首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of quantitative trait loci for prolificacy and growth in mice   总被引:10,自引:0,他引:10  
Marker–quantitative trait locus (QTL) linkage was evaluated in F2 intercross and backcross mouse populations derived from stocks differing dramatically in prolificacy and mature weight. A highly prolific outbred Quackenbush-Swiss mouse line, or an inbred line derived from it (16.62 ± 0.22 and 14.64 ± 0.27 pups per litter, respectively) were used as one of the grandparents in these populations. The less prolific C57BL/6J inbred mouse line (6.67 ± 0.37 pups per litter) was used as the other grandparent. Linkage was evaluated in a three-step process that involved selective genotyping of F2 intercross progeny representing extremes for prolificacy, genotyping of the full F2 for chromosomal regions potentially associated with prolificacy, and genotyping of the backcross for genomic regions significantly associated with prolificacy in the F2. Segments of Chromosomes (Chrs) 2 and 4 were significantly (P < 0.05, experiment-wise error rate) associated with prolificacy, and LOD scores suggestive of linkage were observed for litter size on Chr 9 and growth on Chrs 4 and 11. Existence of growth QTL was also supported by marker effects that were significant (P < 0.05) or approaching significance (P < 0.10) in the backcross. Additive litter size QTL effects ranged from 0.56 to 0.79 pups per litter, and dominance deviations ranged from −0.56 to 1.19 pups per litter, suggesting overdominance as a possible mode of gene action in some cases. The observation of pleiotropic or linked QTL for growth and prolificacy corresponds well with results from many selection experiments identifying positively correlated responses to selection for these two traits. Received: 9 August 1997 / Accepted: 30 September 1997  相似文献   

2.
Random mutagenesis screens for recessive phenotypes require three generations of breeding, using either a backcross (BC) or intercross (IC) strategy. Hence, they are more costly and technically demanding than those for dominant phenotypes. Maximizing the return from these screens requires maximizing the number of mutations that are bred to homozyosity in the G3 generation. Using a probabilistic approach, we compare different designs of screens for recessive phenotypes and the impact each one has on the number of mutations that can be effectively screened. We address the issue of BC versus IC strategies and consider genome-wide, region-specific screens and suppressor screens. We find that optimally designed BC and IC screens allow the screening of, on average, similar numbers of mutations but that interpedigree variation is more pronounced when the IC strategy is employed. By conducting a retrospective analysis of published mutagenesis screens, we show that, depending on the strategy, a threefold difference in the numbers of mutations screened per animal used could be expected. This method allows researchers to contrast, for a range of experimental designs, the cost per mutation screened and to maximize the number of mutations that one can expect to screen in a given experiment.  相似文献   

3.
The dominant mutant genes responsible for the spring habit were studied in seven rye plants according to the developed scheme of two-step crosses and analysis of the F2 progeny. The genotypes with a particular genetic formula (heterozygote) were obtained by crossing the studied plants with the winter rye Korotkostebel’naya 69 carrying the recessive genes that control the winter habit of plants. Heterozygotes yielded by different combinations were crossed with each other. The F1 hybrids were either self-pollinated to obtain F2 progeny or crossed with the winter rye. Analysis of the progeny suggests that all seven plants carry the same gene.  相似文献   

