首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sato T  Nyborg AC  Iwata N  Diehl TS  Saido TC  Golde TE  Wolfe MS 《Biochemistry》2006,45(28):8649-8656
Signal peptide peptidase (SPP) is an intramembrane aspartyl protease that cleaves remnant signal peptides after their release by signal peptidase. SPP contains active site motifs also found in presenilin, the catalytic component of the gamma-secretase complex of Alzheimer's disease. However, SPP has a membrane topology opposite that of presenilin, cleaves transmembrane substrates of opposite directionality, and does not require complexation with other proteins. Here we show that, upon isolation of membranes and solubilization with detergent, the biochemical characteristics of SPP are remarkably similar to gamma-secretase. The majority of the SPP-catalyzed cleavages occurred at a single site in a synthetic substrate based on the prolactin (Prl) signal sequence. However, as seen with cleavage of substrates by gamma-secretase, additional cuts at other minor sites are also observed. Like gamma-secretase, SPP is inhibited by helical peptidomimetics and apparently contains a substrate-binding site that is distinct from the active site. Surprisingly, certain nonsteroidal antiinflammatory drugs known to shift the site of proteolysis by gamma-secretase also alter the cleavage site of Prl by SPP. Together, these findings suggest that SPP and presenilin share certain biochemical properties, including a conserved drug-binding site for allosteric modulation of substrate proteolysis.  相似文献   

2.
Presenilins are the catalytic components of gamma-secretase, an intramembrane-cleaving protease whose substrates include beta-amyloid precursor protein (betaAPP) and the Notch receptors. These type I transmembrane proteins undergo two distinct presenilin-dependent cleavages within the transmembrane region, which result in the production of Abeta and APP intracellular domain (from betaAPP) and the Notch intracellular domain signaling peptide. Most cases of familial Alzheimer's disease are caused by presenilin mutations, which are scattered throughout the coding sequence. Although the underlying molecular mechanism is not yet known, the familial Alzheimer's disease mutations produce a shift in the ratio of the long and short forms of the Abeta peptide generated by the gamma-secretase. We and others have previously shown that presenilin homodimerizes and suggested that a presenilin dimer is at the catalytic core of gamma-secretase. Here, we demonstrate that presenilin transmembrane domains contribute to the formation of the dimer. In-frame substitution of the hydrophilic loop 1, located between transmembranes I and II, which modulates the interactions within the N-terminal fragment/N-terminal fragment dimer, abolishes both presenilinase and gamma-secretase activities. In addition, by reconstituting gamma-secretase activity from two catalytically inactive presenilin aspartic mutants, we provide evidence of an active diaspartyl group assembled at the interface between two presenilin monomers. Under our conditions, this catalytic group mediates the generation of APP intracellular domain and Abeta but not Notch intracellular domain, therefore suggesting that specific diaspartyl groups within the presenilin catalytic core of gamma-secretase mediate the cleavage of different substrates.  相似文献   

3.
Presenilins (PS1 and PS2) are supposed to be unusual aspartic proteases and components of the gamma-secretase complex regulating cleavage of type I proteins. Multiple mutations in PS1 are a major cause of familial early-onset Alzheimer's disease (AD). We and others recently identified PS-related families of proteins (IMPAS/PSH/signal peptide peptidases (SPP)). The functions of these proteins are yet to be determined. We found that intramembrane protease-associated or intramembrane protease aspartic protein Impas 1 (IMP1)/SPP induces intramembranous cleavage of PS1 holoprotein in cultured cells coexpressing these proteins. Mutations in evolutionary invariant sites in hIMP1 or specific gamma-secretase inhibitors abolish the hIMP1-mediated endoproteolysis of PS1. In contrast, neither AD-like mutations in hIMP1 nor in PS1 substrate abridge the PS1 cleavage. The data suggest that IMP1 is a bi-aspartic polytopic protease capable of cleaving transmembrane precursor proteins. These data, to our knowledge, are a first observation that a multipass transmembrane protein or the integral protease per se may be a primary substrate for an intramembranous proteolysis.  相似文献   

