded during voluntary contractions, and in contractions evoked by electrical stimulation of the motor nerve, suggests that immobilization not only modifies the peripheral processes associated with contraction but also changes central and/or neural command of the contraction. At peripheral sites, it is proposed that the intracellular processes of contraction play the major role in the contractile impairment recorded during immobilization.  相似文献   

20.
The action of beta- and alpha-adrenoceptor agonists (isoprenaline, orciprenaline, noradrenaline, phenylephrine and ephedrine) and antagonists (propranolol, metipranolol, exaprolol, BL 445 and phentolamine) on the resting tension and cAMP level of the guinea pig and the mechanical and electrical activities of the dog trachea were studied. By activating beta 2-adrenoceptors, isoprenaline and orciprenaline relaxed the smooth muscle, elevated the membrane potential and attenuated the excitatory effect of histamine on membrane potential and muscle tension. Noradrenaline and phenylephrine, acting on alpha 1-receptors, did not affect the membrane potential and increased the basal tension of the dog trachea only insignificantly. Ephedrine, in high concentrations, however, hyperpolarized the smooth muscle membrane and relaxed the dog trachea, while it did not alter the cAMP level in the guinea pig preparations. It is, therefore unlikely that alpha 1-adrenoceptors play a major role in the excitation of the dog trachea under resting conditions whereas the participation of alpha 2-receptors in the mechanisms of adrenergic relaxation could not be ruled out. All the beta-adrenoceptor antagonists studied enhanced the action of low isoprenaline concentrations and competitively antagonized it in high concentrations. The order of their antagonistic potency in the guinea pig trachea was as follows: metipranolol greater than propranolol = exaprolol greater than or equal to BL 445. It was suggested that metipranolol and exaprolol are nonselective beta-adrenoceptor antagonists, similarly as propranolol, whereas BL 445 shown some beta 1-selectivity. In contrast to their antagonistic effects on the membrane activities and muscle tension, both histamine and isoprenaline increased the level of cAMP in smooth muscle cells and, when present simultaneously, their effect was additive. The mechanism of histamine-induced cAMP level elevation and the possible involvement of different subcellular compartments in the action of isoprenaline and histamine in relation to the contraction-relaxation cycle is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号