4.
Mapping quantitative trait loci using molecular marker linkage maps   总被引:6,自引:0,他引:6  
Summary High-density restriction fragment length polymorphism (RFLP) and allozyme linkage maps have been developed in several plant species. These maps make it technically feasible to map quantitative trait loci (QTL) using methods based on flanking marker genetic models. In this paper, we describe flanking marker models for doubled haploid (DH), recombinant inbred (RI), backcross (BC), F1 testcross (F1TC), DH testcross (DHTC), recombinant inbred testcross (RITC), F2, and F3 progeny. These models are functions of the means of quantitative trait locus genotypes and recombination frequencies between marker and quantitative trait loci. In addition to the genetic models, we describe maximum likelihood methods for estimating these parameters using linear, nonlinear, and univariate or multivariate normal distribution mixture models. We defined recombination frequency estimators for backcross and F2 progeny group genetic models using the parameters of linear models. In addition, we found a genetically unbiased estimator of the QTL heterozygote mean using a linear function of marker means. In nonlinear models, recombination frequencies are estimated less efficiently than the means of quantitative trait locus genotypes. Recombination frequency estimation efficiency decreases as the distance between markers decreases, because the number of progeny in recombinant marker classes decreases. Mean estimation efficiency is nearly equal for these methods.  相似文献   

5.
Four anionic peroxidase isoenzymes in main stem tissues of flax (Linum usitatissimum L.) were separated electrophoretically on acrylamide gels and their individual activities measured spectrophotometrically in the gels. Activities were expressed in terms of areas of optical density peaks corresponding to the locations of the isoenzymes. Four isoenzymes were assayed for activity in this way in two inbred genotypes and their F1, F2, and first backcross progeny. Crosses were made in all combinations between the two parental genotypes and their reciprocal F1 hybrids to produce 16 progenies of the generations above. Isoenzyme separations and assays for activity were carried out on individual plants of each of the 16 progenies. A model estimating cytoplasmic effects across segregating generations as differences between all progeny of the one compared to the other F1 reciprocal hybrid, either in a male or a female direction, was fitted to the activity data by weighted least-squares procedures. Cytoplasmic effects transmitted through male gametes from the F1 reciprocals were demonstrable for three of the four anionic peroxidase isoenzymes.Supported in part by the National Research Council of Canada.  相似文献   

6.
The analysis of major satellite sequence differences between Mus spretus and laboratory mice provides a robust method for analyzing the centromere location for the genetic maps of each mouse chromosome. Fluorescence in situ hybridization (FISH) of a genomic probe, pMR196, for the laboratory mouse major satellite sequences was used to identify C57BL/6Ros (B6) pericentromeric heterochromatin in progeny of reciprocal backcross matings. These included 80 (B6xM. spretus)F1xM. spretus progeny (BSS) and 70 (B6xM. spretus)F1xB6 (BSB) progeny. FISH analysis of pericentromeric heterochromatin was conducted on the same metaphase spreads that were karyotypically analyzed for chromosomespecific banding patterns. Analysis of chromosomal segregation suggested that there was not primary deviation from random assortment during meiosis in the interspecific hybrid female, because nearly all of the 190 pair-wise comparisons did not deviate from expected and because there was no consistent pattern of deviation of the same chromosomes in the reciprocal backcross progeny from similar (C57BL/6xM. spretus)F1 hybrid females. These results affirm the value of using the major satellite to genetically mark pericentromeric heterochromatin in the analysis of the segregation and assortment of centromeres in Mus interspecific crosses.  相似文献   

7.
Summary Isoenzymes of peroxidase were separated on acrylamide gels in 2 genotypes of Linum usitatissimum L. and their F 1, F 2 and first backcross progeny. Active extracts were obtained from homogenates of main stem tissue; activity was measured both before and after electrophoretic separation. The relationship of isoenzyme activity to gross (prior to electrophoretic separation) activity was investigated, as well as the relative behaviour of isoenzyme activity in the various genotypes and generations. Gross activity was correlated with isoenzyme activity; there was also evidence of maternal as well as genetic effects on isoenzyme activity.  相似文献   