4.
The presenilin-type aspartic protease signal peptide peptidase (SPP) can cleave signal peptides within their transmembrane region. SPP is essential for generation of signal peptide-derived HLA-E epitopes in humans and is exploited by Hepatitis C virus for processing of the viral polyprotein. Here we analyzed requirements of substrates for intramembrane cleavage by SPP. Comparing signal peptides that are substrates with those that are not revealed that helix-breaking residues within the transmembrane region are required for cleavage, and flanking regions can affect processing. Furthermore, signal peptides have to be liberated from the precursor protein by cleavage with signal peptidase in order to become substrates for SPP. We propose that signal peptides require flexibility in the lipid bilayer to exhibit an accessible peptide bond for intramembrane proteolysis.  相似文献   

5.
gamma-Secretase is an unusual protease with an intramembrane catalytic site that cleaves many type I membrane proteins, including the amyloid beta-protein (Abeta) precursor (APP) and the Notch receptor. Genetic and biochemical studies have identified four membrane proteins as components of gamma-secretase: heterodimeric presenilin composed of its N- and C-terminal fragments, nicastrin, Aph-1, and Pen-2. Here we demonstrated that certain compounds, including protein kinase inhibitors and their derivatives, act directly on purified gamma-secretase to selectively block cleavage of APP- but not Notch-based substrates. Moreover, ATP activated the generation of the APP intracellular domain and Abeta, but not the generation of the Notch intracellular domain by the purified protease complex, and was a direct competitor of the APP-selective inhibitors, as were other nucleotides. In accord, purified gamma-secretase bound specifically to an ATP-linked resin. Finally, a photoactivable ATP analog specifically labeled presenilin 1-C-terminal fragments in purified gamma-secretase preparations; the labeling was blocked by ATP itself and APP-selective gamma-secretase inhibitors. We concluded that a nucleotide-binding site exists within gamma-secretase, and certain compounds that bind to this site can specifically modulate the generation of Abeta while sparing Notch. Drugs targeting the gamma-secretase nucleotide-binding site represent an attractive strategy for safely treating Alzheimer disease.  相似文献   

6.
Studies demonstrating that accumulation and aggregation of the amyloid beta protein (Abeta) within the brain is likely to cause Alzheimer's disease (AD) have provided the rationale for therapeutic strategies aimed at influencing Abeta production, aggregation and clearance. gamma-secretase catalyzes the final cleavage that releases the Abeta from its precursor; therefore, it is a potential therapeutic target for the treatment of AD. Recent data show that the polytopic membrane proteins presenilin 1 and presenilin 2 are either catalytic components or essential co-factors of a membrane-bound proteolytic complex that possesses gamma-secretase activity. Although recent findings demonstrating that gamma-secretase inhibitors bind directly to presenilins (PSs) further support a catalytic role for PSs in gamma-secretase cleavage, additional studies are still needed to clarify the role of PSs in gamma-secretase cleavage and the use of targeting PSs to reduce Abeta production.  相似文献   

7.
Gamma-secretase is a membrane protease complex that possesses presenilin as a catalytic subunit. Presenilin generates amyloid beta peptides in the brains of Alzheimer's patients and is indispensable to Notch signaling in tissue development and renewal. Recent studies have revealed how presenilin is assembled with its cofactor proteins and acquires the gamma-secretase activity: Aph-1 and nicastrin initially form a subcomplex to bind and stabilize presenilin, and then Pen-2 confers the gamma-secretase activity and facilitates endoproteolysis of presenilin. Understanding the mechanism of gamma-secretase cleavage will help to clarify how intercellular cell signaling through transmembrane proteins is regulated by intramembrane proteolysis, and will hopefully eventually lead to a cure for Alzheimer's disease.  相似文献   