8.
The southern cattle tick, Boophilus  microplus (Canestrini), has developed resistance to amitraz in several countries in recent years. A study was conducted at the USDA Cattle Fever Tick Research Laboratory in Texas to investigate the mode of inheritance of amitraz resistance with cross-mating experiments. The Muñoz strain, a laboratory reared acaricide-susceptible reference strain, was used as the susceptible parent and the Santa Luiza strain, originating in Brazil, was used as the resistant parent. A modified Food and Agriculture Organization Larval Packet Test was used to measure the levels of susceptibility of larvae of the parental strains, F1, backcross, F2, and F3 generations. Results of reciprocal crossing experiments suggested that amitraz resistance was inherited as an incomplete recessive trait. There was a strong maternal effect on larval progeny’s susceptibility to amitraz in both the F1 and the subsequent generations. The values of the degree of dominance were estimated at ?0.156 and ?0.500 for the F1 larvae with resistant and susceptible female parents, respectively. Results of bioassays on larval progeny of the F1 backcrossed with the resistant parent strain and that of the F2 generations suggested that more than one gene was responsible for amitraz resistance in the Santa Luiza strain. Comparisons of biological parameters (engorged female weight, egg mass weight, and female-to-egg weight conversion efficiency index) indicated significant differences between different genotypes. The differences appeared to be heritable, but not related to amitraz resistance. Results from this study may have significant implications for the management of amitraz resistance.  相似文献   

9.
A chlorambucil (CHL)-induced mutation of thejcpk(juvenile congenital polycystic kidney disease) gene causes a severe early onset polycystic kidney disease. In an intercross involvingMus musculus castaneus, jcpkwas precisely mapped 0.2 cM distal toD10Mit115and 0.8 cM proximal toD10Mit173.In addition, five genes,Cdc2a, Col6a1, Col6a2, Bcr,andAnk3were mapped in both thisjcpkintercross and a (BALB/c × CAST/Ei)F1× BALB/c backcross. All five genes were eliminated as possible candidates forjcpkbased on the mapping data. Thejcpkintercross allowed the orientation of theAnk3gene relative to the centromere to be determined.D10Mit115, D10Mit173, D10Mit199,andD10Mit200were separated genetically in this cross. The order and genetic distances of all markers and gene loci mapped in thejcpkintercross were consistent with those derived from the BALB/c backcross, indicating that the CHL-induced lesion has not generated any gross chromosomal abnormalities detectable in these studies.  相似文献   

10.
Two quantitative trait loci (QTLs) for seed dormancy (tentatively designated Sdr1) and heading date (Hd8) have been mapped to approximately the same region on chromosome 3 by interval mapping of backcross inbred lines derived from crosses between the rice cultivars Nipponbare (japonica) and Kasalath (indica). To clarify whether Sdr1 and Hd8 could be dissected genetically, we carried out fine-scale mapping with an advanced backcross progeny. We selected a BC4F1 plant, in which a small chromosomal region including Sdr1 and Hd8, on the short arm of chromosome 3, remained heterozygous, whereas all the other chromosomal regions were homozygous for Nipponbare. Days-to-heading and seed germination rate in the BC4F2 plants showed continuous variation. Ten BC4F2 plants with recombination in the vicinity of Sdr1 and Hd8 were selected on the basis of the genotypes of the restriction fragment length polymorphism (RFLP) markers flanking both QTLs. Genotypes of those plants for Sdr1 and Hd8 were determined by advanced progeny testing of BC4F4 families. Sdr1 was mapped between the RFLP markers R10942 and C2045, and co-segregated with C1488. Hd8 was also mapped between C12534S and R10942. Six recombination events were detected between Sdr1 and Hd8. These results clearly demonstrate that Sdr1 and Hd8 were tightly linked. Nearly isogenic lines for Sdr1 and Hd8 were selected by marker-assisted selection.Communicated by D. Mackill  相似文献   