8.
Signal peptide peptidase (SPP) and gamma-secretase are intramembrane aspartyl proteases that bear similar active site motifs but with opposite membrane topologies. Both proteases are inhibited by the same aspartyl protease transition-state analogue inhibitors, further evidence that these two enzymes have the same basic cleavage mechanism. Here we report that helical peptide inhibitors designed to mimic SPP substrates and interact with the SPP initial substrate-binding site (the "docking site") inhibit both SPP and gamma-secretase, but with submicromolar potency for SPP. SPP was labeled by helical peptide and transition-state analogue affinity probes but at distinct sites. Nonsteroidal anti-inflammatory drugs, which shift the site of proteolysis by SPP and gamma-secretase, did not affect the labeling of SPP or gamma-secretase by the helical peptide or transition-state analogue probes. On the other hand, another class of previously reported gamma-secretase modulators, naphthyl ketones, inhibited SPP activity as well as selective proteolysis by gamma-secretase. These naphthyl ketones significantly disrupted labeling of SPP by the helical peptide probe but did not block labeling of SPP by the transition-state analogue probe. With respect to gamma-secretase, the naphthyl ketone modulators allowed labeling by the transition-state analogue probe but not the helical peptide probe. Thus, the naphthyl ketones appear to alter the docking sites of both SPP and gamma-secretase. These results indicate that pharmacological effects of the four different classes of inhibitors (transition-state analogues, helical peptides, nonsteroidal anti-inflammatory drugs, and naphthyl ketones) are distinct from each other, and they reveal similarities and differences with how they affect SPP and gamma-secretase.  相似文献   

9.
More than 150 familial Alzheimer disease (FAD)-associated missense mutations in presenilins (PS1 and PS2), the catalytic subunit of the gamma-secretase complex, cause aberrant amyloid beta-peptide (Abeta) production, by increasing the relative production of the highly amyloidogenic 42-amino acid variant. The molecular mechanism behind this pathological activity is unclear, and different possibilities ranging from a gain of function to a loss of function have been discussed. gamma-Secretase, signal peptide peptidase (SPP) and SPP-like proteases (SPPLs) belong to the same family of GXGD-type intramembrane cleaving aspartyl proteases and share several functional similarities. We have introduced the FAD-associated PS1 G384A mutation, which occurs within the highly conserved GXGD motif of PS1 right next to the catalytically critical aspartate residue, into the corresponding GXGD motif of the signal peptide peptidase-like 2b (SPPL2b). Compared with wild-type SPPL2b, mutant SPPL2b slowed intramembrane proteolysis of tumor necrosis factor alpha and caused a relative increase of longer intracellular cleavage products. Because the N termini of the secreted counterparts remain unchanged, the mutation selectively affects the liberation of the intracellular processing products. In vitro experiments demonstrate that the apparent accumulation of longer intracellular cleavage products is the result of slowed sequential intramembrane cleavage. The longer cleavage products are still converted to shorter peptides, however only after prolonged incubation time. This suggests that FAD-associated PS mutation may also result in reduced intramembrane cleavage of beta-amyloid precursor protein (betaAPP). Indeed, in vitro experiments demonstrate slowed intramembrane proteolysis by gamma-secretase containing PS1 with the G384A mutation. As compared with wild-type PS1, the mutation selectively slowed Abeta40 production, whereas Abeta42 generation remained unaffected. Thus, the PS1 G384A mutation causes a selective loss of function by slowing the processing pathway leading to the benign Abeta40.  相似文献   

10.
Zhang L  Song L  Terracina G  Liu Y  Pramanik B  Parker E 《Biochemistry》2001,40(16):5049-5055
Recent studies of gamma-secretase have pointed out that it may be comprised of a multisubunit complex with presenilin 1 and presenilin 2 as central components. Elucidation of the biochemical mechanism of this enzymatic activity will provide important information for developing gamma-secretase inhibitors in Alzheimer's disease therapy. Here we describe the biochemical characterization of gamma-secretase activities using a sensitive, membrane-based assay system. Membranes were isolated from 293 cells expressing C99, the substrate of gamma-secretase. Upon incubation at 37 degrees C, C99 is cleaved by the endogenous gamma-secretase, and Abeta peptides are liberated. Abeta40 and Abeta42 gamma-secretase activities are very similar in terms of their kinetic profiles and pH dependence, supporting the notion that a single enzyme is involved in both Abeta40 and Abeta42 production. Pepstatin A inhibited Abeta40 and Abeta42 gamma-secretase activities with similar potency. Peptide difluoroketone and peptide aldehyde inhibitors inhibited Abeta40 production in a dose-dependent fashion, enhanced Abeta42 production at low concentrations, and inhibited Abeta42 production at high concentrations. Although the selective increase of Abeta42 by low concentrations of peptide difluoroketone and peptide aldehyde inhibitors has been reported in intact cells, the finding that this phenomenon occurs in a membrane-based assay system suggests that these compounds increase Abeta42 by a direct effect on gamma-secretase. The ability of these compounds to increase Abeta42 production may reflect allosteric modulation of the gamma-secretase complex by a mechanism related to that responsible for the increase of Abeta42 production by mutations in presenilins.  相似文献   

11.
The Alzheimer's disease-associated beta-amyloid peptide is produced through cleavage of amyloid precursor protein by beta-secretase and gamma-secretase. gamma-Secretase is a complex containing presenilin (PS) as the catalytic component and three essential cofactors: Nicastrin, anterior pharynx defective (APH-1) and presenilin enhancer-2 (PEN-2). PS and signal peptide peptidase (SPP) define a novel family of aspartyl proteases that cleave substrates within the transmembrane domain presumptively using two membrane-embedded aspartic acid residues for catalysis. Apart from the two aspartate-containing active site motifs, the only other region that is conserved between PS and SPP is a PAL sequence at the C-terminus. Although it has been well documented that this motif is essential for gamma-secretase activity, the mechanism underlying such a critical role is not understood. Here we show that mutations in this motif affect the conformation of the active site of gamma-secretase resulting in a complete loss of PS binding to a gamma-secretase transition state analog inhibitor, Merck C. Analogous mutations in SPP significantly inhibit its enzymatic activity. Furthermore, these mutations also abolish SPP binding to Merck C, indicating that SPP and gamma-secretase share a similar active site conformation, which is dependent on the PAL motif. Exploring the amino acid requirements within this motif reveals a very small side chain requirement, which is conserved during evolution. Together, these observations strongly support the hypothesis that the PAL motif contributes to the active site conformation of gamma-secretase and of SPP.  相似文献   

12.
The amyloid beta peptides (Abeta) are the major components of the senile plaques characteristic of Alzheimer's disease. Abeta peptides are generated from the cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. Beta-secretase (BACE), a type-I transmembrane aspartyl protease, cleaves APP first to generate a 99-amino acid membrane-associated fragment (CT99) containing the N terminus of Abeta peptides. Gamma-secretase, a multi-protein complex, then cleaves within the transmembrane region of CT99 to generate the C termini of Abeta peptides. The production of Abeta peptides is, therefore, dependent on the activities of both BACE and gamma-secretase. The cleavage of APP by BACE is believed to be a prerequisite for gamma-secretase-mediated processing. In the present study, we provide evidence both in vitro and in cells that BACE-mediated cleavage between amino acid residues 34 and 35 (Abeta-34 site) in the Abeta region is dependent on gamma-secretase activity. In vitro, the Abeta-34 site is processed specifically by BACE1 and BACE2, but not by cathepsin D, a closely related aspartyl protease. Moreover, the cleavage of the Abeta-34 site by BACE1 or BACE2 occurred only when Abeta 1- 40 peptide, a gamma-secretase cleavage product, was used as substrate, not the non-cleaved CT99. In cells, overexpression of BACE1 or BACE2 dramatically increased the production of the Abeta 1-34 species. More importantly, the cellular production of Abeta 1-34 species induced by overexpression of BACE1 or BACE2 was blocked by a number of known gamma-secretase inhibitors in a concentration-dependent manner. These gamma-secretase inhibitors had no effect on enzymatic activity of BACE1 or BACE2 in vitro. Our data thus suggest that gamma-secretase cleavage of CT99 is a prerequisite for BACE-mediated processing at Abeta-34 site. Therefore, BACE and gamma-secretase activity can be mutually dependent.  相似文献   