11.
Quantitative trait locus (QTL) mapping techniques are frequently used to identify genomic regions associated with variation in phenotypes of interest. However, the F2 intercross and congenic strain populations usually employed have limited genetic resolution resulting in relatively large confidence intervals that greatly inhibit functional confirmation of statistical results. Here we use the increased resolution of the combined F9 and F10 generations (n = 1455) of the LG,SM advanced intercross to fine-map previously identified QTL associated with the lengths of the humerus, ulna, femur, and tibia. We detected 81 QTL affecting long-bone lengths. Of these, 49 were previously identified in the combined F2-F3 population of this intercross, while 32 represent novel contributors to trait variance. Pleiotropy analysis suggests that most QTL affect three to four long bones or serially homologous limb segments. We also identified 72 epistatic interactions involving 38 QTL and 88 novel regions. This analysis shows that using later generations of an advanced intercross greatly facilitates fine-mapping of confidence intervals, resolving three F2-F3 QTL into multiple linked loci and narrowing confidence intervals of other loci, as well as allowing identification of additional QTL. Further characterization of the biological bases of these QTL will help provide a better understanding of the genetics of small variations in long-bone length. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Skewed segregations are frequent events in segregating populations derived from different interspecific crosses in tomato. To determine a basis for skewed segregations in the progeny of the cross between Lycopersicon esculentum and L. pennellii, monogenic segregations of 16 isozyme loci were analyzed in an F2 and two backcross populations of this cross. In the F2, 9 loci mapping to chromosomes 1, 2, 4, 9, 10 and 12 exhibited skewed segregations and in all cases there was an excess of L. pennellii homozygotes. The genotypic frequencies at all but one locus were at Hardy-Weinberg equilibria. In the backcross populations, all except two loci exhibited normal Mendelian segregations. No post-zygotic selection model could statistically or biologically explain the observed segregation patterns in the F2 and backcross populations. A pre-zygotic selection model, assuming selective elimination of the male gametophytes during pollen function (i.e., from pollination to karyogamy), could adequately explain the observed segregations in all three populations. The direction of the skewed segregations in the F2 population was consistent with that expected based on the effects of unilateral incompatibility reactions between the two species. In addition, the chromosomal locations of 5 of the 9 markers that exhibited skewed segregations coincided with the locations of several known compatibility-related genes in tomato. Multigenic unilateral incompatibility reactions between L. esculentum pollen and the stigma or style of L. pennellii (or its hybrid derivatives) are suggested to be the major cause of the skewed segregations in the F2 progeny of this cross.  相似文献   

13.
Understanding the causes and architecture of genetic differentiation between natural populations is of central importance in evolutionary biology. Crosses between natural populations can result in heterosis if recessive or nearly recessive deleterious mutations have become fixed within populations because of genetic drift. Divergence between populations can also result in outbreeding depression because of genetic incompatibilities. The net fitness consequences of between-population crosses will be a balance between heterosis and outbreeding depression. We estimated the magnitude of heterosis and outbreeding depression in the highly selfing model plant Arabidopsis thaliana, by crossing replicate line pairs from two sets of natural populations (C↔R, B↔S) separated by similar geographic distances (Italy↔Sweden). We examined the contribution of different modes of gene action to overall differences in estimates of lifetime fitness and fitness components using joint scaling tests with parental, reciprocal F1 and F2, and backcross lines. One of these population pairs (C↔R) was previously demonstrated to be locally adapted, but locally maladaptive quantitative trait loci were also found, suggesting a role for genetic drift in shaping adaptive variation. We found markedly different genetic architectures for fitness and fitness components in the two sets of populations. In one (C↔R), there were consistently positive effects of dominance, indicating the masking of recessive or nearly recessive deleterious mutations that had become fixed by genetic drift. The other set (B↔S) exhibited outbreeding depression because of negative dominance effects. Additional studies are needed to explore the molecular genetic basis of heterosis and outbreeding depression, and how their magnitudes vary across environments.  相似文献   