13.
gamma-Secretase is an enzymatic activity responsible for the final cleavage of the amyloid precursor protein leading to the production of the amyloid beta-peptide (Abeta). gamma-Secretase is likely an aspartyl protease, since its activity can be inhibited by both pepstatin and active-site directed aspartyl protease inhibitors. Recent work has indicated that presenilins 1 and 2 may actually be the gamma-secretase enzymes. Presenilin (PS) mutations, which lead to an increase in the production of a longer form of Abeta, are also the most common cause of familial Alzheimer's disease (FAD). Therefore, in an attempt to better characterize the substrate preferences of gamma-secretase, we performed experiments to determine how FAD-linked mutations in PS1 would affect the generation of Abeta peptides from full length precursor substrates that we have previously demonstrated to be proteolytically cleaved at alternative sites and/or by enzymatic activities that are pharmacologically distinct. Presenilin mutations increased the production of Abeta peptides from sites distal to the primary cleavage site ('longer' peptides) and in several cases also decreased production of 'shorter' peptides. These results support a model in which the FAD-linked mutants subtly alter the conformation of the gamma-secretase complex to favor the production of long Abeta.  相似文献   

14.
15.
16.
The involvement of lipid rafts in Alzheimer's disease   总被引:4,自引:0,他引:4  
The amyloidogenesis occurring in Alzheimer's disease represents a fundamental membrane-related pathology involving a membrane-bound substrate metabolized by integral membrane proteases (secretases). Thus, the amyloid-beta peptide (Abeta), which accumulates extracellularly as plaques in the brains of Alzheimer's disease patients, is derived by sequential proteolytic cleavage of the integral transmembrane amyloid precursor protein (APP). Beta-Secretase or BACE-1 (beta-site APP cleaving enzyme) is a transmembrane aspartic protease responsible for the first of these cleavage events, generating the soluble APP ectodomain sAPPbeta, and a C-terminal fragment CTFbeta. CTFbeta is subsequently cleaved by the ?gamma-secretase complex, of which presenilin is the catalytic core, to produce Ass. A variety of studies indicate that cholesterol is an important factor in the regulation of Ass production, with high cholesterol levels being linked to increased Ass generation and deposition. However, the mechanism(s) underlying this effect are unclear at present. Recent evidence suggests that amyloidogenic APP processing may preferentially occur in the cholesterol-rich regions of membranes known as lipid rafts, and that changes in cholesterol levels could exert their effects by altering the distribution of APP-cleaving enzymes within the membrane. Rafts may be involved in the aggregation of Ass and also in its clearance by amyloid-degrading enzymes such as plasmin or possibly neprilysin (NEP).  相似文献   

17.
Alzheimer's disease (AD) is caused by the cerebral deposition of beta-amyloid (Abeta), a 38-43-amino acid peptide derived by proteolytic cleavage of the amyloid precursor protein (APP). Initial studies indicated that final cleavage of APP by the gamma-secretase (a complex containing presenilin and nicastrin) to produce Abeta occurred in the endosomal/lysosomal system. However, other studies showing a predominant endoplasmic reticulum localization of the gamma-secretase proteins and a neutral pH optimum of in vitro gamma-secretase assays have challenged this conclusion. We have recently identified nicastrin as a major lysosomal membrane protein. In the present work, we use Western blotting and immunogold electron microscopy to demonstrate that significant amounts of mature nicastrin, presenilin-1, and APP are co-localized with lysosomal associated membrane protein-1 (cAMP-1) in the outer membranes of lysosomes. Furthermore, we demonstrate that these membranes contain an acidic gamma-secretase activity, which is immunoprecipitable with an antibody to nicastrin. These experiments establish APP, nicastrin, and presenilin-1 as resident lysosomal membrane proteins and indicate that gamma-secretase is a lysosomal protease. These data reassert the importance of the lysosomal/endosomal system in the generation of Abeta and suggest a role for lysosomes in the pathophysiology of AD.  相似文献   