14.
The Zucker fatty (fa) mutation provides a genetic model for obesity and non-insulin dependent diabetes mellitus. The molecular pathogenesis of the metabolic phenotype of these animals is not known. Detailed molecular maps of the region surrounding the fa locus on rat chromosome 5 can be used for positional cloning experiments as well as to permit genotyping of animals from appropriate crosses before the confounding metabolic effects of obesity have occurred. We describe the development of a polymerase chain reaction (PCR) assay for a polymorphic simple sequence repeat (SSR) in the promoter region of the protooncogene c-Jun. This assay was used to position cJun 4.5cM proximal to the fa locus in 111 F2 progeny of a 13MBN fa/+ F1 intercross. Concurrent use of the cJun SSR with a previously described assay for a microsatellite in the glucose transporter, Glutl, permits rapid and accurate assessment of genotypes at the fa locus in animals of any age using minimal amounts of DNA. A strategy is described which minimizes the error rate in assigning genotype at the fatty locus for backcross and intercross progeny.  相似文献   

15.
A recombinant inbred intercross (RIX) is created by generating diallel F1 progeny from one or more panels of recombinant inbred (RI) strains. This design was originally introduced to extend the power of small RI panels for the confirmation of quantitative trait loci (QTL) provisionally detected in a parental RI set. For example, the set of 13 C × B (C57BL/6ByJ × BALB/cByJ) RI strains can, in principle, be supplemented with 156 isogenic F1s. We describe and test a method of analysis, based on a linear mixed model, that accounts for the correlation structure of RIX populations. This model suggests a novel permutation algorithm that is needed to obtain appropriate threshold values for genome-wide scans of an RIX population. Despite the combinational multiplication of unique genotypes that can be generated using an RIX design, the effective sample size of the RIX population is limited by the number of progenitor RI genomes that are combined. When using small RI panels such as the C × B there appears to be only modest advantage of the RIX design when compared with the original RI panel for detecting QTLs with additive effects. The RIX, however, does have an inherent ability to detect dominance effects, and, unlike RI strains, the RIX progeny are genetically reproducible but are not fully inbred, providing somewhat more natural genetic context. We suggest a breeding strategy, the balanced partial RIX, that balances the advantage of RI and RIX designs. This involves the use of a partial RIX population derived from a large RI panel in which the available information is maximized by minimizing correlations among RIX progeny.  相似文献   

16.
Ath6 is a novel quantitative trait locus associated with differences in susceptibility to atherosclerosis between C57BL/6J (B6) and C57BLKS/J (BKS) inbred mouse strains. Combining data from an intercross and a backcross (1593 meioses) between mice from B6 and BKS strains and from The Jackson Laboratory interspecific backcross panels, (C57BL/6J ×Mus spretus) F1× C57BL/6J and (C57BL/6J × SPRET/Ei) F1× SPRET/Ei, we constructed a consensus genetic map and narrowed Ath6 to a 1.07 ± 0.26 cM interval between the anonymous DNA marker D12Pgn4 and the gene Nmyc1. This region is near the proximal end of murine Chromosome (Chr) 12, which is homologous to the human chromosomal region 2p24-p25. Marker order in the Ath6 region was concordant among the two crosses and The Jackson Laboratory interspecific backcross panels. This high resolution map rules out candidate genes encoding apolipoprotein B, syndecan 1, and Adam17. The two Ath6 crosses have a combined potential resolution of 0.06 cM. Received: 12 September 2000 / Accepted: 22 February 2001  相似文献   