18.
gamma-Secretase activity is the final cleavage event that releases the amyloid beta peptide (Abeta) from the beta-secretase cleaved carboxyl-terminal fragment of the amyloid beta protein precursor (APP). No protease responsible for this highly unusual, purportedly intramembranous, cleavage has been definitively identified. We examined the substrate specificity of gamma-secretase by mutating various residues within or adjacent to the transmembrane domain of the APP and then analyzing Abeta production from cells transfected with these mutant APPs by enzyme-linked immunosorbent assay and mass spectrometry. Abeta production was also analyzed from a subset of transmembrane domain APP mutants that showed dramatic shifts in gamma-secretase cleavage in the presence or absence of pepstatin, an inhibitor of gamma-secretase activity. These studies demonstrate that gamma-secretase's cleavage specificity is primarily determined by location of the gamma-secretase cleavage site of APP with respect to the membrane, and that gamma-secretase activity is due to the action of multiple proteases exhibiting both a pepstatin- sensitive activity and a pepstatin-insensitive activity. Given that gamma-secretase is a major therapeutic target in Alzheimer's disease these studies provide important information with respect to the mechanism of Abeta production that will direct efforts to isolate the gamma-secretases and potentially to develop effective therapeutic inhibitors of pathologically relevant gamma-secretase activities.  相似文献   

19.
Zhang L  Lee J  Song L  Sun X  Shen J  Terracina G  Parker EM 《Biochemistry》2005,44(11):4450-4457
Gamma-secretase catalyzes the proteolytic processing of a number of integral membrane proteins, including amyloid precursor protein (APP) and Notch. The native gamma-secretase is a heterogeneous population of large membrane protein complexes containing presenilin 1 (PS1) or presenilin 2 (PS2), aph-1a or aph-1b, nicastrin, and pen-2. Here we report the reconstitution of a gamma-secretase complex in Sf9 cells by co-infection with baculoviruses carrying the PS1, nicastrin, pen-2, and aph-1a genes. The reconstituted enzyme processes C99 and the Notch-like substrate N160 and displays the characteristic features of gamma-secretase in terms of sensitivity to a gamma-secretase inhibitor, upregulation of Abeta42 production by a familial Alzheimer's disease (FAD) mutation in the APP gene, and downregulation of Notch processing by PS1 FAD mutations. However, the ratio of Abeta42:Abeta40 production by the reconstituted gamma-secretase is significantly higher than that of the native enzyme from 293 cells. Unlike in mammalian cells where PS1 FAD mutations cause an increase in Abeta42 production, PS1 FAD missense mutations in the reconstitution system alter the cleavage sites in the C99 substrate without changing the Abeta42:Abeta40 ratio. In addition, PS1DeltaE9 is a loss-of-function mutation in both C99 and N160 processing. Reconstitution of gamma-secretase provides a homogeneous system for studying the individual gamma-secretase complexes and their roles in Abeta production, Notch processing and AD pathogenesis. These studies may provide important insight into the development of a new generation of selective gamma-secretase inhibitors with an improved side effect profile.  相似文献   

20.
Campbell WA  Iskandar MK  Reed ML  Xia W 《Biochemistry》2002,41(10):3372-3379
The final proteolytic step to generate the amyloid beta-protein (Abeta) of Alzheimer's disease (AD) from beta-amyloid precursor protein (APP) is achieved by presenilin (PS)-dependent gamma-secretase cleavage. AD-causing mutations in PS1 and PS2 result in a selective and significant increase in production of the more amyloidogenic Abeta42 peptide. PS1 and PS2 undergo endoproteolysis by an unknown enzyme termed presenilinase to generate the functional complex of N- and C-terminal fragments (NTF/CTF). To investigate the endoproteolytic activity that generates active PS, we used a mammalian cell-free system that allows de novo human PS NTF and CTF generation. PS NTF and CTF generation in vitro was observed in endoplasmic reticulum (ER)-enriched fractions of membrane vesicles and to a lesser extent in Golgi/trans-Golgi-network (TGN)-enriched fractions. AD-causing mutations in PS1 and PS2 did not alter de novo generation of PS fragments. Removal of peripheral membrane-associated and cytosolic proteins did not prevent de novo generation of fragments, indicating that presenilinase activity corresponds to an integral membrane protein. Among several general inhibitors of different protease classes that blocked the presenilinase activity, pepstatin A was the most potent inhibitor. Screening available transition state analogue gamma-secretase inhibitors led to the identification of two compounds that were able to prevent the de novo generation of PS fragments, with an expected inhibition of Abeta generation. Our studies provide a biochemical approach to characterize and identify this elusive presenilinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号