17.
 Fine mapping was carried out on three putative QTLs (tentatively designated as Hd-1 to Hd-3) of five such QTLs controlling heading date in rice that had been earlier identified using an F2 population derived from a cross between a japonica variety, ‘Nipponbare’, and an indica variety, ‘Kasalath’, using progeny backcrossed with ‘Nipponbare’ as the recurrent parent. One BC3F2 and two BC3F1 plants, in which the target QTL regions were heterozygous and most other chromosomal regions were homozygous for the ‘Nipponbare’ allele, were selected as the experimental material. Self-pollinated progeny (BC3F2 and BC3F3) of the BC3F1 or BC3F2 showed continuous variation in days to heading. By means of progeny testing based on BC3F3 or BC3F4 lines, we determined the genotypes of each BC3F2 or BC3F3 individual at target QTLs. Their segregation patterns fitted Mendelian inheritance ratios. When the results obtained by RFLP analysis and progeny tests were combined, Hd-1, Hd-2 and Hd-3 were mapped precisely on chromosomes 6, 7 and 6, respectively, of a rice RFLP linkage map. The results demonstrated that QTLs can be treated as Mendelian factors. Moreover, these precise locations were in good agreement with the regions estimated by QTL analysis of the initial F2 population, demonstrating the high reliability of QTL mapping using a high-density linkage map. Received: 5 November 1997 / Accepted: 10 February 1998  相似文献   

18.
The genetic inheritance of resistance to a commercial formulation of Bacillus thuringiensis subsp. kurstaki was examined in a Trichoplusia ni colony initiated from a resistant population present in a commercial vegetable greenhouse in British Columbia, Canada. Progeny of F1 reciprocal crosses and backcrosses between F1 larvae and resistant (PR) and susceptible (PS) populations were assayed at different B. thuringiensis subsp. kurstaki concentrations. The responses of progeny of reciprocal F1 crosses were identical, indicating that the resistant trait was autosomal. The 50% lethal concentration for the F1 larvae was slightly higher than that for PS, suggesting that resistance is partially recessive. The responses of both backcross progeny (F1 × PR, F1 × PS) did not correspond to predictions from a single-locus model. The inclusion of a nonhomozygous resistant parental line in the monogenic model significantly increased the correspondence between the expected and observed results for the F1 × PR backcross but decreased the correspondence with the F1 × PS backcross results. This finding suggests that resistance to B. thuringiensis subsp. kurstaki in this T. ni population is due to more than one gene.  相似文献   

19.
Under field conditions,pat-2, the gene which conditions parthenocarpy in tomatoes, is recessive. A simple method has been devised for distinguishing the heterozygote from the two homozygotes using tissue culture. Ovaries of plants segregating for thepat-2 gene were excised and cultured on a medium containing 100 ppm gibberellic acid. After three weeks in culture, three distinct ovary sizes could be seen. It was shown, using F 3 progeny tests, that the largest ovaries corresponded to those plants homozygous for thepat-2 gene, the smallest ovaries corresponded to those plants homozygous for the wild type allele, and the intermediate sized ovaries were the heterozygotes. The ability to identify the heterozygote would greatly simplify a backcross breeding program aimed at incorporating thepat-2 gene into commercial cultivars by eliminating the need for an F 3 progeny test to determine the genotype of a plant.Abbreviations GA 3 gibberellic acid - IAA indole acetic acid - ppm parts per million  相似文献   

20.
结合SSR标记和STS标记对家蚕无鳞毛翅基因的定位   总被引:3,自引:0,他引:3  
家蚕突变表型无鳞毛翅(non-lepis wing, nlw)由隐性基因nlw控制。由于家蚕雌性不发生交换, 文章采用有鳞毛翅品系P50和无鳞毛翅品系U06两个品系组配F1代及BC1回交群体, (U06×P50)×U06和U06×(U06×P50)分别记作BC1F和BC1M, 根据已经构建的家蚕SSR分子标记连锁图谱及已经发表的有关序列对nlw基因进行了连锁及定位分析。得到8个与nlw基因连锁的SSR(Simple sequence repeat)标记和1个STS(Sequence-tagged sites)标记。BC1F群中的所有正常翅个体均表现出与(U06×P50)F1相同的杂合带型; 而所有无鳞毛个体带型与亲本U06一致, 为纯合型。利用BC1M群体构建了关于nlw基因的遗传连锁图, 连锁图的遗传距离为125.7 cM, 与nlw基因最近的引物为STS标记cash2p, 图距为11.4 cM。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号